
8/11/2015

1

17894: MQ Security - V8 Features Deep Dive

Mark Taylor

marke_taylor@uk.ibm.com

IBM Hursley

Agenda

 IBM MQ V8
 Announced 22nd April 2014

 Availability dates

 eGA: 23rd May 2014

 pGA: 13th June 2014

 New Security Features
 Currency

 Changes for Channels using SSL/TLS Certificates

 User ID & Password Connection Authentication

 LDAP Authorisation

 Hostnames in CHLAUTH

8/11/2015

2

CipherSpec currency

 2014-2015: Security vulnerabilities with cool names
 Heartbleed, POODLE, BEAST, FREAK, Bar Mitzvah, LogJam

 Secure protocols as well as crypto algorithms found to have vulnerabilities

 Before V8.0.0.3, 44 different CipherSpecs to choose from
 SSLv3, TLSv1.0, TLSv1.2

 With V8.0.0.3, subset of just 17 CipherSpecs
 TLSv1.0, TLSv1.2

 Predominantly Ecliptic Curve, AES and SHA-2 based

 It is possible, but not recommended, to re-enable the older CipherSpecs
 Environment variable or qm.ini

 Errors if you define or start a channel with a deprecated CipherSpec
 Changes also made to older in-service versions of MQ

Changes for Channels using
SSL/TLS Certificates

8/11/2015

3

Agenda

 Requests for Enhancement

 Changes for Channels using SSL/TLS Certificates
 Recap

 Single Queue Manager Certificate

 Per Channel Certificate

 Certificate Matching

Request for Enhancement (26672)

8/11/2015

4

QM's Digital

Certificate

CA Sig

SSLKEYR

Key Repository

 Contains Entity's own Digital Certificate
 z/OS Queue Manager

 ibmWebSphereMQ<QMgr Name> (mixed case) label
 Distributed Queue Manager

 ibmwebspheremq<qmgr name> (lower case) label
 Client

 ibmwebspheremq<logon userid> (lower case) label
 Digital Certificates from various Certification Authorities

 On z/OS Queue Managers
 Keyring name

 On Unix®, Windows®, iSeries®
QMgrs
 Key database path

 Clients: mqclient.ini file
 SSL Stanza – SSLKeyRepository

 MQCONNX (MQSCO structure)
 SSLKeyRepository

 Environment variable
 export MQSSLKEYR=/var/mqm/ssl/key

ALTER QMGR SSLKEYR(CSQ1RING)

ALTER QMGR

SSLKEYR('/var/mqm/qmgrs/QM1/ssl/key')

mqclient.ini

SSL:

 SSLKeyRepository=C:\key

N

O

T

E

S

Key Repository – Notes

 Queue Manager
– A digital certificate contains the identity of the owner of that certificate. Each MQ queue manager has its own

certificate. On all platforms this certificate is stored in a key repository using your digital certificate management
tool, e.g. in RACF® (z/OS) or iKeyMan (UNIX and Windows).

– On z/OS, the required certificate in the key repository is specified with the mixed-case label
ibmWebSphereMQ<QMgr Name>. On UNIX, Windows and iSeries, the required certificate in the key repository
is specified with the lower-case label ibmwebspheremq<qmgr name> . Note that the certificate label is also
sometimes referred to as its "friendly name".

– The key repository is specified on the MQ QMGR object using the ALTER QMGR command. On z/OS this is
the name of the keyring object in the External Security Manager (ESM), and on the distributed platforms this is
the path and the stem of the filename for the key database file.

 Client
– Generally each user of the MQ client has a separate key repository file, with access restricted to that user.

– This key repository file is accessed using the environment variable MQSSLKEYR, or the MQCONNX
SSLKeyRepository parameter.

– A particular personal certificate within that file is selected for use on the client's SSL channels. Clients use the
certificate labeled with ibmwebspheremq followed by the logon userid, wrapped to lower case.

 The key repository generally also contains a number of signed digital certificates from

various Certification Authorities which allows it to be used to verify certificates it receives
from its partner at the remote end of the connection.

8/11/2015

5

ALTER QMGR

SSLKEYR(CSQ1RING)

CERTLABL(‘CSQ1Certificate’)

CERTQSGL(‘SharedCert’)

ALTER QMGR

SSLKEYR('/var/mqm/qmgrs/QM1/ssl/key')

CERTLABL(‘QM1Certificate’)

Single Queue Manager Certificate

 Name Queue Manager Certificate
 Using CERTLABL attribute

 Name Client Certificate
 mqclient.ini file SSL Stanza

 CertificateLabel
 MQCONNX (MQSCO structure)

 CertificateLabel

 Environment variable
 export MQCERTLABL=MyCert

SSLKEYR

mqclient.ini

SSL:

 SSLKeyRepository=C:\key

 CertificateLabel=MyCert

MQCNO cno = {MQCNO_DEFAULT};

MQSCO sco = {MQSCO_DEFAULT};

cno.Version = MQCNO_VERSION_4;

sco.Version = MQSCO_VERSION_5;

memcpy(sco.KeyRepository, ...);

memcpy(sco.CertificateLabel,..);

cno.SSLConfigPtr = &sco;

MQCONNX(QMName,

 &cno,

 &hConn,

 &CompCode,

 &Reason);

QM's Digital

Certificate

CA Sig

N

O

T

E

S

Single Queue Manager Certificate –
Notes

 Before MQ V8, the label name for a digital certificate to be used by the queue

manager (or an MQ Client) was fixed by MQ. You had to label your certificate

exactly as MQ required it, in order for the certificate to be found. This doesn’t

always meet customer standards of certificate labelling.

 In MQ V8 you can provide your own label name for the queue manager (or an MQ

Client) to use.

 For the queue manager you have a new attribute on ALTER QMGR called

CERTLABL (and additionally CERTQSGL on z/OS for a QSG level certificate –

previously located with the label ibmMQ<QSG-name>).

 For clients, you can provide the Certificate label in the MQSCO structure (along

with the SSLKeyRepository location); or in the SSL stanza in the mqclient.ini file

(along with the SSLKeyRepository location), or using the environment variable

MQCERTLABL.

8/11/2015

6

Use Cases

 Following company policy on certificate labelling

 Using the same certificate for more than one queue manager
 Not that we would condone this!

 Migrating over to a new certificate when main certificate is ready to expire
 Used to have to issue GSKit/RACF commands to rename certificate

 ibmwebspheremqqm1 -> ibmwebspheremqqm1old

 ibmmwebsphereqqm1new -> ibmwebspheremqqm1

 REFRESH SECURITY TYPE(SSL)

 Now just MQ commands when the time comes

 Current label is ‘QM1 Cert 2013’

 ALTER QMGR CERTLABL(‘QM1 Cert 2014’)

 REFRESH SECURITY TYPE(SSL)

N

O

T

E

S

Use Cases – Notes

 Here we list some of the uses we can imagine for being able to label your own

certificate instead of following the pattern mandated in the past by MQ.

 It is worth highlighting here that the change over from using one certificate to

another is now a task that can be accomplished by the MQ administrator alone,

when he is ready. The job of installing the new certificate can be done at any prior

point and labelled however you wish. That label does not now have to change in

order to get the queue manager to use it, so it is just a task for the MQ administrator

to tell the queue manager which label to use now, and then refresh.

8/11/2015

7

QMgr4B

Business Partners with different CA
requirements

BP A BP B

QMgr4A QMgr

QM's Digital

Certificate from

Entrust
CA Sig

QM's Digital

Certificate from

VeriSign
CA Sig ?

Only one certificate

to identify the queue

manager

N

O

T

E

S

Business Partners with different CA
requirements – Notes

 Imagine the situation where your company has need to communicate securely with

two difference business partners. These business partners each have a different

requirement about the Certificate Authority (CA) who signs the certificates that they

are happy to accept. In our example, Business Partner A will only accept certificates

signed by VeriSign, whereas Business Partner B will only accept certificates signed

by Entrust.

 In order for your company to be able to communicate with both of these Business

Partners, you need a certificate that is signed by VeriSign (to communicate with

Business Partner A) and a certificate that is signed by Entrust (to communicate with

Business Partner B). However, since a queue manager can only have one

certificate, with releases prior to V8 of MQ, you were forced into having two queue

managers, one using each certificate. This is less than ideal.

 N.B. Some people also solve this issue by using an MQIPT in front of the queue

manager.

8/11/2015

8

BP A BP B

Certificate per Channel

QMgr

QM's Digital

Certificate from

Entrust
CA Sig

QM's Digital

Certificate from

VeriSign
CA Sig

QM's Digital

Certificate

CA Sig

ALTER CHANNEL(BPB.TO.ME)

CHLTYPE(RCVR)

CERTLABL(‘EntrustCert’)

ALTER CHANNEL(TO.BPB)

CHLTYPE(SDR)

CERTLABL(‘EntrustCert’)

ALTER CHANNEL(BPA.TO.ME)

CHLTYPE(RCVR)

CERTLABL(‘VeriSignCert’)

ALTER CHANNEL(TO.BPA)

CHLTYPE(SDR)

CERTLABL(‘VeriSignCert’)

N

O

T

E

S

Certificate per Channel – Notes

 What is required is the ability to indicate that this particular channel should use a

different certificate than other channels.

 This is achieved in MQ V8 with an attribute on a channel, CERTLABL, which can

either be blank – which means use whatever the queue manager overall is

configured to use, or if provided, means that this channel should use the specifically

named certificate.

 For reasons explained a little later on, we only allow you to specify a non blank

CERTLABL at definition time if you are using a TLS cipherspec.

8/11/2015

9

Why haven’t we always done this?

QM1 (Local) QM2 (Remote)

MCA MCA

Channel

Transmission
Queue

Application
Queues Message

Message

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

QM2's Digital

Certificate

CA Sig

QM1's Digital

Certificate

CA Sig

N

O

T

E

S

Why haven’t we always done this? –
Notes

 The SSL/TLS handshake is done as the first thing on a channel, before any of the

internal channel FAP flows. If you have ever pointed a web-browser with a https://

address at your MQ listener port, you’ll know this. This means that the certificate is

authenticated long before the channel name at the receiver end is known. This

made it impossible to choose a certificate to be used for a receiver based on the

channel name. The best that could have been done would have been to provide a

different certificate per port number and have several different listeners running,

each presenting a different certificate.

 Over time however, as SSL/TLS is used by more and more consolidated servers,

think HTTP server farms and large application servers, it has become necessary to

be able to separate the traffic that is going to a single server into differently

authenticated groups.

 Enhancements to the TLS protocol allow the provision of information as part of the

TLS handshake which can then be used to determine which certificate should be

used for this particular connection.

 This enhancement is known as Server Name Indication (SNI).

8/11/2015

10

Server Name Indication

Website A’s

Digital Certificate

CA Sig

Website B's

Digital Certificate

CA Sig

Website C's

Digital Certificate

CA Sig

website-a.com

website-b.com

website-c.com

N

O

T

E

S

Server Name Indication – Notes

 Wikipedia provides a succinct summary of what Server Name Indication (SNI) is.

 The example on this page shows a use case where SNI would be used. We have

three websites which each have their own certificate. When they were hosted on

individual servers, then this was no problem, each web server has one certificate.

 Now let’s think about what happens if we decide to consolidate those web sites

onto a single server. How can we maintain the certificate correlation with the

website. SNI allows this to be able to happen by providing a place in the TLS

handshake for additional data to be flowed. This additional data is the hostname the

browser was trying to connect to, thus allowing the certificate to be chosen based

off that hostname.

8/11/2015

11

Using Server Name Indication (SNI) with a channel
name

 Both ends of the channel must be at the new
release

 Only TLS can be used, no SSL
 Only certain cipherspecs will be able to supply

this behaviour

 JSSE doesn’t yet support SNI
 So Java client can’t make use of it

 If old sender / client / cipherspec used
 we only detect that we needed to supply a

different certificate after completion of the
handshake and so will fail the connection at
that point (if it hasn’t already failed due to
using the wrong certificate!)

QM1 (Local) QM2 (Remote)

MCA MCA

Channel

Transmission
Queue

Application
Queues Message

Message

TLS Handshake Flows (inc. Chl Name)

TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

Chl: TO.QM2's

Digital Certificate

CA Sig

QM1’s Digital

Certificate

CA Sig

N

O

T

E

S

Using Server Name Indication (SNI) with
a channel name

 MQ V8 uses SNI to provide a channel name instead of a hostname. The sender (or

client) end of the channel has been enhanced to put the channel name into the

Server Name Indication (SNI) hint for the TLS Handshake.

 The receiver (or server-conn) end of the channel has been enhanced to retrieve the

channel name from the SNI hint and select the appropriate certificate based on that

information. It is worth nothing that the channel name is now flowing in the clear,

although in a tamper-proof manner.

 There are some restrictions to using this feature as listed.

 A back-level queue manager upon receiving a TLS handshake containing SNI, will

just ignore what is in the SNI (as it is defined as an optional extension) and use the

normal certificate.

 If there are no channels defined on the queue manager with anything in the

CERTLABL field, then SNI will not be used by the receiving end. This will leave the

behaviour the same as prior releases for certificate selection.

8/11/2015

12

BP A Internal QMgr

Our Business Partner Scenario again

QMgr

QM's Digital

Certificate from

VeriSign
CA Sig

SET CHLAUTH(BPA.TO.ME)

TYPE(SSLPEERMAP)

SSLPEER(‘CN=BP A’)

MCAUSER(BPAUSR)

CA Certificate

BP A's Digital

Certificate from

VeriSign
CA Sig

QM2's Digital

Certificate from

Internal CA
CA Sig

Internal CA

CA Certificate

Internal

N

O

T

E

S

Our Business Partner Scenario again –
Notes

 Let’s look again at the business partner scenario again, but this time a little

different, with one external CA and one internal CA.

 We’ve got the system set up so that we’re using a Verisign certificate when talking

to Business Partner A, and for the rest of our connections we have certificates

created by our Internal CA. We’ve even got CHLAUTH rules in place to ensure that

they are only allowed to connect to the queue manager over their appropriate

channel.

8/11/2015

13

Ensuring the Correct Certificate

QMgr
SET CHLAUTH(BPA.TO.ME)

TYPE(SSLPEERMAP)

SSLPEER(‘CN=BP A’)

MCAUSER(BPAUSR)

CA Certificate

CA Certificate

Internal

Rogue connection

SSLCERTI(‘CN=VeriSign’)

S
S

L
/T

L
S

 N
e

tw
o

rk
 C

o
m

m
u

n
ic

a
ti
o
n

s

BP A's Digital

Certificate

CA Sig
from Internal CA

SSLPEER(‘CN=BP A’)

Internal CA

Secy

Exit

Security Exit

is passed…
MQCD.SSLPeerNamePtr

MQCXP.SSLRemCertIssNamePtr

N

O

T

E

S

Ensuring the Correct Certificate – Notes

 However, since we now accept certificates which come from two different Certificate
Authorities (CAs) we can run foul of another issue.

 One of the benefits of CAs is that they guarantee not to issue the certificates with
the same DN as another certificate that they have already issued. So a rogue
connection could not obtain a certificate with the same DN as Business Partner A
from VeriSign, because VeriSign has already issued one with that DN. Also, one
would expect external CA’s to do a few more checks than that and not issue
certificates with other people’s company names in them to people not from that
company. However, an internal CA may not be so diligent. Some internal CAs may
simply accept what the user requests as their DN, so our rogue could obtain a
certificate with Business Partner A’s DN from such a CA.

 The only way to solve this issue in the past was to use a security exit, since security
exits are presented with both the issuer’s and subject’s Distinguished Name.
However, we are trying to get away from people having to write exits for common
security issues, and this very much falls into that category.

 In MQ V8, we can solve this issue by using a new attribute on CHLAUTH rules
which matches the issuer’s DN – SSLCERTI. Our CHLAUTH rules can now be fully
qualfied to use both SSLPEER (the subject’s DN) and SSLCERTI (the issuer’s DN).

