Learn new features of Red Hat Enterprise Linux 7.1 on IBM z Systems by Examples
Session# 17493

Filipe Miranda <fmiranda@redhat.com>
Global Lead for Red Hat Products on IBM z Systems and Power Systems
Red Hat Inc.
Session topics

Red Hat in a Nutshell
 Open Source Development Model
 Red Hat Subscription Model
 JBoss EAP and BRMS for RHEL on z Systems

RHEL 7.1 z Systems Features Summary

IBM Redbooks Publications

Virtualization Cookbook for IBM z Systems Volume 2:
Red Hat Enterprise Linux 7.1
 Installation process review
 Manual
 Kickstart
 Automated LUN scanning for FCP (NPIV)
 systemd
 Journal
Loading different system targets
Rescue RHEL - z/VM
Red Hat in a Nutshell

The FIRST $1.8 BILLION DOLLAR OPEN SOURCE COMPANY in the WORLD

MORE THAN 90% of the FORTUNE 500 use RED HAT PRODUCTS & SOLUTIONS. *

75+ WORLDWIDE OFFICES

35 COUNTRIES

S&P 500 COMPANY

NYSE: RHT

AWARD-WINNING SOLUTIONS

* Source: Red Hat Inc.
Red Hat Open Source Development Model

* www.blackducksoftware.com/oss-logistics/choose
Standard Subscription Production Support

- The Red Hat Enterprise Linux 5, 6, and 7 Life Cycle:

<table>
<thead>
<tr>
<th>Version</th>
<th>General Availability</th>
<th>End of Production 1</th>
<th>End of Production 2</th>
<th>End of Production 3 (End of Production Phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>November 10, 2010</td>
<td>Q2 of 2016</td>
<td>Q2 of 2017</td>
<td>November 30, 2020</td>
</tr>
<tr>
<td>7</td>
<td>June 10, 2014</td>
<td>Q4 of 2019</td>
<td>Q4 of 2020</td>
<td>June 30, 2024</td>
</tr>
</tbody>
</table>

- Lifecycle Dates:
JBoss for RHEL on z

Red Hat Enterprise Linux optimized to z Systems

JBoss EAP and BRMS adding Value to your solution

Take advantage of the IBM JDK on Red Hat Enterprise Linux for IBM z Systems

(I) http://www-03.ibm.com/systems/z/os/linux/resources/testedplatforms.html

(II) https://access.redhat.com/site/articles/111663
What is Red Hat JBoss BRMS?

Red Hat® JBoss® BRMS is a comprehensive platform for business rules management, business resource optimization, and complex event processing (CEP).

- Deploy decision services across physical, virtual, and cloud environments.
- Improve business agility.
- Make consistent and efficient decisions.
- Quickly build resource optimization solutions.
- Shorten development cycles for faster time to market.

RHEL 7.1 s390x Features

zFCP Specific
- End-To-End data consistency checking for zfcp
- Exploitation of Data Routing for FCP
- Automated LUN scanning for NPIV only

Memory Specific
- Support of transparent large pages for z Systems
- libhugetlbfs support for z Systems
- Cross Memory Attach for z Systems
- Transactional memory support (for zEC12 and newer)
- Implement write protection based dirty page detection

Network Specific
- Enhancement in the configuration tool for z Systems network devices
- IPv6 support for qetharp tool
- Support of VEPA (Virtual Ethernet Port Aggregator)
RHEL 7.1 s390x Features

DASD Specific

- Safe offline interface for DASD devices
- Enhanced DASD statistics for PAV and HPF
- DASD sanity check to detect path connection error
- Improve performance of dasdfmt - Production Ready -

Crypto Specific

- Support for Crypto Express4S
- Crypto adapter resiliency
- Tolerance for Crypto Express5S - Production Ready -
All other features

- zipl to automatically calculate boot device ramdisk address
- Optimized compression library zlib for Linux on z Systems
- Kernel support to improve Java performance for Linux on z Systems - Production Ready -
- Enable LLVM pipe for z Systems
- Architecture level set for IBM System z196 and newer
- Support for zEC12 Flash Express - Production Ready -
- Provide PCHID mapping
- Fuzzy live dump for z Systems - Production Ready -
- Two Stage Dumper - Production Ready -
- Linux support for concurrent Flash MCL updates - Production Ready -
IBM Redbooks Publications

