Under the Covers

Benefits of Disk Library for Mainframe Tape Replacement

Session 17971
Session Overview

- DLm System Architecture
- Virtual Library Architecture
- VOLSER Handling
 - Formats
 - Allocating/Mounting
 - Scratching
 - Fast Locate
 - WORM tape
 - Data Encryption
- Guaranteed Replication
- Universal Data Consistency
WHAT IS DISK LIBRARY FOR MAINFRAME (DLM)?

- A virtual tape library for IBM and Unisys mainframes
- DLm emulates tape drives to mainframe and writes tape volume images to disk
- A single DLm can provide up to 16 FICON, 2,048 drives, and > 3PB storage

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
DLM STARTS WITH EMC’S THREE INDUSTRY LEADING STORAGE OFFERINGS

And allows you to leverage them all
DLM then adds a resilient redundant architecture.

- 2 to 8 VTEs eliminate single point of failure, providing high-availability.
- Each VTE delivers 2-8 Gbit FICON and up to 256 tape drives.
- All VTEs see all tape volumes.
- NFS insures that tape volumes are available through alternate VTEs.
- Data is protected by RAID 6 arrays with sparing.
A DIFFERENT VIRTUAL TAPE ARCHITECTURE

Clustered-Server-scaled Architecture

- Individual servers each with dedicated data storage
- Network connectivity between servers for inter-server communication
- Servers can ONLY fail-over to one another, providing availability
- Environment scales only by adding servers and storage

Shared-Storage scaled Architecture

- Individual servers with shared data storage
- Servers operate independent of one another
- Surviving servers continue to operate when one or more servers fail, providing availability
- Environment scales by adding servers or storage

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Up to 8 data movers make up a VNX / VG8

Each data mover (DM) manages 256 TB raw

All VTEs can access all storage managed by all data movers

A standby DM will take over for a failed unit

No disruption of service occurs
Multiple filesystems (directories) are defined on the storage.

Filesystems are grouped into virtual libraries.

Each drive in a VTE points to 1 and only 1 library.

Drives in each VTE point to each library to provide high-availability.

A single DLm8100 can emulate up to 2048 drives and multiple virtual libraries.
- No database / index is kept on storage
- Each VOLSER is single file within a filesystem
- Volumes are named with their serial number
- Scratch volumes are identified by “~”
- Initialize (init) command creates scratch volumes in library with VOL1 record.
- New allocations go to any filesystem in the class using 1 of 2 algorithms
 - Round-Robin
 - Most Freespace
- Scratch tapes will be moved between filesystems within class as needed.
• Filesystems in a library are assigned to a storage class.
• TMS tape pools point to a storage class
• Allowing individual tapes to be allocated and written to a specific class
• Most frequent use case is for replicated vs. local only tapes

Class 0 = Replicated Filesystems
Class 1 = Local Only Filesystems

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Mainframe tapes write variable length blocks.

On physical tape blocks are separated by Inter-Record Gap (IRG).

Variable length reads read until hitting IRG.

Tape on disk must record block lengths on write to insure block integrity on read.

An EMC-enhanced AWStape format is used on disk.

Except for DD, VTEs compress the data before writing it to disk.

Volume on Tape

<table>
<thead>
<tr>
<th>Block</th>
<th>IRG</th>
<th>Block</th>
<th>IRG</th>
<th>Block 3</th>
</tr>
</thead>
</table>

Volume on Disk

<table>
<thead>
<tr>
<th>AWSHeader</th>
<th>Block 1</th>
<th>AWSHeader</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWSHeader</td>
<td>Block 3</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
• AMDD moves variable data to the AWSHeader to improve data deduplication results
• AMDD looks at first few blocks for supported applications
 – DFSMSdss
 – FDR
 – Upstream
• On read data is restored to original format

- Known Variable Data

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
• All allocations/mounts/scratches are initiated by a LOAD CCW from the host
 – z/OS allocates a drive and then sends LOAD
 – EMC provides screen scraper for VSE
 – IBM DMSG is used in VM
 – Unisys Tape Manager issues LOAD CCW
 – EMC code for TPF

• Scratch synonyms defined in DLm identify scratch allocations vs. named mounts

• VTE will identify a filesystem and then look for a scratch using an LRU algorithm

• Scratch requests are a custom LOAD CCW
Scratching is ALWAYS controlled by the Mainframe.

DLm provides a scratch utility for z/OS, VSE, and VM.

Scratch utility processes scratch reports from all leading commercial TMS software.

Unisys Tape Manager sends scratch requests.

Scratch requests cause DLm to rename file (123456 -> ~123456); data left intact.

Scratch space recovered under 3 conditions:
- Re-use of scratched VOLSER
- Scratch Erase command in scratch utility
- Filesystem Space Threshold

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
As a VTE Writes a tape it builds an index for future fast locates.

The index is stored at the end of the volume’s disk file.

The index contains a pointer to:
- Each tape mark
- Each 5 MByte block boundary

On read the VTE can go directly to any tape mark

For block locates the VTE will go to the nearest boundary and read forward or backward to find the block

Block locates are accomplished with a maximum read of 2.5 MBytes (Avg. 1.25) of data
WORM TAPE SUPPORT

- DLm uses VNX File Lock Retention (FLR) or Data Domain Retention Lock (DDRL) to provide Write-Once-Read-Many (WORM) tape.

- DLm uses the expiration date in the HDR1 label to set expiration.

- On tape volume close, DLm sets the NFS “LAT” (last accessed date & time) fields to the future expiration date and then makes the file Read-Only.

- Once locked, the data on the VOLSER cannot be updated and/or deleted until the expiration date has expired.

- WORM volumes can be extended.
Normally each VOLSER is a single file in a filesystem.

FLR and DDRL prevent the file from being modified.

To allow WORM tape extension, DLm creates additional files for the VOLSER.

On Read all files will be presented as one logical volume.
DATA ENCRYPTION

- DLm supports two types of Data Encryption
 - D@RE performed by the Storage
 - Static Key Encryption in the VTEs
- 1 to 7 keys are defined in a VTE key store
- A single key is assigned to each drive performing encryption
- All volumes written to drive are encrypted with same “static” key.
- On read/update any key in the key store will be used to decrypt the VOLSER

Each site has a unique write key. Both sites can read/update all tapes.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Guaranteed Replication

- GR guarantees a tape volume (VOLSER) has been replicated to a DR site before unloading the tape at the primary tape.
- GR is triggered by double tape marks written to the tape.
- This insures the mainframe application will be notified if the replication does not complete.
- GR is configured on individual tape drives.
- All VOLSERs written to a GR drive will be guaranteed.
- VOLSER write times will be longer when using GR.
- Caution should be used with applications that write double tape marks other than at end of tape.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
VMAX Universal Data Consistency™

- Universal Data Consistency insures data consistency between VMAX DASD and Tape
- DLm VMAX storage connects to VG8 and to Mainframe (using FICON).
- ConGroups and MSC allow VMAX DASD and DLM Storage to be defined in the same consistency group
- GDDR communicates over IP with DLMDR software running in VTEs
- GDDR controls DLM VMAX failover via FICON interfaces

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Want to win an APPLE TV?

Engage with #EMCer and #WinPrize during this session and one lucky winner will walk away from the room with the prize.

How to win – Tweet a picture or comment on Twitter using these two hashtags #EMCer #WinPrize.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval.
Questions?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval