
The Do’s and Don’ts of IBM

Integration Bus Performance

Session 17893
11th August 2015

Geza Geleji (gezagel@uk.ibm.com)
Staff Software Engineer, IBM Integration Bus Development

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal

without notice at IBM’s sole discretion. Information regarding potential future products is intended

to outline our general product direction and it should not be relied on in making a purchasing

decision.

The information mentioned regarding potential future products is not a commitment, promise, or

legal obligation to deliver any material, code or functionality. Information about potential future

products may not be incorporated into any contract. The development, release, and timing of any

future features or functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a

controlled environment. The actual throughput or performance that any user will experience will

vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the

workload processed. Therefore, no assurance can be given that an individual user will achieve

results similar to those stated here.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 2

Agenda

• What are the main performance costs

inside message flows?

… and what are the best practices

that will minimize these costs?

• What other performance

considerations are there?

• Understanding your integration

node’s behavior

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 3

For more information,
including links to

additional material,

download a copy of
this presentation!

Why should you care about performance?

• Optimising performance can lead to real $$ savings… Time is Money!
– Lower hardware requirements, lower MIPS

– Maximised throughput… improved response time

– Ensure your SLAs are met

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 4

• IBM Integration Bus is a sophisticated product
– There are often several ways to do things…

which is the best?

– Understanding how Integration Bus works
allows you to write more efficient message
flows and debug problems more quickly

• It’s better to design your message flows to be
as efficient as possible from day one
– Solving bad design later on costs much more

– Working around bad design can make the
problem worse!

What are the main performance costs inside

message flows?

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 5

ZYX…CBA

Parsing Tree Navigation

Root.Body.Level1.Level2.

Level3.Description.Line[1];

Tree Copying

Set OutputRoot = InputRoot;

Resource Access Processing Logic

Notes for slide 5 (1 of 2)

When this or any other message flow processes messages costs arise.

These costs are:

• Parsing. This has two parts. The processing of incoming messages and the creation of output

messages. Before an incoming message can be processed by the nodes or ESQL it must

transformed from the sequence of bytes, which is the input message, into a structured object, which is

the message tree. Some parsing will take place immediately such as the parsing of the MQMD, some

will take place, on demand, as fields in the message payload are referred to within the message flow.

The amount of data which needs to be parsed is dependent on the organization of the message and

the requirements of the message flow. Not all message flows may require access to all data in a

message. When an output message is created the message tree needs to be converted into an actual

message. This is a function of the parser. The process of creating the output message is referred to

as serialization or flattening of the message tree. The creation of the output message is a simpler

process than reading an incoming message. The whole message will be written at once when an

output message is created. We will discuss the costs of parsing in more detail later in the

presentation.

• Message/Business Processing. It is possible to code message manipulation or business processing

in any one of a number of transformation technologies. These are ESQL, Java, .NET, Mapping node

and XSL. It is through these technologies that the input message is processed and the tree for the

output message is produced. The cost of running this is dependent on the amount and complexity of

the transformation processing that is coded.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 6

Notes for slide 5 (2 of 2)

• Navigation. This is the process of "walking" the message tree to access the elements

which are referred to in the ESQL, Java, .NET , etc. The cost of navigation is dependent

on the complexity and size of the message tree which is in turn dependent on the size and

complexity of the input messages and the complexity of the processing within the message flow.

• Tree Copying. This occurs in nodes which are able to change the message tree such as Compute

nodes. A copy of the message tree can be taken for recovery reasons so that if a compute node

makes changes and processing in node incurs or generates an exception the message tree can be

recovered to a point earlier in the message flow. Without this a failure in the message flow

downstream could have implications for a different path in the message flow. The tree copy is a copy

of a structured object and so is relatively expensive. It is not a copy of a sequence of bytes. For this

reason it is best to minimize the number of such copies, hence the general recommendation to

minimize the number of compute nodes in a message flow. Tree copying does not take place in a

Filter or Database node for example since ESQL normally only references the data in the message

tree and does not update it.

• Resources. This is the cost of invoking resource requests such as reading or writing WebSphere MQ

messages or making database requests. The extent of these costs is dependent on the number and

type of the requests.

The parsing, navigation and tree copying costs are all associated with the population, manipulation and

flattening of the message tree and will be discussed together a little later on.

Knowing how processing costs are encountered puts you in a better position to make design decisions

which minimize those costs. This is what we will cover during the course of the presentation.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 7

…draCscihparG,htimSderF

input message bit stream

…n/<htimS.rM>eman<>redro<

output message bit stream

Parsers

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 8

Parser converts
logical structure

to bit-stream
Model

Parser converts
bit-stream to
logical structure

Model

Notes for slide 8

• On the previous slide we saw that objects called “message trees” are sent to a node’s input

terminals, and either the same or different message tree is propagated from a node’s output

terminals.

• The message tree is a logical definition of a message processed by the broker. It’s described as a tree

because messages are typically hierarchical in structure; a good example of this is XML. Other message

formats too, are also often derived from complex structures which themselves can be derived from

complex structures, and so on, which gives them a tree-like shape with leaf nodes representing simple

data types.

• In IBM Integration Bus, parsers have the job of converting between physical messages (bit-streams) and

logical trees. When a message arrives at the broker through an input node, the message bit-stream is

converted into a tree structure by the parser, which typically uses a model to drive the form of the logical

tree. Built-in parsers handle well known headers within the message (MQMD, MQRFH2 etc.). Finally the

user data is parsed into the tree using the domain parser as identified in the MQRFH2 (or input node).

Message Broker’s built-in parsers support multiple domains (MRM, SOAP, XMLNSC, Data Object,

XMLNS, JMSMap, JMSStream, MIME, IDOC, BLOB and XML) to enable parsing of user and industry

standard formats.

• As the logical tree is passed from node to node, the form of the logical tree may change depending on

what the node is doing.

• When the message arrives at an output node, the parser converts the logical tree back into a physical

bit-stream where it can be output to the external resource, where it can be read by the target (receiving)

application. However, note that an output node need not indicate the end of a flow; it is possible to output

to multiple destinations within a single invocation of a message flow. In this case, the logical tree can be

passed on to other nodes and manipulated further, even after it has been converted back into a physical

bit-stream for this particular output node.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 9

Parsing

• The means of populating and serializing the tree

– Can occur whenever the message body is accessed

– Multiple parsers available: XMLNSC, DFDL, JSON, MRM XML,
CWF, TDS, MIME, HTTP Headers, JMSMap, JMSStream, BLOB,
IDOC, RYO

– Message complexity varies significantly …and so do costs!

• Several ways of minimizing parsing costs

– Use cheapest parser possible
e.g. XMLNSC for XML, DFDL for non XML

– Identify the message type quickly

– Use parsing strategies

• Parsing avoidance

• Partial parsing

• Opaque parsing

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 10

Notes for slide 10 (1 of 2)

• In order to be able to process a message or piece of data within IBM Integration Bus we

need to be able to model that data and build a representation of it in memory. Once we

have that representation we can transform the message to the required shape, format and

protocol using transformation processing such as ESQL, Java or .NET. That representation of a

sequence of bytes into a structured object is the message tree. It is populated though a process

called parsing.

• There are two parts to parsing within IBM Integration Bus:

– The first is the most obvious. It is the reading and interpretation of the input message and

recognition of tokens within the input stream. Parsing can be applied to message headers and

message body. The extent to which it is applied will depend on the situation. As parsing is an

expensive process in CPU terms it is not something that we want to automatically apply to every

part of every message that is read by a message flow. In some situations it is not necessary to

parse all of an incoming message in order to complete the processing within the message flow. A

routing message flow may only need to read a header property such as user identifier or

ApplIdentifyData in the MQMD for example. If the input message is very large parsing the whole

message could result in a large amount of additional CPU being unnecessarily consumed if that

data is not required in the logic of the message flow.

– The second, is the flattening, or serialisation of a message tree to produce a set of bytes which

correspond to the wire protocol of a message in the required output format and protocol.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 11

Notes for slide 10 (2 of 2)

• IBM Integration Bus provides a range of parsers. Some of the parsers are named on the

chart. The parsers cover different message formats. There is some overlap – XMLNSC

and MRM XML are both able to parse a generic XML message but there are also differences.

Other parsers such as JMSStream are targeted at specific message formats. In this case it is a JMS

stream message. Data Format Description Language (DFDL) is a modelling language from the Open

Grid Forum, and is the newest parser in IBM Integration Bus. It can be used to model non-XML

messages.

• Messages vary significantly in their format and the level of complexity which they are able to model.

Tagged Delimited string (TDS) messages for example can support nested groups. More complex data

structures make parsing costs higher. The parsing costs of different wire formats is different. You are

recommended to refer to the performance reports in order to get information on the parsing costs for

different types of data.

