Session 17907
z/OS Debugging:
Diagnosing Loops & Hangs

z/OS Core Technologies — August 13th, 2015

Patty Little plittle@us.ibm.com
John Shebey jshebey@us.ibm.com
IBM Poughkeepsie

©2015 IBM Corporation SHARE Orlando, August 2015

Trademarks

The following are trademarks of the International Business Machines Corperation in the United
States and/or other countries.

‘MVS

*0S/390®
*zIArchitecture®
*Z/OS®

* Registered trademarks of IBM Corporation

Table of Contents

Introduction

Diagnosing Loops

Loops and system trace

Finding status for looping work
Diagnosing Hangs

IP ANALYZE RESOURCE "
Address space dispatchability
Task dispatchability

Hangs and SRBs

10
12
19
31
34
38
45
83

Introduction

Section | - Diagnosing Loops and Hangs

What is a "Hang" ?

Definition: No externally visible work being done
by a process or function

Possible triggers
~Process is non-dispatchable
~May have no work to do
~May require a resource that is not available
~May be waiting for an event that is not occurring
~Process is dispatchable but not getting CPU
~May be a tuning problem
~May be that a higher priority address space is
looping or consuming excessive CPU
~Process is looping

There are many ways that an application or system can appear hung. Similarly, there are many
factors which can cause or contribute to a hang. This presentation provides an overview of some
types of hangs (including loops) and some steps for identifying what is causing the problem.

A looping application may be perceived as hung since a looping application will not be performing
any significant work.

A function can be non-dispatchable at the address space level, or at the TCB level. Non-
dispatchability bits being on prevent the address space or task from being dispatched. Alternatively,
an RB may be suspended. Local lock contention is another common reason for a function to be not
running.

When considering a hung application, it is necessary to be familiar with the application structure.
Which TCBs drive which subfunctions? Are any key subfunctions waiting or suspended? If so, what
event is the TCB waiting/suspended for? What process is responsible for making this event happen?

Sometimes a hung TCB is fully dispatchable, but it is not getting dispatched due to lack of available
CPU. This could be the result of a tuning problem, or this could be due to a higher priority address
space being stuck in a loop, thereby consuming extra CPU and starving lower priority address
spaces.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

Documentation for diagnosis of

loops & hangs

For address space loops and hangs:

Console Dump:
= DUMP COMM=(name of your choice)
« R X,JOBNAME=jjjijiii,
SDATA=(RGN,CSA,LPA,SQA,ALLNUC, TRT,SUM,GRSQ),END
Multiple jobnames may be specified

For system hangs:

Standalone Dump

For either (and anything else you might debug!):

LOGREC
SYSLOG/OPERLOG

In addition to getting a dump, never overlook the importance of LOGREC and SYSLOG! Often a
loop or a hang is preceded by an abend that acted as a trigger or catalyst. Always check SYSLOG
for relevant messages (e.g. IEA995I “symptom dump”, D GRS output) and activity around the time of
the onset of the loop or hang. Always check LOGREC for errors in relevant address spaces around

the time of the onset of the loop or hang.

While a standalone dump is the documentation of choice for a system hang, sometimes system

hangs can be diagnosed with an SVC dump.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

Documentation for diagnosis
of loops & hangs

Or better yet, take advantage of RTD!

- Detects loop conditions such as HIGH CPU and TCB mode loops
~ Detects hang conditions such as GRS and UNIX latch contention,
ENQ contention, and local lock suspension

~ START HZR,SUB=MSTR
~ F HZR,ANALYZE,OPTIONS=(DEBUG=(LOOP))

~ Produces a report of its findings (example on next slide)

- In the above example, if RTD detects a loop, the DEBUG option
will cause it to automatically take a dump of the problem
address space.

RTD = Run Time Diagnostics. Run RTD whenever your system is experiencing “sick but not dead”
symptoms to do a one-minute (or less) diagnostic assessment. It checks for high CPU, loops, critical
messages, GRS and UNIX latch contention, ENQ contention, and local lock suspension.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

RTD report example

HZR0200I RUNTIME DIAGNOSTICS RESULT 581
SUMMARY: SUCCESS

INTERVAL: 60 MINUTES

EVENTS:

FOUND: 02 - PRIORITIES: HIGH:02 MED:00 LOW:00
TYPES: HIGHCPU:01

TYPES: LOOP:01

ASID CPU RATE:99% ASID:002E JOBNAME:IBMUSERX

JOBSTART:2010/12/21 - 11:22:51

ASID:002E JOBNAME:IBMUSERX TCB:004FF1CO

JOBSTART:2010/12/21 - 11:22:51
ERROR: ADDRESS SPACE MIGHT BE IN A LOOP.

REQ: 004 TARGET SYSTEM: SY1 HOME: SY1 2010/12/21 - 13:51:32

EVENT 0l1: HIGH - HIGHCPU - SYSTEM: SY1 2010/12/21 - 13:51:33
STEPNAME:STEP1 PROCSTEP: JOBID:JOB00045 USERID:IBMUSER

ERROR: ADDRESS SPACE USING EXCESSIVE CPU TIME.
ACTION: USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

IT MIGHT BE LOOPING.

EVENT 02: HIGH - LOOP - SYSTEM: SY1 2010/12/21 - 13:51:14

STEPNAME: STEP1 PROCSTEP: JOBID:JOB00045 USERID:IBMUSER

ACTION: USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

When both

a HIGHCPU
and a LOOP
condition

are detected
by RTD, the
Job is very
likely looping.

Course materials may not be reproduced in whole or in part without the prior

written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

Loop vs Hang in a dump

LOOP

= IPCS SYSTRACE JOBNAME(j) TIME(LOCAL)

PR ASID WU-Addr- Ident CD/D PSW————- Address—- Unique-1 Unique-2 Unique-3
Unique-4 Unique-5 Unique-6

0001 0027 005F81A0 EXT TIMR 00000000 0767E656 00001005
07040000 80000000

0001 0027 005F81A0 EXT CLKC 00000000 _0767F446 00001004 00000000 0000
07040000 80000000

0002 0027 005F81A0 DSP 00000000 _0767F446 00000000 07812870 O08DCEA3C
07040000 80000000

0002 0027 005F81A0 EXT TIMR 00000000 0767E882 00001005
07042000 80000000

HANG

‘******** No Trace Table Entries meeting the selection criteria were

found.

The system trace table is the best option for distinguishing a loop from a hang. A looping address
space will have many entries, often composed primarily of EXT TIMR, EXT CLKC, and I/O interrupts,
as well as DSP entries. A totally hung address space will have no entries in the system trace table.

Note that a hung address space may still have some work running in it. In such a case, the activity
may be limited to timers being set (SVC 2F) and popping. Alternatively, there may be work running
in the address space that is unrelated to the subfunction that is non-responsive. When debugging

hangs, it is helpful to have a familiarity with the internal workings of the hung address space.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

+

Diagnosing Loops

10

Section | - Diagnosing Loops and Hangs

iSteps for diagnosing a loop

= Goal is to locate a PSW and register set that can be used to
“pump code” to explain the loop

« Identify loop pattern in system trace table
Note ASID and Work Unit
Note PSW addresses

Note environmental information
PSW ASC mode (P, S, H, or AR mode)
= Cross memory environment (PASID, SASID)
Local lock status

=« Use trace info to locate GPRs, ARs, and matching PSW
for the looping unit of work

Use PSW address to identify looping code
Use regs to pump the code, determine reason for loop

11

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

Recognizing enabled loops in SYSTRACE

= Some loops are easy to pick out in the trace table by their
repetitive pattern of events:

0001 001A 008F8238 PC 5oa 0 25900040 0030B
0001 001A 008F8238 SSRV L3P 00000000 00000672 00005FBS
001A0000
— 0001 001A 008F8238 PR S5 o 0 25900040 015EC052
0001 001A 008F8238 PC S0 0 2590006E 0OSsIsE
0001 001A 0O08F8238 SSRV 33 00000000 00000603 0000SFBS
001A0000
| 0001 001A 008F8238 PR 5o 0 2590006E 015EC052
[| 0001 001A 008F8238 PC soc 0 25900040 0030B
0001 001A 008F8238 SSRV 132 00000000 00000672 OOOOSFBS8
00120000
J 0001 001A 008F8238 PR 2o o 0 25900040 015EC052
0001 001A 008F8238 PC 500 0 2590006E 00311
0001 001A 008F8238 SSRV 1:33 00000000 00000603 O0O0O0OSFBS8
001A0000
L | 0001 O001A 008F8238 PR - o 0 2590006E 015EC052

= Other loops are a little trickier to recognize

12

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

12

Section | - Diagnosing Loops and Hangs

Recognizing enabled loops in SYSTRACE

= Characteristics of looping code

« Looping units of work are not doing productive work
Often not driving traceable events such as SVC and PC

« Enabled looping units of work will be interrupted
Numerous I/O and EXTernal interrupts at similar PSW addresses

« An interrupted TCB or preemptable SRB might get
redispatched later on a different processor

= An interrupted non-preemptable SRB will immediately be
given back control on the same processor

= How does this look in the system trace table?
« Many I/0O, CLKC, and EXT trace entries; an occasional DSP
« Similar PSW addresses
= Same unit of work
« Except for non-preemptable SRBs, loop may move across CPs

13

In this presentation we will not discuss how to determine whether an SRB is premptable or non-
preemptable. For our purposes it is sufficient to know that if an SRB/SSRB gets interrupted and
loses the processor, then it must have been a preemptable-type SRB/SSRB.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

13

Section | - Diagnosing Loops and Hangs

Example of a TCB mode loop

IP SYSTRACE ASID(X’27°) TI(LO)

Work <

crosses
CPs

PR

0001

w0001

#0002

0002

0002

ASID WU-Addr-

0027

0027

0027

0027

0027

005F81A0
005F81A0
005F81A0
005F81A0

005F81A0

/

Ident CD/D PSW————-— Address-—

EXT TIMR 00000000 _0767E656
07040000 80000000
EXT CLKC 00000000 _0767F446%—_|
07040000 80000000
DSP 00000000_0767F446
07040000 80000000
I/0 02002 00000000 0767E722
07040000 80000000
EXT TIMR 00000000 _0767E882

K\\ 07042000 80000000

Work Unit is TCB
(addr is below line)

I/0, EXT, and DSP
trace entries

Similar PSW
addresses

14

A TCB is always preemptable. This means that, when it gets interrupted, it may lose the CP and
have to be redispatched before it can run again. Often when a TCB is interrupted, it does NOT lose
the CP but rather is allowed to continue running on the same CP once the interrupt has been

handled.

When you see a DSP entry, this means the TCB was found on the WUQ (Work Unit dispatching
Queue) and has gotten redispatched. It can get redispatched on a different CP than the one on
which it was running prior to the interrupt.

When a TCB is running, the Work Unit address that is traced is the TCB address. We will see that
for SRBs, the traced Work Unit address is actually the address of the WEB representing that
SRB/SSRB.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

14

Section | - Diagnosing Loops and Hangs

Preemptable SRB mode loop

IP SYSTRACE ASID(X’25’) TI(LO)

PR ASID WU-Addr- Ident CD/D PSW————- Address—
0001 0025 0264BB00 SSRB 00000000 076B5624
: 07047001 80000000
Like a TCB, a 0001 0025 0264BB00 EXT CLKC 00000000 076B5F20
preemptable 07046001 80000000
SRB can move ~ 0001 0025 0264BB00 EXT TIMR 00000000 076B5686
across CPs. N 07045001 80000000
0003 0025 0264BB00 SSRB 00000000 076B5686

07045001 80000000
0003 0025 0264BB00 I/O 0265E 00000000 076B5834
07045000 80000000
0003 0025 0264BB00 EXT TIMR 00000000 _076B5798
07045001 80000000

The WOI’k Unit addreSS 0001 0025 0264BB0O0 SSRB 00000000_07eB5798
is above the line. It s \\ N
cannot be a TCB, so it Again we have EXT and I/0
must be a WEB. The WEB interrupt entries, but instead
points to the SRB/SSRB. of DSP dispatch entries, we

have SSRB dispatch entries.