8/11/2015

14

Summary

 Changes for Channels using SSL/TLS Certificates
 Single Queue Manager Certificate

 ALTER QMGR CERTLABL('My certificate name')

 Per Channel Certificate

 ALTER CHANNEL … CERTLABL('This channel certificate')

 Certificate Matching

 SET CHLAUTH('*')

 TYPE(SSLPEERMAP)

 SSLPEER('CN=Mark Taylor')

 SSLCERTI('CN=IBM CA')

 MCAUSER('metaylor')

8/11/2015

15

User ID & Password
Connection Authentication

Agenda

 Requests for Enhancement

 Connection Authentication
 Configuration

 Application Changes (or not)

 Protecting your password across a network

 User Repositories

8/11/2015

16

Request for Enhancement (22568)

Request for Enhancement (30709)

8/11/2015

17

Connection Authentication – What is it?

 The ability for an application to provide a user ID and
password
 Client
 Local Bindings

 Some configuration in the queue manager to act
upon said user ID and password

 A user repository that knows whether the user ID and
password are a valid combination

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2)

QMgr

Inter process

Communications

User
Repository

Authority
Checks

Q1

N

O

T

E

S

Connection Authentication – What is it? –
Notes

 This picture shows the landscape we’re going to use to discuss various patterns

and then the changes in MQ V8 in order to support these patterns. Just to ensure

everyone is familiar with the parts on the diagram we’ll briefly look at them first from

left to right.

 On the left of this picture we see applications making connections, one as a client

and one using local bindings. These applications could be using a variety of

different APIs to connect to the queue manager, but all have the ability to provide a

user ID and a password. The user ID that the application is running under (the

classic user ID presented to MQ) may be different from the user ID provided by the

application along with its password, so we illustrate both on the diagram.

 In the middle we have a queue manager with configuration commands and

managing the opening of resources and the checking of authority to those

resources. There are lots of different resources in MQ that an application may

require authority to, in this diagram we are just going to use the example of opening

a queue for output, but the same applies to all others.

 On the right we have a representation of a user repository – i.e. containing user IDs

and passwords, more on this later.

8/11/2015

18

CHCK…

NONE

OPTIONAL

REQUIRED

REQDADM

Connection Authentication – Configuration

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2)

QMgr

Inter process

Communications

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)

FAILDLAY(1) CHCKLOCL(OPTIONAL)

CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)

MQRC_NOT_AUTHORIZED (2035)

MQRC_NONE (0)

N

O

T

E

S

Connection Authentication –
Configuration – Notes

 We’ll start with the basic configuration side of things. How do I turn on this connection authentication
feature on the queue manager.

 On the queue manager object there is a new attribute called CONNAUTH (short for connection
authentication) which points to an object name. The object name it refers to is an authentication
information object – one of two new types. There are two existing types of authentication information
objects from earlier releases of MQ, these original two types cannot be used in the CONNAUTH
field.

 The two new types are similar in quite a few of the basic attributes so we will look at those first. We’ll
come back to more of the attributes later. We show here a new authentication information object
which has two fields to turn on user ID and password checking, CHCKLOCL (Check Local
connections) and CHCKCLNT (Check Client connections). Changes to the configuration of this must
be refreshed for the queue manager to pick them up.

 Both of these fields have the same set of attributes, allowing for a strictness of checking. You can
switch it off entirely with NONE; set it to OPTIONAL to ensure that if a user ID and password are
provided by an application then they must be a valid pair, but that it is not mandatory to provide them
– a useful migration setting perhaps; set it to REQUIRED to mandate that all applications provide a
user ID and password; and, only on Distributed, REQDADM which says that privileged users must
supply a valid user ID and password, but non-privileged users are treated as per the OPTIONAL
setting.

 Any application that does not supply a user ID and password when required to, or supplies an
incorrect combination even when it is optional will be told 2035 (MQRC_NOT_AUTHORIZED). N.B.
When password checking is turned off using NONE – then invalid passwords will not be detected.

8/11/2015

19

Connection Failure Delay

MQCONNX
User1 + pwd1

Application (User2)

QMgr

Connection

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)

FAILDLAY(1) CHCKLOCL(OPTIONAL)

CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)

MQRC_NOT_AUTHORIZED (2035)

seconds

N

O

T

E

S

Connection Failure Delay - Notes

 Any failed authentications will be held for the number of seconds in the FAILDLAY

attribute before the error is returned to the application – just some protection

against a busy loop from an application repeatedly connecting.

8/11/2015

20

Connection Authentication – Error notification

 Application
 MQRC_NOT_AUTHORIZED (2035)

 Administrator
 Error message

 Monitoring Tool
 Not Authorized Event message

(Type 1 – Connect)
 MQRQ_CONN_NOT_AUTHORIZED (existing)

 Connection not authorized.
 MQRQ_CSP_NOT_AUTHORIZED (new)

 User ID and password not authorized.
 Additional field to existing connect event

 MQCACF_CSP_USER_IDENTIFIER

MQCONNX
User3 + pwd3

Application (User4)

MQRC_NOT_AUTHORIZED (2035)

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR AUTHOREV(ENABLED)

N

O

T

E

S

Connection Authentication –
Error notification – Notes

 When an application provides a user ID and password which fail the password

check, the application is returned the standard MQ security error, 2035 –

MQRC_NOT_AUTHORIZED.

 The MQ administrator will see this reported in the error log and can therefore see

that the application was rejected due to the user ID and password failing the check,

rather than, for example, a lack of connection authority (+connect).

 A monitoring tool can also be notified of this failure if authority events are on -

ALTER QMGR AUTHOREV(ENABLED) – via an event message to the

SYSTEM.ADMIN.QMGR.EVENT queue. This Not Authorized event is a Type 1 –

Connect – event and provides all the same fields as the existing Type 1 event,

along with one, additional field, the MQCSP user ID provided. The password is not

provided in the event message. This means that there are two user IDs in the event

message, the one the application is running as and the one the application

presented for user ID and password checking.

8/11/2015

21

User's Digital

Certificate

CA Sig

Connection Authentication – Configuration
Granularity

MQCONNX
User3 + pwd3

Application (User4)

QMgr

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)

CHCKCLNT(OPTIONAL)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘*’)

USERSRC(CHANNEL) CHCKCLNT(REQUIRED)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)

SSLPEER(‘CN=*’) USERSRC(CHANNEL)

CHCKCLNT(ASQMGR) MQRC_NOT_AUTHORIZED (2035)

MQCONNX
User1 + pwd1

Application (User2)

MQRC_NONE (0)

SSL/TLS Network

Communications

CHCKCLNT

ASQMGR

REQUIRED

REQDADM

N

O

T

E

S

Connection Authentication –
Configuration Granularity – Notes

 In addition to the two fields that turn this on overall for client and locally bound

applications, there are enhancements to the CHLAUTH rules so that more specific

configuration can be made using CHCKCLNT. You can set the overall CHCKCLNT

value to OPTIONAL, and then upgrade it to be more stringent for certain channels

by setting CHCKCLNT to REQUIRED or REQDADM on the CHLAUTH rule. By

default, CHLAUTH rules will run with CHCKCLNT(ASQMGR) so this granularity

does not have to be used.

8/11/2015

22

Connection Authentication – Relationship to
Authorization

MQCONNX
User3 + pwd3

MQOPEN

Application (User4)

MQCONNX
User1 + pwd1

MQOPEN

Application (User2)

QMgr

Inter process

Communications

Authority
Checks

ALTER QMGR CONNAUTH(USE.PWD)

DEFINE AUTHINFO(USE.PWD) AUTHTYPE(xxxxxx)

CHCKLOCL(OPTIONAL) CHCKCLNT(REQUIRED)

ADOPTCTX(YES)

Authority Records

Q1: User1 +put

Q1: User2 +none

Q1: User3 +get

Q1: User4 +none
Q1

N

O

T

E

S

Connection Authentication –
Relationship to Authorization – Notes

 So we have seen that we can configure our queue manager to mandate user IDs and
passwords are provided by certain applications. We know that the user ID that the
application is running under may not be the same user ID that was presented by the
application along with a password. So what is the relationship of these user IDs to the
ones used for the authorization checks when the application, for example, opens a
queue for output.