2013

The Virtualization Cookbook for IBM z/VM 6.3, RHEL 6.4, and SLES 11 SP3

http://www.redbooks.ibm.com

2015

The Virtualization Cookbook for IBM z Systems Volume 1: IBM z/VM 6.3

The Virtualization Cookbook for IBM z Systems Volume 2: Red Hat Enterprise Linux Server 7.1
Installation Overview

Linux Desktop
These files can be found at the images directory from the RHEL7.x installation tree:

- kernel.img
- initrd.img
- redhat.exec
- generic.prm

Highly recommended to edit the PRM file locally in your desktop and then copy it to the z/VM Virtual Machine.

This is how the stock generic.prm file looks like:

```
ro ramdisk_size=40000 cio_ignore=all,!condev
```
Examples of GENERIC.PRM:

• FCP:

 ro ramdisk_size=40000 cio_ignore=all,lcondev
 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=1
 nameserver=9.12.6.7 nameserver=9.12.6.6
 rd.zfcp=0.0.fc00,0x500507630500c74c,0x4010401800000000
 rd.zfcp=0.0.fd00,0x500507630510c74c,0x4010401800000000
 inst.cmdline

• ECKD DASD/EDEV:

 ro ramdisk_size=40000 cio_ignore=all,lcondev
 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=1
 nameserver=9.12.6.7 nameserver=9.12.6.6
 rd.dasd=0.0.0100
 inst.cmdline
To copy files over to z/VM, open a Linux terminal on your desktop:

```
# ftp <FQDN for the z/VM>
  login <login>
  password <password>
```

Example:

```
site fix 80
  bin
  put kernel.img KERNEL.IMG
  put initrd.img INITRD.IMG
  ascii
  put redhat.exec REDHAT.EXEC
  put generic.prm GENERIC.PRM
```
RHEL 7.1 installation process

z/VM ONLINE

/ W W W M M M
/ W W V M M M M M
Z Z Z Z Z Z Z Z
/ W W V M M M M M M
Z Z / W W V M M M M M M
Z Z / V W V M M M M M M
Z Z / V W V M M M M M M
Z Z / V W V M M M M M M
Z Z / V W V M M M M M M
Z Z / V W V M M M M M M

built on IBM Virtualization Technology

Fill in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)
USERID ===> SERVI
PASSWORD ===> ******
COMMAND ===> RUNNING TRAINING

CM8
REDHAT EXEC
00:00000000 FILES PURGED
00:001454 SENT FROM TRAIN 77
PUN.WAS 0145 RECS 046K CPY 001 A NOHOLD NO KEEP
00:001466 SENT FROM TRAIN 77
PUN.WAS 0146 RECS 0006 CPY 001 A NOHOLD NO KEEP
00:001478 SENT FROM TRAIN 77
PUN.WAS 0147 RECS 323K CPY 001 A NOHOLD NO KEEP
00:000003 FILES CHANGED
00:000003 FILES CHANGED
00:Uncompressing Linux...
00:Ok, booting the kernel...
00:
0.000000 Initializing gupship subsystem cpu
0.000000 Initializing gupship subsystem cpu
0.000000 Linux version 3.10.0-123.el7.s390x (mockbuild@p390-013.build.redhat.com) (gcc version 4.8.2 20140120 (Red Hat 4.8.2-16) (GCC) #1 SMP Mon May 5 11:41:08 EDT 2014
0.000000 setup: Linux is running as a z/VM guest operating system in 64-bit mode
0.000000 setup: Address spaces switched, mpxas available
RHEL 7.1 installation process

3

Starting sshd to allow login over the network.
anaconda: Starting installer, one moment...
anaconda: 17:33:22 Please ssh install@serv1.redhat.com (10.16.10.71) to begin the install.

~ ssh install@serv1.redhat.com

RUNNING TRAINING

4
Starting installer, one moment...

Anaconda 10.31.79-1 for Red Hat Enterprise Linux 7.0 started.
17:33:24 DISPLAY variable not set. Starting text mode.

VNC

Text mode provides a limited set of installation options. It does not offer custom partitioning for full control over the disk layout. Would you like to use VNC mode instead?

1) Start VNC
2) Use text mode

Please make your choice from above: 'q' to quit | 'c' to continue | 'r' to refresh.

VNC Password

Please provide VNC password (must be six to eight characters long).
You will have to type it twice. Leave blank for no password

Password:
Password (confirm):
RHEL 7.1 installation process

6

VNC® Viewer

VNC Server: 10.16.10.71:1
Encryption: Prefer off

Connect

Options...

About...

7

WELCOME TO RED HAT ENTERPRISE LINUX 7.0.

What language would you like to use during the installation process?

English (United States)

Afrikaans
Amharic
Arabic
Assamese
Asturianu
Basa Indonesia
Bosanski
Bulgarian
Bengali
Bosnian
Catalan
Čeština
Catalán
Dansk
Dutch
English
Esperanto
Eesti
Euskara
Filipino
Français
Gaeilge
Galego
Hrvatski
Bahasa Indonesia
Íslenska
Magyar
Deutsch
Ελληνικά
English (United Kingdom)
English (India)
English (Australia)
English (Canada)
English (Denmark)
English (Ireland)
English (New Zealand)
English (Mongolia)
English (Hong Kong SAR China)
English (Philippines)
English (Singapore)
English (South Africa)
English (Zambia)
English (Zimbabwe)
English (Botswana)

Type here to search.
Kickstart format

```
#version=RHEL7
# System authorization information
auth --enablesystemshadow --passalgo=sha512
# RHEL7 TEMPLATE KICKSTART FOR DASD
# Use network installation
install
url --url="ftp://9.12.7.96/pub/rhel71"
# Use text mode install
text
ignoredisk --only-use=dasda
# Keyboard layouts
keyboard --vckeymap=us --xlayouts='us'
# System language
lang en_US.UTF-8
# Network information
network --bootproto=static --device=enccw0.0.0600 --gateway=9.12.4.1 --ip=9.12.7.98 --nameserver=9.12.6.6,9.12.6.7 --netmask=255.255.240.0 --noipv6 --activate --hostname=linux1.itso.ibm.com
# Root password
rootpw --iscrypted $6$pr46QGx7PLwzthjk$41E7GLPSsD//jHPwbQc7/CAG2SSQSkGg/pcveQUXz2IIVL0LCXH2So8n.e1 rFMtqLrfMYWiE7qY2NFygedw/
# System timezone
timezone America/New_York
# Skip X
skipx
# System bootloader configuration
bootloader --location=mbr --append="hvc_iucv=8 console=hvc0 console=ttyS0" zerombr
# Partition clearing information
clearpart --all
autopart --type=lvm
reboot
```
Kickstart Package and Post Scripting Sections

• Package selection

%packages
 @core
 kexec-tools
%end

• Post Scripting

%post --log=/root/post.log
 # Enable the DVD repo
 cat > /etc/yum.repos.d/dvd.repo <<EOF
 [DVD]
 name= RHEL7.1 DVD ISO
 baseurl=ftp://9.12.7.96/pub/rhel71/
 enable=1
 gpgcheck=1
 EOF
Post Scripting

Import RedHat GPG key to verify packages authenticity during yum package install
rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

Enable the VDISKs for swap
echo 'persistent_policy=by-path' >> /etc/dracut.conf
flip -f
zipl
cio_ignore -r 0.0.0300
cio_ignore -r 0.0.0301
chccwdev -e 0.0.0300
chccwdev -e 0.0.0301
echo '0.0.0300' >> /etc/dasd.conf
echo '0.0.0301' >> /etc/dasd.conf
echo '/dev/disk/by-path/ccw-0.0.0300-part1 swap swap pri=5 0 0' >> /etc/fstab echo '/dev/disk/by-path/ccw-0.0.0301-part1 swap swap pri=4 0 0' >> /
 etc/fstab

Enable IUCV hvc0 for the Linux system
ln -s /etc/systemd/system/serial-getty@hvc0.service /lib/systemd/system/serial-getty@.service

%end
%addon com_redhat_kdump --enable --reserve-mb='4096' %end
Kickstart with FCP devices (optional)

...# Use text mode install
text
zfcp --devnum=fc00 --wwpn=500507630500c74c --fcplun=0x4010401800000000
zfcp --devnum=fd00 --wwpn=500507630510c74c --fcplun=0x4010401800000000
Keyboard layouts
keyboard --vckeymap=us --xlayouts='us'
System language
...
Automated LUN Scanning (NPIV)

Example on how simple it is to work with FCP devices:

1. Unblock the devices
   ```
   #cio_ignore -r fc00
   #cio_ignore -r fd00
   ```

2. Enable the devices
   ```
   # chccwdev -e fc00
   # chccwdev -e fd00
   ```

3. LUN already detected on all paths
   ```
   #lsluns
   Scanning for LUNs on adapter 0.0.fc00
   at port 0x500507630500c74c:
   0x4010401700000000
   at port 0x50050763050bc74c:
   0x4010401700000000
   Scanning for LUNs on adapter 0.0.fd00
   at port 0x500507630510c74c:
   0x4010401700000000
   at port 0x50050763051bc74c:
   0x4010401700000000
   ```
4. Enable multipath:

```bash
# cp /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf /etc/multipath.conf

# systemctl start multipathd
# systemctl enable multipathd

# multipath -ll

mpatha (36005076305fffc74c000000000001017) dm-2 IBM
size=10G features='1 queue_if_no_path' hwhandler='0' wp=rw
 `+- policy='service-time 0' prio=1 status=active
  |  0:0:0:1075265552 sda 8:0 active ready running
  |- 0:0:1:1075265552 sdb 8:16 active ready running
  |  1:0:0:1075265552 sdc 8:32 active ready running
  `- 1:0:1:1075265552 sdd 8:48 active ready running
```

5. Make the FCP devices persistent:

```bash
# lszfcp -D | awk '{ print $1 }' | sed -e 's/\// /g' >> /etc/zfcp.conf
```

6. Partition the multipath device:

```bash
# parted -s /dev/mapper/mpatha mklabel msdos mkpart primary 0% 100%
```
systemd overview

systemd is a system and services manager that replaced upstart in RHEL. systemd is the first user space process the kernel starts when booting. This process is responsible for starting all the services and their dependencies that allow the system to act as a server.

systemd uses units that can be dependent on other units.

There are different unit types such as:

- Service units, used to start services
- Socket units, which allow socket based activations
- Device units, which trigger reactions for devices as they appear or disappear
- Mount point units, that control mount points
- Target units, which allow grouping of units to act as synchronization points
systemd script example

```
[root@localhost ~]# cat /usr/lib/systemd/system/sshd.service
[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target
[root@localhost ~]# 
```
systemd example versus system V

```
[root@samba4 ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 6.4 (Santiago)
[root@samba4 ~]# cat /etc/init.d/sshd  | wc
  234 666  4534
```

```
[root@localhost ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.0 (Maipo)
[root@localhost ~]# wc /usr/lib/systemd/system/sshd.service
  15 21 334 /usr/lib/systemd/system/sshd.service
```
Managing services with systemd

List active service units (running services):

```bash
# systemctl -t service
UNIT LOAD ACTIVE SUB DESCRIPTION
after-local.service loaded active exited /etc/init.d/after.local Compatibility
cpi.service loaded active exited LSB: Set Control Program
cron.service loaded active running Command Scheduler
dbus.service loaded active running D-Bus System Message Bus
...
```

List failed service units:

```bash
# systemctl -t service --state=failed
```
Query the status of a service unit:

```
# systemctl status sshd.service
sshd.service - OpenSSH server daemon
    Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
    Active: active (running) since Thu 2015-04-23 16:40:03 EDT; 24h ago
    Main PID: 1454 (sshd)
    CGroup: /system.slice/sshd.service
        └─1454 /usr/sbin/sshd -D

Apr 23 16:40:03 linux2.itso.ibm.com systemd[1]: Started OpenSSH server daemon.
Apr 23 16:40:03 linux2.itso.ibm.com sshd[1454]: Server listening on 0.0.0.0 ...
Apr 23 16:40:03 linux2.itso.ibm.com sshd[1454]: Server listening on :: port 22.
Apr 23 16:58:13 linux2.itso.ibm.com sshd[2906]: Accepted password for ken f...2 ...
```
systemd commands

Stop, start, and restart a service unit:

```bash
# systemctl stop vsftpd.service
# systemctl start vsftpd.service
# systemctl restart vsftpd.service
```

You can also omit the suffix and specify multiple units:

```bash
# systemctl restart vsftpd sshd
```

Reload a service unit

```bash
# systemctl reload sshd
```

Not all services support that
systemd commands

List installed service units:

systemctl list-unit-files -t service

List enabled service units:

systemctl list-unit-files -t service --state=enabled

UNIT FILE STATE
btrfsmaintenance-refresh.service enabled
cio_ignore.service enabled
cron.service enabled
dm-event.service enabled
getty@.service enabled

Disable a service:

systemctl disable vsftpd

Query the default target the system boots into:

systemctl get-default

Switch to a target:

systemctl isolate multi-user.target
<table>
<thead>
<tr>
<th>\textbf{systemd Target}</th>
<th>\textbf{SysV Runlevel}</th>
<th>\textbf{Notes}</th>
</tr>
</thead>
<tbody>
<tr>
<td>poweroff.target</td>
<td>0</td>
<td>Halts the system</td>
</tr>
<tr>
<td>rescue.target</td>
<td>1, s, single</td>
<td>Single user mode that provides a base system and a rescue shell</td>
</tr>
<tr>
<td>multi-user.target</td>
<td>2,3,4</td>
<td>Multi-user, non-graphical but with Network and Services running</td>
</tr>
<tr>
<td>graphical.target</td>
<td>5</td>
<td>Multi-user, Graphical</td>
</tr>
<tr>
<td>reboot.target</td>
<td>6</td>
<td>Reboot the system</td>
</tr>
<tr>
<td>emergency.target</td>
<td>emergency</td>
<td>Emergency shell. This is a special systemd target unit that can be specified as a kernel command line argument: systemd.unit=emergency.target</td>
</tr>
</tbody>
</table>
The journal is part of systemd and provides a modern logging mechanism. It allows to capture Kernel log messages, regular syslog messages, the stdout/stderr written by services, and messages from the early boot stages.

Viewing the journal

```
# journalctl
Apr 22 16:43:51 linux1.itso.ibm.com systemd-journal[64]: Runtime journal is using
Apr 22 16:43:51 linux1.itso.ibm.com systemd-journal[64]: Runtime journal is using
Apr 22 16:43:51 linux1.itso.ibm.com kernel: Initializing cgroup subsys cpuset
...```

Viewing the journal
Filtering the journal

Show the log messages of the current boot (filters out the messages from previous boots):

```
journalctl -b
```

Show today’s log messages:

```
journalctl --since today
```

Show kernel messages of the current boot only:

```
journalctl -b -k
```

Only show errors:

```
journalctl -p err
```

Show the log messages of a specific unit (like the sshd.service unit):

```
journalctl -u sshd.service
```
IPL your Linux server from the 3270 console using the following commands:

```bash
>>> cp set loaddev portname 50050763 0500C74C lun 40104018 00000000 scpdata
systemd.unit=rescue.target
>>> ipl fc00
```

00: HCPLDL2816I Acquiring the machine loader from the processor controller.
00: HCPLDL2817I Load completed from the processor controller.
00: HCPLDL2817I Now starting the machine loader.

....
es: 258048
[ 0.000000] Kernel command line: rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,laye
r2=1 rd.lvm.lv=rhel_linux2/root cio_ignore=all,lcondev console=hvc0 root=/dev/mapper/rhel_linux2-root console=ttyS0 rd.lvm.lv=rhel_linux2/swap rd.zfcp=0.0.fd00
0x500507630510c74c,0x4010401800000000 rd.zfcp=0.0.fd00,0x50050763051bc74c,0x4010
401800000000 hvc_iucv=8 rd.zfcp=0.0.fc00,0x50050763050bc74c,0x4010401800000000 r
d.zfcp=0.0.fc00,0x500507630500c74c,0x4010401800000000 crashkernel=4096M LANG=en_
US.UTF-8 systemd.unit=rescue.target

... Welcome to rescue mode! Type "systemctl default" or ^D to enter default mode.
Type "journalctl -xb" to view system logs. Type "systemctl reboot" to reboot.
**Give root password for maintenance**
(or type Control-D to continue):

In rescue.target mode, all of the file systems in /etc/fstab are mounted, but networking has not been started.
To enter a different systemd target, from the IPL command just type the target you want in the systemd.unit= parameter. For example, to enter the emergency.target, use the following commands:

```bash
===> cp set loaddev portname 50050763 0500C74C lun 40104018 00000000 scpdata
 systemd.unit=emergency.target
===> ipl fc00
```
To load systemd targets from the IPL command when using DASD ECKD/FBA use the following commands from the 3270 terminal:

```bash
===> ipl 100 PARM systemd.unit=rescue
 00: zIPL v1.23.0-17.el7 interactive boot menu
 00: 0. default (linux)
 00: 1. linux
 00: Note: VM users please use '#cp vi vmsg <input>'
 00: Please choose (default will boot in 5 seconds):
 00: Booting default (linux)...
 00: Uncompressing Linux...
 ...
Welcome to rescue mode! Type "systemctl default" or ^D to enter default mode.
Type "journalctl -xb" to view system logs. Type "systemctl reboot" to reboot.
Give root password for maintenance
(or type Control-D to continue):
```
RESCUE mode

Create a copy of the GENERIC PRM file

```bash
===> copyfile generic prm a rescue prm a
```

Create a copy of the REDHAT EXEC

```bash
===> copyfile redhat exec d rescue exec a
```

Edit the RESCUE EXEC file, replacing the GENERIC PRM for the RESCUE PRM parameter:

```c
/* */
'CL RDR'
'PURGE RDR ALL'
'SPOOL PUNCH * RDR'
'PUNCH KERNEL IMG * (NOH'
'PUNCH RESCUE PRM * (NOH'
'PUNCH INITRD IMG * (NOH'
'CH RDR ALL KEEP NOHOLD'
'I OOC'
```
Enter RESCUE mode

Edit the GENERIC PRM file

```bash
===> x rescue prm a
ro ramdisk_size=40000 cio_ignore=all,fc
rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=1
nameserver=9.12.6.7 nameserver=9.12.6.6
rd.zfcp=0.0.fc00,0x500507630500c74c,0x4010401800000000
rd.zfcp=0.0.fd00,0x500507630510c74c,0x4010401800000000
inst.repo=ftp://9.12.7.96/pub/rhel71
inst.cmdline
rescue
```
Enter RESCUE mode

Run the RESCUE EXEC to start the rescue environment:

```bash
===> rescue exec a
00: 0000003 FILES PURGED
00: RDR FILE 0397 SENT FROM LINUX1 PUN WAS 0397 RECS 047K CPY 001 A NOHOLD NO KEEP
00: RDR FILE 0401 SENT FROM LINUX1 PUN WAS 0401 RECS 0008 CPY 001 A NOHOLD NO KEEP
00: RDR FILE 0405 SENT FROM LINUX1 PUN WAS 0405 RECS 329K CPY 001 A NOHOLD NO KEEP
00: 0000003 FILES CHANGED
00: 0000003 FILES CHANGED
00: Uncompressing Linux...
00: Ok, booting the kernel.
00:
 [0.000000] Initializing cgroup subsys cpuset
 [0.000000] Initializing cgroup subsys cpu
 [0.000000] Initializing cgroup subsys cputacct
es: 258048
 [0.000000] Kernel command line: ro ramdisk_size=40000 cio_ignore=all,!condev
 rd.znet=qeth,0.0.0.600,0.0.0.601,0.0.0.602,laye
 nameserver=9.12.6.7 nameserver=9.12.6.6
 rd.zfcp=0.0.fc00,0x500507630500c74c,0x401040
 rd.zfcp=0.0.fd00,0x500507630510c74c,0x401040
 inst.repos=ftp://9.12.7.96/pub/rhel171
 inst.cmdline
 rescue

...