• Whatever the message format there are a number of techniques that can be employed to reduce the

cost of parsing. We will now look at the most common ones. First though we will discuss the reasons

for the different cost of parsing.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 12

Identifying the message type quickly

• Avoid multiple parses to find the message type

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 13

VS. 27x

Notes for slide 13

• It is important to be able to correctly recognise the correct message format and

type as quickly as possible. In message flows which process multiple types of

message this can be a problem. What often happens is that the message needs to

be parsed multiple times in order to ensure that you have the correct format. Dependent on the

particular format and the amount of parsing needed this can be expensive.

• This example shows how a message flow which processed multiple types of input message was

restructured to provide a substantial increase in message throughput.

• Originally the flow was implemented as a flow with a long critical path. Some of the most popular

messages were not processed until late in the message flow resulting in a high overhead. The flow

was complex. This was largely due to the variable nature of the incoming messages, which did not

have a clearly defined format. Messages had to be parsed multiple times.

• The message flow was restructured. This substantially reduced the cost of processing. The two key

features of this implementation were to use a very simple message set initially to parse the messages

and the use of the RouteToLabel and Label nodes within the message flow in order to establish

processing paths which were specialized for particular types of message.

• Because of the high processing cost of the initial flow it was only possible to process a small number

of non persistent message per second using one copy of the message flow. With the one copy of the

restructured flow it was possible to process 27x the original number of messages persistent messages

per second on the same system. This is a 27 times increase in message throughput plus persistent

messages where now being processed whereas previously they were non persistent.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 14

Parser avoidance

• If possible, avoid the need to parse at all!

– Consider only sending changed data

– Promote/copy key data structures to MQMD, MQRFH2 or

JMS Properties

• May save having to parse the user data

• Particularly useful for message routing

– Model only what you need!

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 15

MQMD RFH2
User data (bytes to Mb)

A B C … X Y Z

Notes for slide 15

• One very effective technique to reduce the cost of parsing is not to do it. A couple of ways

of doing this are discussed in this foil.

• The first approach is to avoid having to parse some parts of the message. Suppose we have a

message routing message flow which needs to look at a field in order to make a routing decision. If

that field is in the body of the message the body of the incoming message will have to be parsed to get

access to it. The processing cost will vary dependent on which field is needed. If it is field A that is OK

as it is at the beginning of the body and would be found quickly. If it is field Z then the cost could be

quite different, especially if the message is several megabytes in size. A technique to reduce this cost

would be to have the application which creates this message copy the field that is needed for routing

into a header within the message, say in an MQRFH2 header for an MQ message or as a JMS

property if it is a JMS message. If you were to do this it would no longer be necessary to parse the

message body so potentially saving a large amount of processing effort. The MQRFH2 or JMS

Properties folder would still need to be parsed but this is going to be smaller amount of data. The

parsers in this case are also more efficient then the general parser for a message body as the

structure of the header is known.

• A second approach to not parsing data is to not send it in the first place. Where two applications

communicate consider sending only the changed data rather than sending the full message. This

requires additional complexity in the receiving application but could potentially save significant parsing

processing dependent on the situation. This technique also has the benefit of reducing the amount of

data to be transmitted across the network.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 16

Partial parsing

Typical Ratio of
CPU Costs

1K msg 16K msg 256K msg

Filter First 1 1 1

Filter Last 1.4 3.4 5.6

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 17

• Typically, elements are parsed up to and including the required field
– Elements that are already parsed are not reparsed

• If possible, put important elements nearer the front of the user data

Set MyVariable = <Message Element Z>

MQMD RFH2
User data (bytes to Mb)

A B C … X Y Z

Message parsed

MQMD RFH2
User data (bytes to Mb)

Z B C … X Y A

Message parsed

vs.

Notes for slide 17 (1 of 2)

• Given parsing of the body is needed the next technique is to only parse what is needed

ather than parse the whole message just in case. The parsers provided with IBM Integration

Bus all support partial parsing.

• The amount of parsing which needs to be performed will depend on which fields in a message need to

accessed and the position of those fields in the message. We have two example here. One with the

fields ordered Z to A and the other with them ordered A to Z. Dependent on which field is needed one

of the cases will be more efficient than the other. Say we need to access field Z then the first case is

best. Where you have influence over message design ensure that information needed for routing for

example is placed at the start of the message and not at the end of the message.

• As an illustration of the difference in processing costs consider the table in the foil. The table shows a

comparison of processing costs for two versions of a routing message flow when processing several

different message sizes.

– For the filter first test the message flow routes the message based on the first field in the

message. For the filter last the routing decision is made based on the last field of the message.

– The CPU costs of running with each message size have been normalised so that the filter first

test for each message represents a cost of 1. The cost of the filter last case is then given as a

ratio to the filter first cost for that same message size.

– For the 1K message we can see that by using the last field in the message to route the CPU cost

of the whole message flow was 1.4 times the cost of using the first field in the same message.

This represents the additional parsing which needs to be performed to access the last field.

– For the 16K message, the cost of using the last field in the message had grown to 3.4 times that

of the first field in the same message. That is we can only run at one third of the message that we

can when looking at the first field of the message.

– These measurements were taken on a pSeries 570 Power 5 with

8 * 1.5 GHZ processors, using WebSphere Message Broker V6.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 18

Notes for slide 17 (2 of 2)

• For the 256K message, the cost of using the last field in the message was 5.6 times that of the first

field in the same message. That is we can only run at one fifth of the message that we can when

looking at the first field of the message.

• You can see how processing costs quickly start to grow and this was a simple test case. With larger

messages the effect would be even more pronounced. Where the whole message is used in

processing this is not an issue as all of the data will need to be parsed at some point. For simple

routing cases though the ordering of fields can make a significant difference.

• When using ESQL the field references are typically explicit. That is we have references such as

InputRoot.Body.A. IBM Integration Bus will only parse as far as the required message field to satisfy

that reference. It will stop at the first instance. When using XPath, which is a query language the

situation is different. By default an XPath expression will search for all instances of an element in the

message which implicitly means a full parse of the message. If you know there is only one element in

a message there is the chance to optimise the XPath query to say only retrieve the first instance. See

the ESQL and Java coding tips later in the presentation for more information.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 19

Opaque parsing

• Treat elements of an XML document as an unparsed BLOB

• Reduces message tree size and parsing costs

• Cannot reference the sub tree in message flow processing

• Configured on input nodes (“Parser Options” tab)

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 20

<order>

<item>Graphics Card</item>

<quantity>32</quantity>

<price>200</price>

</order>

DON’T
PARSE

THIS

OR THIS

<name>

<first>John</first>

<last>Smith</last>

</name>

<date>06/24/2010</date>

Notes for slide 20 (1 of 2)

• Opaque parsing is a technique that allows the whole of an XML sub tree to placed in the

message tree as a single element. The entry in the message tree is the bit stream of the

original input message. This technique has two benefits:

– It reduces the size of the message tree since the XML sub tree is not expanded into the individual

elements.

– The cost of parsing is reduced since less of the input message is expanded as individual

elements and added to the message tree.

• Use opaque parsing where you do not need to access the elements of the sub tree, for example you

need to copy a portion of the input tree to the output message but may not care about the contents in

this particular message flow. You accept the content in the sub folder and have no need to validate or

process it in any way.

• Opaque parsing is supported for the XMLNS and XMLNSC domains only.

• The support for the XMLNS domain continues to be available in its original form. Indeed this is the

only way in which the messages in the XMLNS domain can be opaquely parsed. It is not possible to

use the same interface that is provided for the XMLNSC to specify element names for the XMLNS

domain.

• The following pages of notes explain how opaque parsing is performed for messages in the XMLNS

and XMLNSC domains.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 21

Notes for slide 20 (2 of 2)

• The message domain must be set to XMLNSC.

• The elements in the message which are to be opaquely parsed are specified on the
'Parser Options' page of the input node of the message flow. See the picture below of
the MQInput node.

• Enter those element names that you wish to opaquely parse in the 'Opaque Elements' table.

• Be sure not to enable message validation as it will automatically disable opaque parsing. Opaque
parsing in this case does not make sense since for validation the whole message must be parsed and
validated.

• Opaque parsing for the named elements will occur automatically when the message is parsed.

• It is not currently possible to use the CREATE statement to opaquely parse a message in the
XMLNSC domain.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 22

Navigation

• The logical tree is walked every time it is evaluated

– This is not the same as parsing!

• Long paths are inefficient

– Minimise their usage, particularly in loops

– Use reference variables / pointers (ESQL / Java / .NET)

– Build a smaller message tree if possible

• Use compact parsers (XMLNSC, RFH2C)

• Use opaque parsing

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 23

SET Description =

InputRoot.XMLNSC.Body.Level1.LevelX.Description.Line[count];

Notes for slide 23

• Navigation is the process of accessing elements in the message tree. It happens when

you refer to elements in the message tree in the Compute, JavaCompute, .NET and

Mapping nodes.