A preemptable SRB, as its name implies, may have to give up the processor on an interrupt, and wait
in line on the WUQ dispatching queue for another opportunity to be dispatched. Therefore, like
TCBs, when a preemptable SRB is looping, the loop will travel across processors.

When a preemptable SRB gets interrupted, its status (PSW, registers, cross memory environment)
needs to be saved. The operating system obtains an SSRB control block to hold this information.
(This is the same type of control block as is used for an SRB, preemptable or non-, when it gets
suspended.) This is why we are seeing SSRB entries rather than SRB entries in the system trace
output.

WEB = Work Element Block. WEB control blocks represent units of work. They will point to a TCB,
an SRB, or an SSRB. WEBSs representing ready units of work get queued to a WUQ dispatching
queue in priority order. When an SRB (preemptable or non-) is running, the Work Unit address that
is traced is the WEB address for that SRB/SSRB.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

SRB stays
on same
CP.

IP SYSTRACE ASID(X’26’) TI(LO)

Non-preemptable SRB mode loop

PR ASID WU-Addr- Ident CD/D PSW-————-— Address-—
0002-0026 O7FOBFO00 EXT CLKC 00000000 _0767B8SC
07041000 80000000
0002-0026 O7FOBFO0 SSRV B[5]E() 810AEEQ00
0002-0026 O7FOBFO00 EXT TIMR 00000000 _0767CA26
07040000 80000000
0002-0026 O7FOBFO00 EXT CLKC 00000000 _0767B84E
07041000 80000000
0002-0026 O07FOBF00 SSRV 120 81360308
0002-0026 O7FOBFO00 EXT CLKC 00000000_0767BFD2
07042000 80000000
0002-0026 07FOBFO00 I/O \£@f5E 00000000_0767C002

Sometimes
there is some

» “clutter” under
the EXT trace
entries. This
is coming from
code running
under timer
DIEs (disabled
interrupt exits).

T

Work Unit address
is that of a WEB.

Note there are no

dispatch trace entries

of any kind.

16

Non-preemptable SRBs cannot lose the processor. You will not see DSP or SSRB trace entries in
the pattern of the loop. The SRB will never get preempted and have to be redispatched; therefore,
the loop will stay on the same CP rather move around as was the case with the TCB and

preemptable SRB mode loops.

Course materials may not be reproduced in whole or in part without the prior

written permission of IBM. (c) Copyright IBM 2009.

16

Section | - Diagnosing Loops and Hangs

i Simplifying the trace output

= With so many CPs (and therefore so much
parallel activity) on some machines, it can be
difficult to pick out a loop

= SYSTRACE offers several filtering options
= TCB: SYSTRACE ASID(X'yy’) TCB(X'zzzzzz")
= SRB: SYSTRACE WEB(X'zzzzzzzz")

= Non-preemptable SRB
SYSTRACE ASID(X'yy") CPU(X'zzzz")

17

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

17

Section | - Diagnosing Loops and Hangs

iGathering info from SYSTRACE

COLUMNS
OM"'I?'ED
PR ASID WU-Addr- Ident CD/D PSW----- Address— ' ' PSACLHS- PSALOCAIL PASD SASD Time
0000 0027 00SF81A0 EXT TIMR 00000000_076CESDE | | 00000000 00000000 0027 0027 17:22
07044000 80000000 - - 00000000
0000 0027 005F81A0 EXT CLKC 00000000 _076CE866 i i 00000000 00000000 0027 0027 17:22
07047000 80000000 . . 00000000
0001 0027 005F81A0 DSP 00000000 076CE866 | | 00000000 00000000 0027 0027 17:22
07047000 80000000 !!
0001 0027 005F81A0 EXT TIMR 00000000 076CE834 - : 00000000 00000000 0027 0027 17:22
07044001 80000000 | I/Eggoefﬁg///'

Note ASID and WU (Work Unit
If non-preemptable SRB, no essor number (CP)
If TCB, note last bit of PS HS (upper word)

» If on, then work holds a local lock

ss (TCB/WEB)

YV V

» PSALOCAL=0 indicates holding home address space’s local lock

» PSALOCAL indicates ASCB whose local lock is held by this work unit

The last bit of PSACLHS can also be used to determine whether an SRB is holding a local lock.
However, this information is not needed to locate the status information of an SRB.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

18

Section | - Diagnosing Loops and Hangs

i Finding Status: TCB w/o lock

SUMM FORMAT ASID(X'yy’)
= FIND 'TCB: 00zzzzzz’
= General Purpose Registers

= TCB, under heading “64-Bit GPRs from TCB/STCB"”
= Access Registers

= TCB’s STCB+X'30’

= PSW
= Current RB’s XSBOPS16 at XSB+X'FO’
(Current RB is last one formatted under TCB)
= PASID and SASID
= Current RB’s XSBPASID and XSBSASID respectively
« SASID: XSB+X'D6’" PASID: XSB+X'CE’

19

Status: PSW, General Purpose Registers, Access Registers, Cross Memory environment. PASID
and SASID stand for Primary ASID and Secondary ASID respectively.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

19

Section | - Diagnosing Loops and Hangs

iRegisters in TCB/STCB

TCB: 0OO05F81A0
i i e e e T 12 LINE (S) NOT DISPLAYED
64-Bit GPRs from TCB/STCB
Left halves of all registers contain zeros
0-3 07812870 O08DCE428 00000032 07812870
4-7 00000003 OBDCF670 07630CC8 O08DCF6Al
8-11 08DCF61D O08DCE8S8A8 076C806C 00000000
12-15 FFFFFFFF O08DCEBA8 876C7650 00000000
e 97 LINE (S) NOT DISPLAYED
STCB: 7FF80420
=R R B e T e 5 LINE (S) NOT DISPLAYED
+0030 ARO...... OO5FDD40 AR1...... 00000000 AR2...... 00000000
+003€C AR3::u::: 00000000 AR4...... 00000000 ARS...... 00000000
+0048 ARG6...... 00000000 AR7...... 00000000 ARS8...... 00000000
+0054 AR9...... 00000000 AR10..... 00000000 AR11..... 00000000
+0060 AR12..... 00000000 AR13..... 00000000 AR14..... 00000000
+006C AR15..... 00000000 LSSD..... T7FF82CAO0 LSDP..... TF54A138

access registers under the STCB

General purpose registers are formatted under the TCB,

20

Course materials may not be reproduced in whole or in part without the prior

written permission of IBM. (c) Copyright IBM 2009.