 There are two choices, in fact, controlled by an attribute on the authentication
information object – ADOPTCTX.

 You can choose to have applications provide a user ID and password for the purposes
of authenticating them at connection time, but then have them continue to use the user
ID that they are running under for authorization checks. This may be a useful stepping
stone when migrating, or even a desirable mode to run in, perhaps with client
connections, because authorization checks are being done using an assigned
MCAUSER based on IP address or SSL/TLS certificate information.

 Alternatively, you can choose the applications to have all subsequent authorization
checks made under the user ID that you authenticated by password by selecting to
adopt the context as the applications context for the rest of the life of the connection.

 If the user ID presented for authentication by password is the same user ID that the
application is also running under, then of course this setting has no effect.

8/11/2015

23

Connection Authentication – Application
changes

 Code changes
 Procedural – MQCSP on MQCONNX
 OO classes – MQEnvironment
 JMS/XMS – createConnection
 XAOpen string

 Alternatively Exits can provide MQCSP
 Client side security exit

 Provided
 Client side Pre-conn exit

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2)

QMgr

Inter process

Communications

N

O

T

E

S

Connection Authentication –
Application changes – Notes

 Since MQ V6.0, an application has been able to provide a user ID and password (in the Connection
Security Parameters (MQCSP) structure in the MQCNO) at MQCONNX time. These were passed to
a user written plug-point in the OAM on distributed to be checked. If the application was running
client bound, this user ID and password were also passed to the client side and server side security
exits for processing and can be used for setting the MCAUser attribute of a channel instance. The
security exit is called with ExitReason MQXR_SEC_PARMS for this processing.

 This pre-existing feature of the MQI is being used to provide the user ID and password to the queue
manager for checking. Previously a custom Authorization Service was required to check this (or a
security exit if the applications were connecting as clients), now the Object Authority Manager
(OAM) supplied with the queue manager and the z/OS Security component within the queue
manager will deal with these user IDs and passwords. Whether z/OS or distributed, the component
that deals with the user IDs and passwords will call out to a facility outside of MQ to do the check –
more on that later.

 In MQ V8 this will be available in all our interfaces listed, even where some of those were not made
available in the MQ V6 timeframe when the programming interface was originally provided.

 In prior releases the MQCSP had no architected limits on the user ID and password strings that
were provided by the application. When using them with these MQ provided features there are limits
which apply to the use of these features, but if you are only passing them to your own exits, those
limits do not apply.

 The XAOpen string has also been updated to allow the provision of a user ID and password.
 Sometimes of course, it can be hard to get changes into applications, so the user ID and password

can be provided using an exit instead of changing the code. Client side security exits or the pre-
connect exit, can make changes to the MQCONN before it is sent to the queue manager, and the
security exit in fact is designed to allow the setting of the MQCSP since V6 (so clients do not need to
be updated to the new version in order to use this).

8/11/2015

24

Procedural MQI changes

 MQCSP structure
 Connection Security Parameters
 User ID and password

 MQCNO structure
 Connection Options

 MQ V6
 Passed to OAM (Dist only)
 Also passed to Security Exit

 Both z/OS and Distributed

 MQXR_SEC_PARMS

 MQ V8
 Acted upon by the queue manager (all

platforms)

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,

 &cno,

 &hConn,

 &CompCode,

 &Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;

csp.CSPUserIdPtr = "metaylor";

csp.CSPUserIdLength = 7; /* Max: MQ_CLIENT_USER_ID_LENGTH */

csp.CSPPasswordPtr = "passw0rd";

csp.CSPPasswordLength = 8; /* Max: MQ_CSP_PASSWORD_LENGTH */

Object Oriented MQ classes changes

cf = getCF();

System.out.println("Creating the Connection with UID and Password");

Connection conn = cf.createConnection("metaylor", "passw0rd");

JMS/XMS classes changes

MQEnvironment.properties = new Hashtable();

MQEnvironment.userID = "metayor";

MQEnvironment.password ="passw0rd";

System.out.println("Connecting to queue manager");

MQQueueManager qMgr = new MQQueueManager(QMName);

8/11/2015

25

Using it from the MQ Explorer GUI

MARKT

N

O

T

E

S

Using it from the MQ Explorer GUI –
Notes

 The MQ Explorer GUI is an MQ Java™ application, so since there is a programming interface for
MQ Java to supply a user ID and password, the Explorer GUI can use this.

 To configure the Explorer to use a user ID and password on a connection to a queue manager
(whether local or client connection), select Connection Details->Properties… from the right-mouse
context menu on the queue manager. In the dialog that appears, choose UserId. This panel is the
same for both local or client connections in MQ V8, although the Properties dialog will have less
selections for other things in the local case.

 Explorer has a password cache which will need to be enabled in order to use passwords. If you
have never used it before there will be a link on this panel to take you through it.

 The other interesting item here is the “User identification compatibility mode” check box. This is for
those of you who have been using Security exits with the Explorer in the past. The Java client
previously did not use the MQCSP structure to supply its user ID and password in previous
releases, and there are many exits written that have discovered where the user ID and password
were provided instead. In order to retain compatibility for this, the Java client has two modes. It can
run in compatibility mode and maintain what you had before, or it can run with the V8 mode and use
the MQCSP. The check box shown is how you set that property in the Explorer GUI. For other Java
applications, you need to set property to indicate you are happy to use the MQCSP method.

 At the queue manager, if no MQCSP is sent by a client, but the user ID and password are provided
in this alternate method that was utilised by Java Clients, the V8 queue manager will accept this and
drive the same password check as is used for the MQCSP provided passwords.

8/11/2015

26

Using MQCSP from Java Client

 Java client (not local bindings) has two ways to send password
 FAP Flow

 MQCSP structure

 FAP Flow
 Mechanism used by many customer security exits

 Retained as default

 Restricted to 8 characters user IDs and passwords

 Not protection by password protection algorithm

 Used by Connection Authentication if seen and no

MQCSP found

 MQCSP structure
 Used by Java Client when property

set

 Non-default

 Allows longer user IDs and passwords

 Can be protection by password

protection algorithm

MQ Classes for Java

set the property MQConstants.USE_MQCSP_AUTHENTICATION_PROPERTY to true in the properties

hashtable passed to the com.ibm.mq.MQQueueManager constructor.

MQ Classes for JMS

set the property JMSConstants.USER_AUTHENTICATION_MQCSP to true on the appropriate

connection factory prior to creating the connection

Globally

set the System Property "com.ibm.mq.cfg.jmqi.useMQCSPauthentication" to a value indicating true,

for example by adding "-Dcom.ibm.mq.cfg.jmqi.useMQCSPauthentication=Y" to the command line

N

O

T

E

S

Using MQCSP from Java - Notes

 We saw on a previous page the example code you might use to provide the user ID
and password from a Java classes application or a JMS application. This is actually
nothing new. Java clients have been able to send a user ID and password across
the channel FAP before. This part of the FAP was very restrictive though, it only
allowed or 8 character user IDs and 8 character passwords. And, of course, it was
only for clients. The MQCSP interface was designed not to have such limitations.

 There are quite a number of customers pre-V8 who have security exits written to
pull the user ID and password sent by Java clients in this way. Because of this, we
could not change the default of the Java clients over to use the MQCSP or all these
security exits would have to be changed. So by default, Java clients continue to
send the user ID and password as this restrictive FAP flow.

 On the queue manager end, if we receive a user ID and password in this FAP flow,
and no MQCSP structure, we will use the user ID and password in the FAP flow for
Connection Authentication, so you don’t have to make any changes in order to
remove a security exit that is checking the user ID and password in this way.

 However, there are benefits to using the MQCSP structure, including password
protection and the increased length of the fields, so when you are ready to change
over to use MQCSP instead of the FAP flow in a Java client, you need to set the
system property.