• The cost of accessing elements is not always apparent and is difficult to separate from other

processing costs.

• The path to elements is not cached from one statement to another. If you have the ESQL statement
SET Description = Root.Body.Level1.Level2.Level3.Description.Line[1],

the runtime will access the message tree starting at the correlation Root and then move down the tree

to Level1, then Level2, then Level3, then Description and finally it will find the first instance of the Line

array. If you have this same statement in the next line of your ESQL module exactly the same

navigation will take place. There is no cache to the last referenced element in the message tree. This

is because access to the tree is intended to be dynamic to take account of the fact that it might change

structure from one statement to another. There are techniques available though to reduce the cost of

navigation.

• With large message trees the cost of navigation can become significant. There are techniques to

reduce which you are recommended to follow:

– Use the compact parsers (XMLNSC, MRM XML and RFH2C). The compact parsers discard

comments and white space in the input message. Dependent on the contents of your messages

this may have an effect of not. By comparison the other parsers include data in the original

message, so white space and comments would be inserted into the message tree.

– Use reference variables if using ESQL or references if using Java/.NET. This technique allows

you to save a pointer to a specific place in the message tree. Say to

Root.Body.Level1.Level2.Level3.Description for example.

• For an example of how to use reference variables and reference pointers see the coding tips given in

the Common Problems section.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 24

Message tree copying

• Message tree copying causes the logical tree to be duplicated in
memory… and this is computationally expensive

• Reduce the number of times the tree is copied
– Reduce the number of Compute nodes in a message flow

– Copy at an appropriate level in the tree (copy once rather than for
multiple branch nodes)

– Copy data to the Environment (although changes are not backed
out)

• Minimize the effect of tree copies
– Produce a smaller message tree (again)!

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 25

SET OutputRoot.XMLNSC.A = InputRoot.XMLNSC.A;

Notes for slide 25 (1 of 2)

• Tree Copying is the process of copying the message tree either in whole or part.

• Copying occurs in nodes which are able to change the message tree such as Compute

nodes. A copy of the message tree can be taken for recovery reasons so that if a compute node

makes changes and processing in node incurs or generates an exception the message tree can be

recovered to a point earlier in the message flow. Without this a failure in the message flow

downstream could have implications for a different path in the message flow. The tree copy is a copy

of a structured object and so is relatively expensive. It is not a copy of a sequence of bytes. For this

reason it is best to minimize the number of such copies, hence the general recommendation to

minimize the number of compute nodes in a message flow. Tree copying does not normally take place

in a Filter node for example since ESQL only references the data in the message tree and does not

update it.

• There are a few ways to reduce the costs of tree copying. These are:

– Produce a smaller message tree in the first place. A smaller tree will cost less to copy. Ways to

achieve this are to use Smaller messages, use Compact Parsers (XMLNSC, MRM XML,

RFH2C), use Opaque parsing partial parsing (all discussed previously).

– Reduce the number of times the whole tree is copied. Reducing the number of compute nodes

will help to reduce the number of times that the whole tree needs to be copied. In particular avoid

situations where you have one compute node followed immediately by another. In many cases

you may need multiple computes across a message flow. What we want to do is to optimise the

processing not have to force everything into one compute node.

– Copy portions of the tree at the branch level if possible rather than copying individual leaf nodes.

This will only work where the structure of the source and destination are the same but it is worth

doing if possible.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 26

Notes for slide 25 (2 of 2)

– Copy data to the Environment correlation (remember it is not backed out) and work

with it in Environment. This way the message tree does not have to be copied every

time you run a compute node. Environment is a scratchpad area which exists for each

invocation of a message flow. The contents of Environment are accessible across the whole of

the message flow. Environment is cleared down at the end of each message flow invocation.

• The first compute node in a message flow can copy InputRoot to Environment. Intermediate

nodes then read and update values in the Environment instead of using the InputRoot and

OutputRoot correlations as previously.

• In the final compute node of the message flow OutputRoot must be populated with data

from Environment. The MQOutput node will then serialize the message as usual.

Serialization will not take place from Environment.

– Whilst use of the Environment correlation is good from a performance point of view be aware that

the any updates made by a node which subsequently generates an exception will remain in

place. There is no back-out of changes as there is when a message tree copy was made prior to

the node exception.