20

Section | - Diagnosing Loops and Hangs

ipsw and XMEM info in XSB

TCB: 005F81A0
+0000 RBP...... 005FF040 PIE...... 00000000 DEB...... 00000000
e e e i 217 LINE(S) NOT DISPLAYED

PRB: 005FF040
-0020 XSB...... 7FFFDC10 FLAGS2... 80 RTPSW1... 00000000
e 29 LINE(S) NOT DISPLAYED
XSB: TFFFDC10
e 22 LINE(S) NOT DISPLAYED
+00CC KM....... 00C0 SASID.... 0027 PINS..... 00000006
+00D4 AX....... 0005 PASID.... 0027
e e 2 LINE(S) NOT DISPLAYED
+00F0 OPS16.... 07041000 80000000 00000000 0767E84E

= TCBRBP points to the “top” or “current” RB, which is the last RB
formatted under this TCB in SUMM FORMAT.
= The corresponding XSB contains PSW and XMEM information.

21

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

21

Section | - Diagnosing Loops and Hangs

i Finding Status: TCB with lock

If PSALOCAL non-zero:
= CBF xxxxxx STR(ASCB)
« FIND ASID
= SUMM FORMAT ASID(X'yy")
= If PSALOCAL=0: X'yy’ = Home ASID
« If PSALOCAL non-zero: X'yy"is ASID found above
= FIND IHSA
s CBF X'zzzzzz" STR(IHSA) ASID(X'yy")
« PSW, GPRs, Ars
= Note XSB address with IHSA
= CBF X'aaaaaaaa’ STR(XSB) ASID(X'yy’)
« PASID and SASID

22

Status: PSW, General Purpose Registers, Access Registers, Cross Memory environment

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

22

Section | - Diagnosing Loops and

Hangs

PSW,

Regs in IHSA

ASXB: 005FD820
+0000 ASXB..... ASXB FTCB..... 005FDD40 LTCB..... 005F81A0
+000C TCBS..... 0004 FLGl..... 00 SCHD..... 00
+0010 MPST..... 00000000 LWA...... 00000000 VEVT..... 00000000
+001C SAF...... 00000000 IHSA..... 005FE470 FLSA..... 00000027
IHSA: 005FE470
+0000 CPUT..... 00000000 00770000 NTCB..... 005F81A0
+000C OTCB..... 005F81A0 CPSW..... 070C0000 81529200
e T 3 LINE(S) NOT DI
General purpose register values
0-3 D3D3D7E2 7FF59F50 0000002B 00000000
4-7 TFF7D46C 01BC20F8 00000080 OOFBB5CS8
8-11 8123D180 7FF59F50 7FF7D400 OOFDBFO00
12-15 01529240 81529200 8123D5C8 00F9A380
+0080 XSB...... TFFFD430 FLGS..... 00
Access register wvalues
0-3 00000000 00000000 FFFFFFFF FFFFFFFF
4-7 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
8-11 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
12-15 FFFFFFFF FFFFFFFF 00000000 00000000

23

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

23

Section | - Diagnosing Loops and Hangs

iXMEM info in XSB

XSB: T7FFFD430
+0000 XSB...... XSB LINK..... 00000000 XLIDR.... 00000000

-—- 21 LINE(S) NOT DISPLAYED
+00CC KM....... 00co SASID.... 0027 PINS..... 00000006
+00D4 AX....... 0000 PASID.... 0027

24

This XSB lives in the same address space as the IHSA.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

24

Section | - Diagnosing Loops and Hangs

= CBF X'xxxxxxxx" STR(WEB)

Finding Status: Preemptable SRB

= FIND UPTR
WEB: 0257B200
+0000 WEB...... WEB FLAGL....
+0007 TYPE..... 14 LOCK.....
+0010 CMAJOR_B. OOFE CMINOR B.
+0018 UPTR..... 0269F020 UNEXT.. ..

0000
00000000
0000
0772A600

FLAG2....

HASCB....
UPREV....

08

0772A600
O0FSA380
00000000

= CBF X'yyyyyyyy’' STR(SRB)

= Locate PSW, GPRs, and ARs
=« FIND 'XSB’

= CBF X'zzzzzzzz' STR(XSB)
« Get PASID and SASID

=« Note: STR(SRB) can be used for both SRB’s and SSRB'’s

25

Status: PSW, General Purpose Registers, Access Registers, Cross Memory environment

Course materials may not be reproduced in whole or in part without the prior

written permission of IBM. (c) Copyright IBM 2009.

25

Section | - Diagnosing Loops and Hangs

ipsw, Regs in SSRB

SSRB: 0269F020

0-3 08186980 08BC38E4
4-7 0754D778 08BC574F
8-11 08186970 08BC4750
12-15 00000000 08BC4750
+0070 CPSW..... 07040000
+0078 PSWlé6.... 07040000
+0098 TOCP..... 00000013
+00A4 SSD...... 4F4F4F4AF
SSRX: 000001EF_83306000
Access register values