8/11/2015

27

Exit: mqccred

Client side Security Exit

MQCONN

Application

Q
M

g
r

Q
M

1

Network

Communications

AllQueueManagers:

 User=abc

 OPW=%^&aervrgtsr

QueueManager:

 Name=QM1

 User=user1

 OPW=H&^dbgfh

AllQueueManagers:

 User=abc

 password=newpw

QueueManager:

 Name=QMA

 User=user1

 password=passw0rd

Tool: runmqccred

mqccred.ini

mqccred.ini

File

permissions

N

O

T

E

S

Client side Security Exit – Notes

 To make changes to applications, especially the very prevalent client attached

applications where we see the strongest use case for using user ID and password,

is difficult for customers. To aid with this issue, MQ V8 provides a client side

security exit which can set the user ID and password instead of making changes in

the application to do this.

 The exit runs at the CLNTCONN end of the channel and pulls the user ID and the

password from a file. This file is controlled by means of OS file permissions. If the

exit discovers that the file permissions are too open, it will cause a failure thus

ensuring that this important part of protecting the passwords does not go unnoticed.

 The file is additionally obfuscated from casual browsers. The algorithm for this

obfuscation is not published, and neither is the source of the exit.

 The exit will be built in such a way that it can be picked up from a V8 installation

and copied to a V7.0.1 client installation (or later). Note that using a client

installation of < V8 will mean you have the password flowed in the clear. Only V8

and later at both ends will provide the ability to protect the flowed password without

the need to use SSL/TLS.

 Along with the exit, we also supply a tool which is used to obfuscate the file

containing the passwords.

8/11/2015

28

Protecting your password across a network

 Use SSL/TLS
 Perhaps with anonymous clients

 If no SSL/TLS
 If both ends are V8

 MQ Code will protect the password – so

not sent in the clear

 If client is < V8
 No MQ password protection

 Consider SSL/TLS

MQCONN

Application

Q
M

g
r

Q
M

1

Network

Communications

N

O

T

E

S

Protecting your password
across a network – Notes

 When an application connects to a MQ V8 queue manager across the network, i.e.

making a client connection, the password it sends for connection authentication

purposes travels across the network from the client application to the queue

manager for checking. This password should be protected as it does so, so that

network sniffers cannot obtain your password.

 For best possible protection, you can of course use SSL/TLS. You might imagine

using anonymous SSL/TLS, i.e. the client does not have a certificate, since you are

using user ID and password as the means by which to verify the identity of the

client application.

 If you do not use SSL/TLS, and your client is at V8.0 or later, the MQ product code

will protect your password so that it is not sent in the clear. A good reason to get

your clients upgraded to V8!

 If your MQ Client is at a version earlier than V8.0, it can still send user ID and

passwords (since the MQCSP structure has been around since V6) but the

password will not be protected, so you should consider using SSL/TLS.

8/11/2015

29

Connection Authentication – User Repositories

QMgr

O/S User
Repository
(z/OS + Dist)

LDAP Server (Dist only)

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS)

DEFINE AUTHINFO(USE.LDAP) AUTHTYPE(IDPWLDAP)

CONNAME(‘ldap1(389),ldap2(389)’)

LDAPUSER(‘CN=QMGR1’)

LDAPPWD(‘passw0rd’) SECCOMM(YES)

MQCONNX
User1 + pwd1

Application (User2)

On z/OS passphrases

can be used

N

O

T

E

S

Connection Authentication –
User Repositories – Notes

 So far we have spoken about user ID and password authentication without mentioning
what is actually doing the authentication. We’ve also shown that there is a new type of
authentication information object without showing you the object type. Here we
introduce two new object types of authentication information objects.

 The first type is used to indicate that the queue manager is going to use the local O/S to
authentication the user ID and password. This type is IDPWOS.

 The second type is used to indicate that the queue manager is going to use an LDAP
server to authenticate the user ID and password. This type is IDPWLDAP and is not
applicable on z/OS.

 Only one type can be chosen for the queue manager to use by naming the appropriate
authentication information object in the queue manager’s CONNAUTH attribute.

 We have already covered everything there is to say about the configuration of the O/S
as the user repository as the common attributes are all there is for the O/S. There is
more to say about the LDAP server as an option though.

 Some of the LDAP server configuration attributes are probably fairly obvious. The
CONNAME is how the queue manager knows where the LDAP server is, and
SECCOMM controls whether connectivity to the LDAP server will be done using
SSL/TLS or not. The LDAPUSER and LDAPPWD attributes are how the queue manager
binds to the LDAP server so that it can look-up information about user records. It is likely
this may be a public area of an LDAP server, so these attributes may not be needed.

 It is worth highlighting that the CONNAME field can be used to provide additional
addresses to connect to for the LDAP server in a comma-separated list. This can aid
with redundancy if the LDAP server does not provide such itself.

8/11/2015

30

Support for PAM on Unix platforms

 V8.0.0.3 extends the OS authentication to call PAM

 Allows range of authentication mechanisms to be hidden behind common API

 Lots of customer requests for it as an enhancement since GA

 PAM is set up by root in either /etc/pam.conf or files in /etc/pam.d
 MQ is known as the "ibmmq" service in PAM configuration

 AUTHINFO(IDPWOS) objects extended with AUTHENMD attribute
 Can be set to OS (GA capability) or PAM – REFRESH SECURITY to activate

 Requires updated CMDLEVEL=802 (ie V8.0.0.3) to set AUTHENMD

 More on youtube at https://youtu.be/3VW4Op5QQfk

N

O

T

E

S

 intentionally blank

8/11/2015

31

Secure connection to an LDAP Server

QM's Digital

Certificate

CA Sig

SSLKEYR

LDAP Server

ALTER QMGR CONNAUTH(USE.LDAP)

SSLFIPS(NO) SUITEB(NONE)

CERTLABL(‘ibmmqqm1’)

SSLKEYR('/var/mqm/qmgrs/QM1/ssl/key')

DEFINE AUTHINFO(USE.LDAP)

AUTHTYPE(IDPWLDAP)

SECCOMM(YES)
CONNAME(‘ldapserver(389)’)

DISPLAY QMSTATUS

LDAPCONN

N

O

T

E

S

Secure connection to an LDAP Server –
Notes

 Unlike on channels, there is no SSLCIPH parameter to turn on the use of SSL/TLS
for the communication with the LDAP server. In this case MQ is acting as a client to
the LDAP server so much of the configuration will be done at the LDAP server.
Some existing parameters in MQ will be used to configure how that connection will
work as shown on this slide.

 The overall switch to choose SSL/TLS communication or not, we already saw on
the previous page – SECCOMM.

 In addition to this attribute, we will also pay attention to the queue manager
attributes SSLFIPS and SUITEB to restrict the set of cipher specs that will be
chosen. The certificate that will be used to identify the queue manager to the LDAP
server will be the queue manager certificate, either ‘ibmmq<qmgr-name>’ or the
newly added CERTLABL attribute which we’ll talked about in an earlier section of
this presentation.

 Certificate revocation will be checked by using the OCSP servers that are named in
the AuthorityInfoAccess (AIA) certificate extensions. This can be turned off by using
the qm.ini SSL stanza attribute OCSPCheckExtensions.

 Connection to an LDAP Server is made as a network connection (which is why you
may wish to consider using a secure connection). The status of this connection
from the queue manager to the LDAP server is shown in DISPLAY QMSTATUS.

8/11/2015

32

USRFIELD

useradm Adds cn= Adds ou=users,o=ibm,c=uk

BASEDNU

cn=useradm Adds ou=users,o=ibm,c=uk

objectClass=organizationUnit

objectClass=inetOrgPerson

objectClass=organization

objectClass=country

LDAP User Repository

LDAP Server

c=UK

DEFINE AUTHINFO(USE.LDAP)

AUTHTYPE(IDPWLDAP)

CONNAME(‘ldapserver(389)’)

o=ibm

cn=useradm cn=jbloggs

MQCONNX
User + pwd

Application

Application provides

cn=useradm,ou=users,o=ibm,c=uk

BASEDNU(‘ou=users,o=ibm,c=uk’)

USRFIELD(‘cn’)

ou=users

CLASSUSR(‘inetOrgPerson’)

N

O

T

E

S

LDAP User Repository – Notes

 When using an LDAP user repository there is some more configuration to be done on
the queue manager other than just to tell the queue manager where the LDAP
repository resides.