• You also need to remember to create a parser for the target of the copy into the

Environment as one is not created automatically.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 27

Environment

LocalEnvironment

Root*

ExceptionList

Message Assembly

Database

node

Environment

LocalEnvironment

Root*

ExceptionList

Message Assembly
* = Normally Read Only (not modifiable)

How Many Trees? (Database Node)

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 28

Environment

InputLocalEnvironment

InputRoot*

InputExceptionList

Input Message Assembly

Environment

OutputLocalEnvironment

OutputRoot

OutputExceptionList

Output Message Assembly
* = Normally Read Only (not modifiable)

Compute

node

How Many Trees? (Compute Node)

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 29

Compute Mode Property

Message

LocalEnvironment

LocalEnvironment And Message

Exception

Exception And Message

Exception And LocalEnvrionment

All

Environment

InputRoot OutputRoot

InputLocalEnvironment OutputLocalEnvironment

OutputExceptionListInputExceptionList

Note: The Input* trees actually exist

beyond the compute node,

It’s just you cannot access them

Message Tree Timelines:

From the Compute Node Perspective

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 30

Notes: Available Predefined Tree References

(Correlation Names)

InputRoot

InputBody

InputLocalEnvironment

• InputDestinationList

InputProperties

InputExceptionList

OutputRoot

OutputLocalEnvironment

• OutputDestinationList

OutputProperties

OutputExceptionList

Environment

Database

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 31

Root

Body

LocalEnvironment

• DestinationList

Properties

ExceptionList

Environment

Database

Database, Filter, Trace…Compute

Correlation names are simply predefined

pointers into the message tree

Example of avoiding a tree copy

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 32

Notes for slide 32

• This foil shows one case where it was possible to avoid a tree copy. You may be able to

use this same technique in other situations.

• The purpose of the message flow is to read MQ messages, determine the message type and route to

the appropriate type of processing. There are three legs of processing, each starting with a Label

node (V0100, V0101 & V0102).

• The compute node Check_Version issues a PROPAGATE to the appropriate label node dependent on

a field in the incoming message. The message version information is obtained from the incoming

message by a function called getMessageVersion. The ESQL on the foil shows how this is done.

• As processing at this point is limited to routing only there is no need for Check_Version to modify the

incoming message tree and as such a value of LocalEnvironment is sufficient for the Compute Mode

of the node. Had a value of LocalEnvironment and Message been selected then we would have

needed to copy the message tree which would have increased processing costs, unnecessarily in this

case.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 33

Graphical data transformation - Overview

• Graphical data maps offer the ability to achieve the transformation of a message
without the need to write code, providing a visual image of the transformation, and
simplifying its implementation and ongoing maintenance.

• A message map is the IBM Integration Bus implementation of a graphical data map.
It is based on XML schema and XPath 2.0 standards.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 34

Notes for slide 34

• Graphical Data mapping editor included since WebSphere Message Broker v8

• Graphical data maps are known as message maps in IIB

• In the Graphical Data Mapping editor a user can do:

• Transform a message: You can use a message map to graphically transform a message

assembly, message body, and properties, according to the transforms and XPath functions

defined in the message map. You can use the full set of XPath 2.0 expressions and functions to

implement data calculations and manipulations in a message map. To define the input and output

messages to a map, you can use a schema base message model, which defines the structure of

the data and provides information about the data type, or you can define it dynamically in the

map by using the Add user defined function.

• Enrich a message with data available in an external database: You can use a message map to

enrich, or conditionally set the output message with data from a database table. The table data

structure must be defined to the message map, and an SQL where clause can be used to select

specific rows. The resulting row data is presented as an extra input in the message map,

according to the database schema.

• Modify data located in an external database.

• Route a message based on content: You can use a message map to graphically route a

message. You can modify the local environment tree to set a dynamic message destination.

• https://developer.ibm.com/integration/docs/ibm-integration-bus/get-started/get-started-gdm/

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 35

https://developer.ibm.com/integration/docs/ibm-integration-bus/get-started/get-started-gdm/

<xsd:complexType name="PersonType">
<xsd:sequence>
<xsd:element form="qualified" name="Name" type="string"/>
<xsd:element form="qualified" name="Address" type="mqsistr:Address" maxOccurs="unbounded" minOccurs="0"/>
<xsd:element form="qualified" name="PhoneNumber" type="mqsistr:PhoneNumberType"/>

</xsd:sequence>
</xsd:complexType>

Graphical data transformation - cardinality

The data model of your input and output message determines the required

processing and hence impacts the performance of a graphical map

(message map)

• set the cardinality of each element in a data model to specific values

whenever possible.