0-3 00000000 0000OOOOO
4-7 00000000 0OOOOOOO
8-11 00000000 00000000
12-15 00000000 00000O0O0O

00000000
08BC54C0
076895BC
87682884

8767E656
80000000

00000000
00000000
00000000
00000000

64-Bit GPRs from SSRB/SSRX
Left halves of all registers contain zeros

00000000
08BC674E
0768A5BB
00000000

00000000

00000000
00000000
00000000
00000000

13 LINE(S) NOT D

1 LINE(S) NOT D

0767E656

2 LINE(S) NOT D
XSB...... 0269F0DO
83306000

26

SSRBCPSW is the “scrunched” version of SSRBPSW16. Technically SSRBPSW16 is the correct
PSW to use now that there is limited execution allowed above the bar. However, the number of
exploiters is in fact so small that debuggers can get away with still using SSRBCPSW virtually 100%

of the time. Several IPCS reporting execs still format SSRBCPSW instead of SSRBPSW16.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

26

Section | - Diagnosing Loops and Hangs

ipsw, Regs, XMEM info in XSB

XSB: 0269F0DO
e i 21 LINE(S) NOT DI

+00C0O TRNE..... 00000000 00000000 SINS..... 00000013
+00CC KM....... 8000 SASID.... 0026 PINS..... 00000013
+00D4 AX....... 0005 PASID.... 0026

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

Finding Status: Non-preemptable SRB

= CBF PSAX
= FIND SCFS

= CBF X'yyyyyyyy’ STR(SCFS)
« GPRs in SCFSX1GO0
= Access Registers in SCFSX1A0
« PSW in SCFSP161

= Cross memory environment in SCFSX1SS (SASID) and SCFSX1PS
(PASID)

28

Status: PSW, General Purpose Registers, Access Registers, Cross Memory environment

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

28

Section | - Diagnosing Loops and Hangs

ipsw, Regs, XMEM info in SCFS

SCFS: 020FC100

- - - - - - - - - - - - - - =14 Line(s) not Display
+00D0 X1GO..... 0819B088 X1G1..... 08D66460 X1G2..... 00000024
+00DC X1G3..... 07627D60 X1G4..... 07627DF8 X1G5..... 0819B088
+00E8 X1G6..... 07630F84 X1G7..... 00000000 X1GS8..... 07627DF8
+00F4 X1G9..... 08D666B0 XI1GA..... 076C806C X1GB..... 00000000
+0100 X1GC..... 08D674C8 X1GD..... 08D666B0 XI1GE..... 0771434E
+010C XI1GF..... 076BE930
+0110 X1AO0..... 00000000 Xi1Al..... 00000000 X1A2..... 00000000
+011C XI1A3...-- 00000000 X1A4..... 00000000 X1AS5..... 00000000
+0128 X1A6..... 00000000 X1A7..... 00000000 X1AS8..... 00000000
+0134 XI1IA9..... 00000000 XiAA..... 00000000 Xi1AB..... 00000000
+0140 XI1AC..... 00000000 Xi1AD..... 00000000 X1AE..... 00000000
+014C XI1AF..... 00000000 XRSA..... 00000000 00000000 0OOOOOOO
- - - - - - - - - - - - - - =15 Line(s) not Display
+0250 Ple6l..... 07046001 80000000 00000000 O076C23ES8

- - - - - - - - - - - - - - =30 Line(s) not Display
+03D0 X1SN..... 00000007 X1PK..... 8000 X188 csa5 0026
+03D8 X1PN..... 00000007 X1AX..... 0005 F1PS::uss 0026

- - - - - - - - - - - - - - =78 Line(s) not Display

29

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

29

Section | - Diagnosing Loops and Hangs

i Pumping the code

= Do IPCS WHERE or IPCS BROWSE against the PSW

address

« If PSW address points to private storage,
make sure you specify the PASID as the ASID

E.g. IP WHERE xxxxxxxx ASID(X"yy’)

(bits 16 and 17)

« 00 - Data reference is to primary address space

« 10 - Data reference is using access registers

« 01 - Data reference is to secondary address space
« 11 - Data reference is to home address space

= Before using your registers, check PSW ASC mode bits

30

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

30

+

Diagnosing Hangs

31

Section | - Diagnosing Loops and Hangs

i Steps for diagnosing a hang

= Goal is to locate a unit of work that is the bottleneck, and
to use its status (PSW, registers) and related information
to explain why it is not progressing.

= Identify pivotal unit of work

=« Gather dispatchability information about unit of work

If waiting, who did the WAIT?

If suspended, who did the SUSPEND?
If PAUSEd, who did the PAUSE?

If dispatchable, why isn’t it running?

32

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

32

Section | - Diagnosing Loops and Hangs

i System hangs

= System hang

« Either the whole system, or else a major subset, is not
functioning

« Ideal documentation is a SADump but some diagnoses can be
made using a console dump

= System hang diagnosis comes in 2 flavors: © / ®

»« IP ANALYZE RESOURCE helps ©

Report highlights contention and identifies the “bottlenecking” unit
of work

= IP ANALYZE RESOURCE doesn’t help ®
Need to work harder for answer

Consider what address spaces aren’t running
Verify their activity (or lack thereof) in system trace

Explore their dispatchability
33

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

Section | - Diagnosing Loops and Hangs

i IP ANALYZE RESOURCE

Use IP ANALYZE RESOURCE to identify contention
« Identifies resource
= Identifies owner and owner’s dispatchability status
=« Identifies contenders

= Report may call out multiple points of contention

address space
= Look for long lists of contenders
= Look for contention involving jobs you know to be hung

= Look for key system resources such as a local lock for a critical system

= NOTE: While ANALYZE RESOURCE is the “go-to” command for
system hangs, it can be useful for address space hangs as well.

Course materials may not be reproduced in whole or in part without the prior
written permission of IBM. (c) Copyright IBM 2009.

34

Details in ANALYZE RESOURCE report

Examples of contention identified by ANALYZE RESOURCE
= Suspend lock contention (LOCAL/CML/CMS)
Note: report calls this out even if no contenders
« I/O device
« ENQ resource (Major/Minor)
« Page fault
« Latches

Latch control blocks live in the latch set owner’s address space.
Contention will only show in ANALYZE RESOURCE if owner’s address space dumped.