 User IDs records defined in an LDAP server have a hierarchical structure in order to
uniquely identify them. So an application could connect to the queue manager and
present its user ID as being the fully qualified hierarchical user ID. This however is a lot
to provide and it would be simpler if we could configure the queue manager to say,
assume all user IDs that are presented are found in this area of the LDAP server and
add that qualification onto anything you see. This is what the BASEDNU attribute is for.
It identifies the area in the LDAP hierarchy that all the user IDs are to be found. Or to
look at it another way, the queue manager will add the BASEDNU value to the user ID
presented by an application to fully qualify it before looking it up in the LDAP server.

 Additionally, your application may only want to present the user ID without providing the
LDAP attribute name, e.g. CN=. This is what the USRFIELD is for. Any user ID
presented to a queue manager without an equals sign (=) will have the attribute and the
equals sign pre-pended to it, and the BASEDNU value post-pended to it before looking it
up in the LDAP server. This may be a useful migratory aid when moving from O/S user
IDs to LDAP user IDs as the application could very well be presenting the same string in
both cases, thus avoiding any change to the application.

8/11/2015

33

Relationship to Authorization – LDAP

QMgr

Authority
Checks

Authority Records

Q1: mqmadm +put

Q1

MQCONNX
cn=useradm

MQOPEN

Application

LDAP Server

DEFINE AUTHINFO(USE.LDAP)

AUTHTYPE(IDPWLDAP)

CONNAME(‘ldap(389)’)

ADOPTCTX(YES)
SHORTUSR(‘sn’)

N

O

T

E

S

Relationship to Authorization – LDAP -
Notes

 We spoke earlier about the ability to adopt the authenticated user ID as the context

for this connection. So how does this work if you are using LDAP as the user

repository but your authorization is being done using O/S user IDs?

 We need to get a user to represent the LDAP user that has been presented, as an

O/S user ID. We find this from the LDAP user record. This can be any field that is

defined in the user record, perhaps something like the short name field (sn=) that is

a mandatory part of the definition of the inetOrgPerson class, or perhaps something

defined more specifically for the purpose such as a user ID (uid=) field.

 The queue manager will use that information to determine what O/S user ID will be

used as the context for this connection. You configure it using SHORTUSR to say

what the field to locate in the user record is.

8/11/2015

34

FixPac

8.0.0.2

ALTER AUTHINFO(USE.LDAP)

AUTHTYPE(IDPWLDAP)

AUTHORMD(OS)

Authorization using LDAP credentials

QMgr

Authority
Checks

Q1

MQCONNX
cn=useradm

MQOPEN

Application

ALTER AUTHINFO(USE.LDAP)

AUTHTYPE(IDPWLDAP)

AUTHORMD(SEARCHGRP)

FINDGRP(‘member’)

CLASSGRP(‘groupOfNames’)

BASEDNG(‘ou=groups,o=ibm,c=uk’)

GRPFIELD(‘cn’)

NESTGRP(NO)

Users Groups

CLASSUSR CLASSGRP

BASEDNU BASEDNG

USRFIELD GRPFIELD

Equivalent attributes

LDAP Server

setmqaut -g admin

 –t qmgr +connect

setmqaut -g cn=admin,ou=groups,o=ibm,c=uk

 –t qmgr +connect

N

O

T

E

S

Authorization using LDAP credentials -
Notes

 In FixPac 8.0.0.2 and the MQ Appliance, there is now the option, on UNIX queue

managers, to choose to have the authorization checks done using the presented

LDAP credentials, instead of the behaviour on the previous page where they are

mapped to an OS user for authorization checks.

 In order to use this feature, you need to have your queue manager running with a

command level (CMDLEVEL) of 801 which is an explicit action to increase, due to

the function being delivered in a FixPac.

 Then we need to know a few more things about the shape of your LDAP user

repository; i.e. where the groups live in the hierarchy.

8/11/2015

35

AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)

AUTHTYPE(IDPWOS)

CHCKLOCL(OPTIONAL)

CHCKCLNT(REQDADM)

FAILDLAY(1)

DESCR()

ALTDATE(2013-12-25)

ALTTIME(12.00.00)

Migration / Defaults

 Defaults
 Migrated queue manager

 CONNAUTH(‘ ’)

 New queue manager

 CONNAUTH()

QMgr

Q1

N

O

T

E

S

Migration / Defaults – Notes

 By default, a migrated queue manager will find that CONNAUTH is blank – and

therefore connection authentication is switched off.

 A brand new queue manager created with the MQ V8 binaries will find that the

CONNAUTH field points to the SYSTEM.DEFAULT.AUTHINFO.IDPWOS

authentication information object.

8/11/2015

36

Summary

 Connection Authentication
 Application provides User ID and password in MQCSP

 Or uses mqccred exit supplied

 Queue Manager checks password against OS or LDAP

 ALTER QMGR CONNAUTH(‘CHECK.PWD’)

 DEFINE AUTHINFO(‘CHECK.PWD’)

 AUTHTYPE(IDPWOS|IDPWLDAP)

 CHCKLOCL(NONE|OPTIONAL|REQUIRED|REQDADM)

 CHCKCLNT(NONE|OPTIONAL|REQUIRED|REQDADM)

 ADOPTCTX(YES)

 + various LDAP attributes

 REFRESH SECURITY TYPE(CONNAUTH)

 Password protection is provided when SSL/TLS not in use

 Both ends of client channel are V8 or above

8/11/2015

37

Hostnames in CHLAUTH

Agenda

 Requests for Enhancement

 Channel Authentication Records
 Recap

 Rules which use IP addresses

 Hostnames

 Precedence Order

 Reverse Look-up of IP address

 MATCH(RUNCHECK)

8/11/2015

38

Request for Enhancement

 Second in the Most voted list!

Request for Enhancement (21892)

8/11/2015

39

Channel Authentication Records – Recap

 Set rules to control how inbound connections are treated
 Inbound Clients

 Inbound QMgr to QMgr channels

 Other rogue connections causing FDCs

 Rules can be set to
 Allow a connection

 Allow a connection and assign an MCAUSER

 Block a connection

 Ban privileged access

 Provide multiple positive or negative SSL Peer Name matching

 Rules can use any of the following identifying

characteristics of the inbound connection
 IP Address

 SSL/TLS Subject’s Distinguished Name

 Client asserted user ID

 Remote queue manager name

N

O

T

E

S

Channel Authentication Records – Notes

 Channel Authentication records allow you to define rules about how inbound

connections into the queue manager should be treated. Inbound connections might

be client channels or queue manager to queue manager channels. These rules can

specify whether connections are allowed or blocked. If the connection in question is

allowed, the rules can provide a user ID that the channel should run with or indicate

that the user ID provided by the channel (flowed from the client or defined on the

channel definition) is to be used.

 These rules can therefore be used to

– Set up appropriate identities for channels to use when they run against the queue manager

– Block unwanted connections

– Ban privileged users

 Which users are considered privileged users is slightly different depending on which

platform you are running your queue manager on. There is a special value

‘*MQADMIN’ which has been defined to mean “any user that would be privileged on

this platform”. This special value can be used in the rules that check against the

final user ID to be used by the channel – TYPE(USERLIST) rules – to ban any

connection that is about to run as a privileged user. This catches any blank user IDs

flowed from clients for example.

8/11/2015

40

Channel Access Blocking Points

 Listener Blocking
 NOT A REPLACEMENT FOR

AN IP FIREWALL!!
 Blocked before any data read

from the socket
 Simplistic avoidance of DoS attack

 Really the place of the IP firewall
 Network Pingers if blocked don’t raise an

alert

 Channel Blocking/Mapping
 Rules to block channels
 Rules to map channels to MCAUSER
 Rules to allow channels as they are
 Runs before security exit
 Final check for user ID before allowing

through

 After Security Exit has run and final
MCAUSER is assigned

 Ban privileged users with ‘*MQADMIN’

ACLs

N

O

T

E

S

Channel Access Blocking Points – Notes

 In this picture we illustrate that there are a number of points that an inbound

connection must get through in order to actually make use of an MQ queue.