• only configure for maximum flexibility when actually required.

• only set minOccurs to 0, when an element needs to be optional

• only set maxOccurs above 1 if the element will actually repeat

The Graphical Data Mapping runtime engine will check all the possible

options that you configured during development. Only configure the

instances that are required to calculate the output value.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 36

review!

<xsd:element xmlns:ibmSchExtn="http://www.ibm.com/schema/extensions"
ibmSchExtn:docRoot="true" name="SaveAddressResponse">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="SaveAddressResponse" nillable="true" type="xsd:boolean"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Graphical data transformation – nil values

• The data model of your input and output
message determines the required processing
and hence impacts the performance of a
graphical map (message map)

• Only define an element as nillable when you
know that the application will need to handle out
of bound value in the data.

• Note defining an output element as mandatory,
cardinality minOccurs > 1 and nillable means
that the output will be created as nilled if there is
no input mapping or the input mapping produces
no value

• See
https://www.ibm.com/developerworks/community
/blogs/c7e1448b-9651-456c-9924-
f78bec90d2c2/entry/gaphical_data_mapping_bl
og_draft_1_designing_a_message_map

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 37

avoid!

https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/entry/gaphical_data_mapping_blog_draft_1_designing_a_message_map

Graphical data transformation - Validation

• The data model of your input and output message determines
the required processing and hence impacts the performance of a
graphical map (message map)

• Enable schema validation when you are developing a map.
Disable validation in your test and production systems unless the
solution requires validation enabled.

• Validation is the process of checking a message’s structure, and
optionally the values within, based on a description called a
schema.

• Message validation can be enabled directly on a number of input
nodes such as the MQInput, and SOAPInput nodes.

• Validation adds an overhead when processing messages at run
time.

• (https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-
f78bec90d2c2/entry/benefits_of_message_validation_when_using_mapping_nodes)

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 38

https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-f78bec90d2c2/entry/benefits_of_message_validation_when_using_mapping_nodes

Notes for slides 34 – 38 (1 of 2)

• Identify the input and output components to a message map. You can select an XML

schema, DFDL schema, or message set to define the message body

• You can also include the headers and folders of the Message Assembly when you need to read data

or write data from these:

• To read elements of input headers or folders, add them to the input message assembly only. The

Graphical Data Mapping editor passes to the output the input header or folder unchanged.

• To modify elements of an input header or folder, add them to the input message assembly and to the

output message assembly. Then, define transforms between the elements.

• To initialize an output header or folder, that is, to create a new header or folder in your output

message, add it only to the output message assembly. Then define transforms to set its data.

• To delete an input header or folder from the output message, add the component to the output

message assembly and do not set any field.

• Remember only add header or folder at the output if you need to modify it’s content

• Having a header or folder on input and output with only a move between them still causes the mapping

node to create and rewrite the header or folder.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 39

Notes for slides 34 – 38 (2 of 2)

• The function of a message map is driven by the data models that define the input and the

output message structures of a map. At run time, the Graphical Data Mapping engine must

account for all possible states of the data when executing the transformations you have

defined in the map against the data models. You may have control or not over the data models in your

solution. If you can influence the data model, these are some of the key points to consider:

• 1.- Set the cardinality of each element in a data model to specific values whenever possible. When

you define a logical model, you can configure the cardinality of each element by setting the minoccurs

and the maxoccurs properties.

• Avoid, whenever possible, configuring maximum flexibility unless actually required. Only set

minoccurs to 0, when an element needs to be optional. Only set maxoccurs above 1 if the

element will actually repeat.

• 2.- Define an element as nillable when you know that the application will need to handle out of bound

value in the data.

• 3.- Enable schema validation when you are developing a map. Disable validation in your test and

production systems unless the solution requires validation enabled. Validation is the process of

checking a message’s structure, and optionally the values within, based on a description called a

schema. The Mapping node relies on schema definitions, but it does not enforce them. If the input

message does not conform to the schema being used, the output you expect to see might not be

produced. During the development of your integration solutions, it is recommended that you enable

validation. However, for other environments such as test or production, you should only leave

validation on if your solution requires it because of the extra processing involved.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 40

Graphical data transformation: transforms

For each output element, identify the transform and the input elements required to calculate its value.