Examples of resource owner status identified by ANALYZE
RESOURCE

« Suspended or waiting
« Interrupted but dispatchable
« Executingon a CP

35

35

ANALYZE RESOURCE examples

RESOURCE #0004:
NAME=LOCAL LOCK FOR ASID 00BA

RESOURCE #0004 IS HELD BY:

JOBNAME=ABC ASID=00BA SSRB=1A31940C
DATA=INTERRUPTED AND NOW DISPATCHABLE

RESOURCE #0002:
NAME=LOCAL LOCK FOR ASID 0004

ASID 4=TRACE.

Typical and RESOURCE #0002 IS HELD BY:
not a concern
in SVC dumps.

P JOBNAME=*MASTER* ASID=0001 SRB=00000000 CPU=26

DATA=CURRENTLY RUNNING ON CPU 26

36

ASID 4 is the TRACE address space. Atrace table is “snapped” as part of dump
processing, and doing this requires the local lock of the TRACE address space.

36

ANALYZE RESOURCE examples

RESOURCE #0002:
NAME=MAJOR=CATLGRES MINOR=CAS SCOPE=SYSTEM

RESOURCE #0002 IS HELD BY:
JOBNAME=CATALOG ASID=0031 TCB=008AC680
RESOURCE #0002 IS REQUIRED BY:

JOBNAME=PBLPROG ASID=0117 TCB=008D1210

\

No dispatchability status;
Perhaps CATALOG job was
not in dump.

37

37

Checking address space dispatchability

= Check address space dispatchability if:
=« Problem is a hung address space
= ANALYZE RESOURCE didn’t help identify the source of a system hang

= Steps for checking address space dispatchability
=« Check address space level non-dispatchability bits

« Check task level non-dispatchability bits for key TCBs
Identifying key TCBs may require some inside knowledge of address space
For hangs during CANCEL or job shutdown, last TCB is often the bottleneck

=« Check RB level non-dispatchability indicators
=« Validate whether unit of work is on/off the WUQ dispatch queue

= What if address space is hung due to an SRB not running?
= Locate SRB/SSRB on address space’s “in flight” queue
=« Validate whether unit of work is on/off the WUQ dispatch queue

Note: IP SUMM FORMAT ASID(X'yy’) to view ASCB/TCBs

38

38

ASCB non-dispatchability bits

Located in ASCBDSP1 at ASCB+X'72’, length 1 byte

Common settings:

X'00' Address space is dispatchable
X'80" Address space quiesced due to SVC dump in
progress — not a problem!
X'18’ Contact Supervisor L2 (compID 5752SC1C5)
X'40" Address space being terminated (MEMTERM)
Address space logically swapped out
OR

TCB within address space has issued
STATUS STOP of SRBs

39

39

Example: ASCB non-dispatchability

ASCB: OOF65D00
+0000 ASCB..... ASCB FWDP..... 00F65B80 BWDP..... 00F65E80
+000C LTCS..... 00000000 RO10..... 00000000
+0018 TIOSP..... 00000000 RO1C..... 0000 WQID..... 0000
+0020 RO020..... 00000000 ASID..... 007B
= = = = e = e = e = = e e == = lines omitted - - - = - - - - -
+0068 TMCH..... 00000000 ASXB..... 008FD820 SWCT..... 004B
+0072 DSP1l..... 10 FLG2..... 00
+0076 SRBS..... 000 LLWQ..... 00000000 RCTP..... 008FDD40
— = == == = e = == = = = = lines omitted - - - - - - - - -
+0171 AVM2./... 00 AGEN..... 0000 ARC...... 00000000
+0178 RSMX..... 05885A30 DCTI..... 00000000
Address space non-dispatchability flags from ASCBDSPl:
STATUS stop SRB summary
40

Address space nondisatchability bits in ASCBDSP1 are described verbally
immediately underneath the formatted ASCB. Note that if no bits are on, no

verbiage will appear.

40

Troubleshooting
ASCB non-dispatchability

= X'40° Address space being terminated
(MEMTERM)

= Memterm is usually a quick process ... SO ...
Address space in memterm processing => memterm hung

= To debug:

Get a console dump of ASID1
(memterm is driven from ASID1)

IP SUMM FORMAT ASID(1)

FIND IEAVTMTR (to locate task driving memterm)
= Eyecatcher appears under first RB belonging to IEAVTMTR TCB

Verify that Reg1l in first RB matches our ASCB address
« If not, repeat FIND IEAVTMTR looking for other memterm TCBs

Apply TCB non-dispatchability checks against IEAVTMTR TCB

41

41

Troubleshooting
ASCB non-dispatchability

Address space swapped out OR
“"STATUS STOP-ed”

= IP VERBX SRMDATA

2 spaces

FIND ‘ASID_ xxxx’ to locate swap status of addr space

If logically swapped, for what condition?

« WAITing - Apply TCB non-dispatchability checks to key
TCBs in address space

« Unilaterally swapped - Possible MPL issue

If not logically swapped, then address space must be
STATUS STOP-ed

42

42

Example: VERBX SRMDATA

JOB INIT
ASID O007B
OUCB 04FCB500 LS WAIT QUEUE
+10 (LSW) LOGICALLY SWAPPED
+11 (PVL) PRIVILEGED PROGRAM
+29 (SRC) SWAP OUT REASON: LONG WAIT
(ASCBRSME) RAX ADDRESS IS 05885BAS
SERVICE CLASS = SYSSTC
WORKLOAD = SYSTEM
INTERNAL CLASS= $SRMGOOD
PERIOD = 01

43

43

Troubleshooting
ASCB non-dispatchability

Address space “"STATUS STOP-ed”

= ATCB in the address space has requested
STATUS STOP of SRBs
z/0S stops all SRB and TCB work in this address
space except for requesting TCB
To diagnose, we need to identify requesting TCB
« All TCBs but one will have TCBSRBND bit on
(TCB + X'AF', bit X'20")
« Apply TCB non-dispatchability checks to TCB with
TCBSRBND off

44

44

Checking task dispatchability

= For key TCBs, or for each TCB in address space:

= Is the TCB on the WUQ (dispatching queue) ?
IP IEAVWEBI WUQ
Yes, then why isn’t it running?