 First, we remind you that your IP firewall is included in this set of blocking points

and should not be forgotten, and is not superseded by this feature in MQ.

 One point of note, the inbound connections can be from any version of MQ. There

is no requirement that the clients or remote queue managers also be on MQ V7.1

to be blocked or mapped by these rules.

8/11/2015

41

Channel Authentication Rules using IP
Addresses

 Initial Listener blocking list
 Should be used sparingly
 List of

IP addresses/range/pattern
 Not replacing IP firewall

 Channel based blocking of
IP addresses
 Single IP address/range/pattern

 Channel allowed in, based on
IP addresses
 Single IP address/range/pattern

 Further qualified rule including
IP address on another rule type
 Works with SSLPEER,

QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)

ADDRLIST(‘9.20.*’, ‘192.168.2.10’)

SET CHLAUTH(‘APPL1.*’) TYPE(ADDRESSMAP)

ADDRESS(‘9.20.*’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)

SSLPEER(‘CN=“Mark Taylor”’)

ADDRESS(‘9.20.*’) MCAUSER(METAYLOR)

SET CHLAUTH(‘*.SVRCONN’) TYPE(ADDRESSMAP)

ADDRESS(‘9.20-21.*’) MCAUSER(HUSER)

N

O

T

E

S

Channel Authentication Rules
using IP Addresses – Notes

 There are four different ways that IP addresses could be used in channel

authentication records.

 The initial check that the listener makes for banned IP addresses, which are based

on the rule created using a TYPE(BLOCKADDR) record. This rule is something that

should be used sparingly. It is intended as an MQ administrator control to

temporarily configure banned IP addresses until the IP firewall can be updated to

cope with the issue.

 Once the initial channel flows have been made the mapping rules kick in. You can

ban a particular IP address from a channel by using USERSRC(NOACCESS) on a

mapping rule.

 You can also map a channel to use a particular MCAUser or to flow through it’s

client side credentials if it comes from a particular IP address.

 Finally, IP address restrictors can be added to any of the other types of mapping

rules

8/11/2015

42

Channel Authentication Rules using Hostnames

 Initial Listener blocking list
 Hostnames not allowed

 Channel based blocking of
Hostnames
 Single IP address/range/pattern

or hostname/pattern

 Channel allowed in, based on
Hostnames
 Single IP address/range/pattern

 or hostname/pattern

 Further qualified rule including
hostname on another rule type
 Works with SSLPEER,

QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)

ADDRLIST()

SET CHLAUTH(‘APPL1.*’) TYPE(ADDRESSMAP)

ADDRESS(‘*.ibm.com’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)

SSLPEER(‘CN=“Mark Taylor”’)

ADDRESS(‘s*.ibm.*’) MCAUSER(METAYLOR)

SET CHLAUTH(‘*.SVRCONN’) TYPE(ADDRESSMAP)

ADDRESS(‘mach123.ibm.com’) MCAUSER(HUSER)

N

O

T

E

S

Channel Authentication Rules using
Hostnames – Notes

 Hostnames can be used in almost all places in channel authentication records that

IP address could be used. The one exception to this is the TYPE(BLOCKADDR)

record. This is only going to accept IP addresses.

 If you want to block IP addresses with CHLAUTH rules permanently in MQ, rather

than via your IP firewall, you should be doing it using the TYPE(ADDRESSMAP)

record and specifying USERSRC(NOACCESS). This type of rules will allow

hostnames as well.

 Additionally, positive mapping records allow hostnames, and address restrictors can

also use hostnames.

 Channel Authentication rules utilise pattern matching to allow the most flexible

control. IP Addresses have a special form of pattern matching that includes ranges

and wildcards within each ‘.’ (or ‘:’ for IPv6) section of an IP address. Other pattern

matching which is done on channel names, and queue manager names is simpler

with just wild-carded string matching (in other words dots are not considered

special).

 Hostnames also have pattern matching applied to them – as for channel names and

queue manager names. That is it is just a wild-carded string matching and

separators such as dots are not considered special.

8/11/2015

43

Precedence Order

Order Identity mechanism Notes

0 Channel Name

1 SSL Distinguished Name

2= Client asserted User ID Clearly several different

user IDs can be running on

the same IP address.

2= Queue Manager Name Clearly several different

queue managers can be

running on the same IP

address

4 IP address

5 Hostname One IP address can have

multiple hostnames

DISPLAY CHLAUTH(APPL1.*)

returns ===>

 CHLAUTH(APPL1.*)

 TYPE(SSLPEERMAP)

 SSLPEER(‘O=”IBM UK”’) MCAUSER(UKUSER)

 CHLAUTH(APPL1.*)

 TYPE(USERMAP)

 CLNTUSER(‘metaylor’) MCAUSER(METAYLOR)

 CHLAUTH(APPL1.*)

 TYPE(ADDRESSMAP)

 ADDRESS(‘9.180.165.163’) MCAUSER(METAYLOR)

 CHLAUTH(APPL1.*)

 TYPE(ADDRESSMAP)

 ADDRESS(‘*.ibm.com’) MCAUSER(IBMUSER)

Chl: APPL1.SVRCONN

DN: CN=M Taylor,O=IBM UK

UID: metaylor

IP: 9.180.165.163

N

O

T

E

S

Precedence Order – Notes

 Rules created using Channel Authentication Records follow a precedence order so

that it is clear which rule will be used when an inbound connection could have

match multiple rules.

 Hostnames are added to the precedence order at the very bottom. They are

considered to be less specific than an IP address because a single IP address can

have multiple hostnames.

 If you have an IP address rule and a hostname rule that could both match an

inbound connection, then the IP address rule will be the one that is used, as it is

considered to be more specific.

8/11/2015

44

 Hostname is not ‘sent’ from the other end of the channel

 IP address is obtained from TCP/IP socket

 We must ask the Domain Name System (DNS) Server what the hostname
is, a.k.a. Reverse Lookup

 If you want to use hostname rules
 Your queue manager must be able to contact your DNS
 Your DNS must be able to resolve the IP addresses

 Sender/Client address

 More than previously needed just to use
CONNAME(‘hostname(port)’)

 NO DNS – NO HOSTNAME

 NO HOSTNAME – NO MATCH
QMgr

Obtaining a hostname

 IP address from TCP/IP

 Other attributes from

internal channel flows
 Channel Name

 Certificate DN

 Remote QMgr Name

 Client User ID

MQCONNX
User3 + pwd3

Application (User4)

Network

Communications

DNS
IP Address

Hostname

N

O

T

E

S

Obtaining a hostname – Notes

 In order to be able to process channel authentication records that contain rules

using hostnames we need to be able to obtain the hostname that represents the IP

address of the socket. The hostname is not ‘sent’ to us by the channel or by TCP/IP.

We get the IP address from the socket. We get the other attributes that channel

authentication records use from the various internal flows across the socket.

 To get the hostname we must ask the Domain Name System (DNS) Server what

hostname goes with the IP address we are currently looking at. In order for this to

be successful our queue manager must be able to use the DNS. This may already

be true if you are using hostnames in CONNAME fields for example – which is

certainly common-place. Also, the DNS must be able to reverse look-up the IP

address and find a hostname for us. This may not be true in your current set up. Are

all the sender channel or client application IP addresses currently available in your

DNS? In order for hostname rules to be used, this must be the case.

 If you cannot reverse look up the hostname then CHLAUTH hostname rules will not

be able to be matched.