« WUQ backed up?
Further check IP IEAVWEBI WUQ

« Dispatching priority issue?
- How does our TCB'’s priority compare to others on WUQ

Further check IP IEAVWEBI WUQ

- What ASIDs are running in system trace? (SYSTRACE ALL)

- What is their dispatching priority compared to ours?
(SUMM FORMAT ASID(X'yy") ; F DPH [within ASCB])

« Is something looping?
Check for loops in system trace (SYSTRACE ALL)

No, then check TCB non-dispatchability indicators

45

45

2015

IP IEAVWEBI WUQ report

SUMMARY BY WUQ. SORTED BY TOTL:

| WUQE | TOTL |PROC]| CPUMASK | There are actually multiple WUQs. Section
——————————————————————————————————————— | shows number of ready-to-run work units on
|0309A800| 156| CP |FE000000 000000001 each WwuQ; in this examp|e’ 156 indicates

|0309A200] 2| Cp |80000000 00000000] a bLISY system with some backup.
|0309AA00| 2|ZIIP|01840000 00000000

— s e e e = e e e lines omitted - - - - - - - -
SUMMARY BY ASID. SORTED BY TOTL: WXYZ has 8 ready SRBs (across all WUQs)

|ASID|JOBNAME | TOTL| ZAAP| ZIIP|TCB |SSRB |SRB |MSRB |ESRB |PSRB |FSRB |EXIT |CMLP
B |-———- |-———- |-———- |-———- |-———- |-———- |-———- |————- |-——— |-———- |-———- |-——-

| 0254 |WXYZ | 8| 0l 0l 0l 0l 8| 0l 0l 0l 0l 0l
| 006F | ABCD | 1] ol 0l 1] 0l 0l 0l 0l 0l 0l 0l
| | | | | | | I | I I I | =====|
| TOTL| **&*xx2x]| 160 ol 2] 48| 0l 951 1] 4] 2] 0l 0l

e e e i i e e e e lines omitted - - - - - - - -
DETAILED INFORMATION FOR WUQ 03092200, SORTED BY WEB DPH:

————————————————————— DATA FROM WEB -----——-—-————————————————————| | ——— ASCB DATA ----|
————4————l-———4-——-2-——————-3——— -l =5~ ————T————4————8————+
| WEB@ |TYPE| WEB DPH| WUQ@ |CLAS| ASCB@ | WU@ |PROMOTE || JOBNAME|ASID| DPH|

R R e R R e — B R || == |——==] =1
1045C3100|SRB |40FF8000|0309A200| CP |00FA5200|02157FA0|00000000 | |XCFAS [0006]00FF |
|1390BE8O |TCB |00F240FF|0309A200| CP |00F12480|008A2CF0|04000000 | |W1234567|01EL|00F2 |

— = s m i m m i m = — s = = = = TCB’s address ©° omitted - - - - - - - - |

IBM Corporation SHAI 1oust 2015

46

46

Before we start checking the TCB...

As with a loop, we will be looking for status information
(PSW, regs, xmem environment)

Reminder:
»« Status for an unlocked TCB is saved as follows:
PSW in top RB’s XSBOPS16
GPRs in TCB; ARs in STCB
XMEM info (PASID, SASID) in XSB pointed to by TCB

« Status for a locally locked TCB is saved in the IHSA of the
address space whose lock is held
PSW, GPRs, and ARs in IHSA
XMEM info in XSB pointed to by IHSA

« Instruction execution occurs in the primary address space
If a TCB is locally locked

= TCBLLH (+X'114’, X’01’ bit) on

« TCBXLAS (+X’E8’) holds addr of ASCB whose lock is held

47

47

TCB non-dispatchability bits

Located in TCB at:

TCBFLGS (+1D) - last two bytes of 5-byte field
TCBNDSP (+AC) - 4 bytes

Common settings:
» FLGS = xxxxxx04 01 Top RB in a wait, check TCBNDSP
NDSP = 00002000 Task non-dispatchable for SVCDump

» FLGS = xxxxxx00 01 Check TCBNDSP
NDSP = 00002000 Task non-dispatchable for SVCDump

» FLGS = xxxxxx04 00 Top RB in a wait, TCBNDSP = 0 (SAdump)
» FLGS = xxxxxx00 00 No TCB non-dispatchability bits set

For other bit settings, see TCB mapping in MVS Data Areas

NOTE: TCB SUSPEND and PAUSE states are reflected elsewhere.

48

48

Checking TCB non-dispatchability

= Check non-dispatchability indicators formatted after TCB

TCB: OO8FF6C8
+0000 RBP...... 0O0O8FF8DO PIE......
+000C TIO...... 0O0OD69FDO CMP......
+0018 MSS...... TFFFE748 PKF......
+0022 LMP...... FF DSPs: s a4 s

————————————— lines omitted
+00AC NDSP..... 00002000 MDIDS....
+00B8 SSAT..... 008FC390 1IOBRC....

————————————— lines omitted
+0154 SENV..... 008FC168

Top RB (last one formatted)

00000000 DEB...... 00000000
00000000 TRN...... 40000000

00 FLGS..... 00008004 01
FF

00000000 JSCB..... 008FCE84
00000000 EXCPD.... 00000000

Task non-dispatchability flags from TCBFLGS4:

Top RB is in a wait <

Task non-dispatchability flags from TCBFLGS5:
Secondary non-dispatchability indicator

Why? Check top RB’s PSW

Just means additional bits
on in TCBNDSP (per below)

Task non-dispatchability flags from TCBNDSP2:
SVC Dump is executing for another task <«—— Ignore; result of this dump

49

The last bit of TCBFLGSS5 (which is the last byte in TCBFLGS) is a summary bit. If
any bits are on in TCBNDSP, then this summary bit is turned on.

When SVC dump processing gathers local storage, it sets TCBs non-dispatchable
in order to get a more stable picture. To make then non-dispatchable, dump
processing calls a system service called STATUS who turns on the X'20’ bit at
TCB+x’AE’ in each TCB. Therefore, when you see a X’00002000’ in the TCBNDSP
field at +AC, this is an effect of the dump in progress and is not relevant to

debugging of the hang.

49

If TCB is waiting....

= Get PSW from XSBOPS16 of top RB’s XSB

= IP WHERE or IPCS Browse the PSW address,
making sure you use the correct PASID
= IEAVEWAT? Then WAIT was PC-entered
Find last LSE linkage stack entry (between TCB and STCB)

LSE TARG field should contain 0000030D
LSE PSWE will point to who issued the PC 30D WAIT

= Otherwise, WAIT was SVC- or branch-entered
XSBOPS16 points to the issuer of the WAIT

50

50

TCB suspended?

Is TCB suspended?

= Get first byte of RBLINK from
TCB's top RB
« If X’01’ then TCB is suspended

X’01’ can also mean TCB is
waiting, but we’ve already
verified that this is not the
case

If TCB is unlocked, get suspend PSW from top RB’s XSBOPS16
If TCB is locked, get suspend PSW from IHSACPSW
IP WHERE or IPCS Browse the PSW address, making sure to use

the correct PASID

NOTE: The SUSPEND PSW typically points right after a BALR
instruction. If this is not the case, the SUSPEND could be due to a
translation exception (e.g. page fault). Check for a non-zero
XSBRTRNE (XSB+X'C0’) that matches the instruction base register

or the instruction address.

51

51

TCB not dispatchable: other checks

= Get PSW from XSBOPS16 of top RB's XSB
or from IHSACPSW

= I[P WHERE or IPCS Browse the PSW address,
making sure to use the correct PASID
= IEAVEPS1? => TCB is PAUSEd

Reg13 from TCB points to standard register save area

Reg13+C contains address where PAUSE was issued
(use PASID when mapping return address to code)

« IEAVESLK? => TCB is suspended for a lock

Reg14 from TCB/IHSA indicates caller
Did you check IP ANALYZE RESOURCE?

52

52

Address space hang due to SRB/SSRB

Sometimes a "missing” SRB/SSRB causes an address space
to hang

Address space has a queue of in-flight SRBs

May be dispatchable (e.g. on WUQ) - IP IEAVWEBI WUQ

May be delayed/suspended for local lock -
ANALYZE RESOURCE

May be suspended for page fault or other translation
May be WAITing

May be suspended explicitly by owner (SSRB)

May be PAUSEd

Use IP IEAVWEBI SRB ASID(xx) to format an address
space’s “in flight” SRBs and SSRBs

Use SRBEPA to recognize “missing” SRB
Need to do: CBF ssrbaddr STR(SRB) to get SSRB’s EPA

53

53

Example: IEAVWEBI SRB ASID(xx)

DETATLED INFORMATION FOR WEBS ON ASCB WEB QUEUE:
————————————————————— DATA FROM WEB —-—————————————————————————| | __ SRB/SSRB
SN TNS, [S T S W S [S S S : address

| 3C4C2300|ESRB|00C10100|0309A800 | | 00F2E100 00100000000 |

| 13E6BB80|RSRB|00C10000|0309A800| CP |00F2E100|0333C0D0|0 WUQ addr
| 03824280 |ESRB|00C10000|0303A800| CP |00F2E100|18EE0230|00000000]| can be

| 03A30E80 |ESRB|00C10000|0309A800| CP |00F2E100]|1C610060|00000000] | residual

| |-——— ASCB DATA ————||-- WU DATA FOR SRBS ———| |-—————- SSRB DATA —-——-----
B B et S | s St B e e S
| | JOBNAME|ASID| DPH|| EPA |PASID| PTCB || LSDP | CPSW

| |DEFGDIST|0148|00F2] |
| |DEFGDIST|01A0|00F2] |
! |DEFGDIST|@140|00F2] |
| |DEFGDIST/0140|00F2] | | |03D07C68|47743001 3EVOBEBS|

T 7 \
Addr space SRB'’s (original) Current linkage stack Suspend/

disp priority entry point addr entry on suspend/interrupt interrupt PSW

54

This is output from the IPCS command: IEAVWEBI SRB ASID(140) where 140 is a
hexadecimal ASID number. This report shows in flight SRBs/SSRBs associated
with ASID X’140°’. When SRBs/SSRBs are not hung, their status is changeable.
This means that in an SVC dump, you may see inconsistent data between the
IEAVWEBI SRB ASID(xx) report which formats in flight SRBs/SSRBs, and the
IEAVWEBI WUQ report which formats work units on a WUQ dispatch queue. For
example, you may find an address space has SRBs on a WUQ waiting to be
dispatched per IEAVWEBI WUQ, but the IEAVWEBI SRB ASID(xx) report may
show no WEBSs on the “in flight” queue because the pointer (ASSBSAWQ) to this
queue was zero at the time the ASSB was dumped.

The IEAVWEBI SRB ASID(xx) report excerpt shown above shows each WEB
having a non-zero WUQ address. The presence of a non-zero WUQ address in a
WEB does not imply that the WEB is currently on a WUQ. To determine whether a
WEB is on a WUQ, use IEAVWEBI WUQ.

54

Non-dispatchable SSRBs

= Where does SSRBCPSW point?

= IEAVSRBS?

PC Suspend

Get SSRBLSDP: IP CBF ssrblsdp-120 STR(LSE)

LSETARG field should contain 00000317; LSEPSWE points to caller
= IEAVEWAT?

PC WAIT

Get SSRBLSDP: IP CBF ssrblsdp-120 STR(LSE)

LSETARG field should contain 0000030D; LSEPSWE points to caller

« IEAVEPSS?

Paused.
SSRB Reg13 points to standard save area; +C is return address

55

55

Non-dispatchable SSRBs

= Where does SSRBCPSW point? (cont)

= After a BALR?
Could be branch-entered SUSPEND
Check code where SSRBCPSW points for SUSPEND/CALLDISP
macros

= Just a “regular instruction”?
Could be suspended for a page fault or other translation exception
Get SSRXTRNE (SSRX formatted along with SSRB)

If non-zero, does it match base register or instruction address of
instruction pointed to by SSRBCPSW?

56

56

Questions?

57