8/11/2015

45

Avoiding obtaining a hostname

 To stop the Queue Manager asking the

Domain Name System (DNS) Server

for hostnames that go with IP address,

a.k.a. Reverse Lookup

 No CHLAUTH rules containing a

hostname will be able to match

ALTER QMGR REVDNS(DISABLED)

QMgr

MQCONNX
User3 + pwd3

Application (User4)

Network

Communications

DNS

N

O

T

E

S

Avoiding obtaining a hostname – Notes

 It is possible that you wish this to always be the case. Some people are more

nervous about the potential security hazards of using hostnames than others. When

CHLAUTH only used IP addresses to match on, this was not something you had to

worry about. Now someone might start to get lazy and use hostname rules.

 We have added a control to turn off the reverse look up of hostnames. There were

previously undocumented parameters on both z/OS® and distributed to allow this,

but as part of this feature we have made an official version of these.

 When REVDNS is ENABLED, the reverse look-up of the IP Address to retrieve the

hostname will still only be done when it is required. If you do not use hostnames in

CHLAUTH rules, then the only time a reverse look-up will be done is when writing

an error message which contains that information. This is the same as the product

behaviour pre-V8.

8/11/2015

46

Diagnosing hostname look-up failures

 MQ V7.1

 MQ V8

AMQ9777: Channel was blocked

EXPLANATION:

The inbound channel 'SYSTEM.DEF.SVRCONN' was blocked from address ‘9.180.165.163’

because the active values of the channel matched a record configured with

USERSRC(NOACCESS). The active values of the channel were 'CLNTUSER(metaylor)'.

AMQ9777: Channel was blocked

EXPLANATION:

The inbound channel 'SYSTEM.DEF.SVRCONN' was blocked from address

‘metaylor.ibm.com(9.180.165.163)’ because the active values of the channel matched a

record configured with USERSRC(NOACCESS). The active values of the channel were

'CLNTUSER(metaylor) ADDRESS(metaylor.ibm.com,metaylor.hursley.ibm.com)'.

N

O

T

E

S

Diagnosing hostname look-up failures –
Notes

 In MQ V7.1, this was the message you saw when a channel was blocked. It gave you all the pieces
of information you needed to work out why the channel was blocked. You can use the information in
this error message to create a DISPLAY CHLAUTH MATCH(RUNCHECK) command.

 In MQ V8, this message will also now contain the hostname (possibly several) that go with the IP
address, assuming that we have been able to find one. The description of the message will indicate
that if a hostname is not shown this implies that either REVDNS is DISABLED or that reverse DNS
lookup was unable to obtain a hostname for this IP address.

MESSAGE:
 Channel was blocked
EXPLANATION:
 The inbound channel '<insert one>' was blocked from address '<insert two>‘ because
the active values of the channel matched a record configured with USERSRC(NOACCESS). The
active values of the channel were '<insert three>'.
ACTION:
 Contact the systems administrator, who should examine the channel authentication
records to ensure that the correct settings have been configured. If no hostnames are shown this
means that either the queue manager is configured with REVDNS(DISABLED) or the queue manager
was unable to find a hostname for this IP address when making a reverse look up call to the Domain
Name Server. The ALTER QMGR CHLAUTH switch is used to control whether channel authentication
records are used. The command DISPLAY CHLAUTH can be used to query the channel
authentication records.

8/11/2015

47

Using MATCH(RUNCHECK) with hostnames

 Just as before, MATCH(RUNCHECK)

mandates an IP address is provided

 Then the queue manager will employ

DNS to find the hostname

 MATCH(RUNCHECK) thus also tests

whether your DNS is correctly set up.

DISPLAY CHLAUTH(SYSTEM.ADMIN.SVRCONN) MATCH(RUNCHECK)

 SSLPEER(‘CN=“Mark Taylor”, O=“IBM UK”’)

 CLNTUSER(‘metaylor’) ADDRESS(‘9.180.165.163’)

returns ===>

 CHLAUTH(SYSTEM.ADMIN.SVRCONN)

 TYPE(ADDRESSMAP)

 ADDRESS(‘*.ibm.com’) MCAUSER(METAYLOR)

Chl: SYSTEM.ADMIN.SVRCONN

DN: CN=Mark Taylor, O=IBM UK

UID: metaylor

IP: 9.180.165.163

N

O

T

E

S

Using MATCH(RUNCHECK) with
hostnames – Notes

 The DISPLAY CHLAUTH variant invoked using MATCH(RUNCHECK) allows you to

provide all the same pieces of information that an inbound client presents to the

queue manager. As we noted earlier, the hostname is not one of those pieces of

information, the queue manager has to go and find that information out from the

Domain Name Server (DNS).

 So when providing information into the MATCH(RUNCHECK) command, you do the

same as before, you provide the IP address. The queue manager will then make

the call to DNS as it would if the real inbound connection appeared and find out

what the hostname is, then run the matching against the rules. If it was able to find

out a hostname then it will match against a hostname rules, but if it was not, then it

won’t.

 If you have your queue manager configured to use REVDNS(DISABLED) and you

also have some CHLAUTH rules that use hostnames, then a message will appear

along with the output of the MATCH(RUNCHECK) display in rather the same way

that it warns you that CHLAUTH is DISABLED.

 Thus DISPLAY CHLAUTH MATCH(RUNCHECK) can help you to determine

whether your reverse look-up for particular IP addresses is likely to work.

8/11/2015

48

Channel Authentication Records – Summary

 Set rules to control how inbound connections are treated
 Inbound Clients
 Inbound QMgr to QMgr channels
 Other rogue connections causing FDCs

 Rules can be set to
 Allow a connection
 Allow a connection and assign an MCAUSER
 Block a connection
 Ban privileged access
 Provide multiple positive or negative SSL Peer Name matching
 Mandate user ID & password checking

 Rules can use any of the following identifying
characteristics of the inbound connection
 IP Address
 Hostname
 SSL/TLS Subject’s Distinguished Name
 SSL/TLS Issuer’s Distinguished Name
 Client asserted user ID
 Remote queue manager name

N

O

T

E

S

Channel Authentication Records –
Summary – Notes

 Here is a repeat of our first slide with some small updates.

 We saw earlier in the presentation that CHLAUTH links into the Connection

Authentication feature, and we saw that we can now fully qualify SSL/TLS DN

matching in our CHLAUTH rules with Issuer’s DN as well as the Subject’s DN, and

now in this last section we’ve seen that we have Hostnames as well.

8/11/2015

49

For Additional Information

https://ibm.biz/MQV8Info

Monday Tuesday Wednesday Thursday Friday

08:30 MQ for z/OS, Using and Abusing

New Hardware and the New v8

Features

Nobody Uses Files Any More

Do They? New Technologies

for Old Technology, File

Processing in MQ MFT and IIB

Monitoring and Auditing MQ

Securing MQ Initiated CICS

Workload

10:00 Introduction to MQ -

Can MQ Really Make

My Life Easier?

MQ for z/OS: The Insider

Story

IBM Integration Bus MQ

Flexibility

Common Problems and

Problem Determination for MQ

z/OS

IBM MQ and IBM Integration Bus -

from Migration and Maintenance

to Continuous Enhancements,

How and Why to Stay Current

11:15 Introduction to IBM

Integration Bus on

z/OS

Introduction to the New MQ

Appliance

MQ V8 Hands-on Labs! MQ V8

with CICS and COBOL! MQ

SMF Labs!

12:15

1:45 What's New in the

Messaging Family -

MQ v8 and More

Getting Started with

Performance of MQ on z/OS

IBM MQ: Are z/OS &

Distributed Platforms Like Oil &

Water?

3:15 What's New in IBM

Integration Bus

Live!: End to End Security of

My Queue Manager on

z/OS

Digging into the MQ SMF Data MQ Parallel Sysplex

Exploitation, Getting the Best

Availability from MQ on z/OS by

Using Shared Queues
Application Programming

with MQ Verbs

4:30 MQ Security: New v8

Features Deep Dive

Live!: What's the Cloud

Going to Do to My MQ

Network?

Giving It the Beans: Using IBM

MQ as the Messaging Provider

for JEE Applications in IBM

Application Server

Challenge the MQ & IIB

Experts? The Do’s and Don’ts of IBM

Integration Bus

Performance

This was session 17894 - The rest of the week ……

8/11/2015

50

Any questions?
Please fill in evaluations

(Session # 17894)