• When the transformation of an element from input to output becomes more than just a simple

Move, or type conversion (xs:type), you can call on the full set of standard XPath 2.0 operators and

functions to manipulate the data as required.

• When you need to process data, rather than just move it from source to target,

use custom transforms to define specialized transformations.

• Define a conditional expression for each transform to determine at run

time whether the transform is applied or not.

• From a performance point of view, it is recommended that you use XPath transforms or the

Custom XPath transform as your first choice, then

Custom Java. You can also use Custom ESQL.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 41

Use the ‘Local map’ transform to map

complex source to complex target

If elements are optional, set a

condition property so that you only

create an output if the input exists

Graphical data transformation: structural

transforms

Use structural transforms to enhance the readability, maintenance,

and performance of your map

• Use structural transforms such as Local Map or Submap to group

transforms that require the same condition to determine whether

they are applied in a map at run time

• At runtime:

– If the condition evaluates to true, you obtain similar performance results whether all the transforms are in the

main map or grouped into nested maps that are associated with structural transforms. However, you obtain a

more readable map.

– If the condition evaluates to false, the Graphical Data Mapping editor ignores this group of transforms.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 42

Structural transform: for each

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 43

Structural transform: mapping override

Transforms contained in a mapping overrides group are applied after a parent transform is applied. This

function enables you to copy a complex type from the input to the output object, while updating some of

the child elements in the complex type.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 44

The Mapping override

feature allows you to copy a

complex type and modify

some of its output elements

without having to define a

transform for each output

element. Hence, you get

better performance and a

more readable map.

Resource Access

MQ

• tune the QM and associated QM’s, logs, buffer sizes (see the WebSphere MQ performance reports)

• avoid unnecessary use of persistent messages, although always use persistent messages as
part of a co-ordinated transaction

• use fast storage if using persistent messages

• http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html

JMS

• follow MQ tuning if using MQ JMS

• follow provider instructions

• http://www.ibm.com/developerworks/websphere/library/techarticles/0604_bicheno/0604_bicheno.html

SOAP / HTTP

• Use persistent HTTP connections. You should always set this on the HTTPRequest node.

• use embedded integration server level listener for HTTP nodes (V7.0.0.1)

• http://www.ibm.com/developerworks/websphere/library/techarticles/0608_braithwaite/0608_braithwaite.html

File

• use cheapest delimiting option

• use fast storage

Database

• tune your DB – speak to your DBA

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 45

http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0604_bicheno/0604_bicheno.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_braithwaite/0608_braithwaite.html

Notes for slide 45 (1 of 2)

• There are a wide variety of ways of reading data into IBM Integration Bus and sending it

out once it is has been processed. The most common methods are MQ messages, JMS

messages, HTTP and files. Collectively for this discussion lets refer to them as methods

of transport although we recognise that is not completely accurate where file, VSAM and

database are concerned.

• Different transports have different reliability characteristics. An MQ persistent message has assured

delivery. It will be delivered once and once only. MQ non persistent messages are also pretty reliable

but are not assured. If there is a failure of machine or power outage for example data will be lost with

these non persistent messages. Similarly data received over a raw TCP/IP session will be unreliable.

• In some situations we are happy to accept the limitations of the transport in return for its wide

availability or low cost for example. In others we may need to make good the shortcoming of the

transport. One example of this is the use of a WebSphere MQ persistent message (or database

insert) to reliably capture coming over a TCP/IP connection as the TCP/IP session is unreliable – hey

this is why MQ is popular because of the value it builds on an unreliable protocol.

• As soon as data is captured in this way the speed of processing is changed. We now start to work at

the speed of MQ persistent messages or the rate at which data can be inserted into a database. This

can result in a significant drop in processing dependent on how well the queue manager or database

are tuned.

• In some cases it is possible to reduce the impact of reliably capturing data if you are prepared to

accept some additional risk. If it is acceptable to have a small window of potential loss you can save

the data to an MQ persistent message or database asynchronously. This will reduce the impact of

such processing on the critical path. This is a decision only you can make. It may well vary by case

by case dependent on the value of the data being processed.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 46

Notes for slide 45 (2 of 2)

• It is important to think how data will be received into IBM Integration Bus. Will data be

received one message at a time or will it arrive in a batch? What will be involved in

session connection set-up and tear-down costs for each message or record that is

received by the message flow. Thinking of it in MQ terms will there be an MQCONN, MQOPEN,

MQPUT, MQCMT and MQDISC by the application for each message sent to the message flow. Lets

hope not as this will generate a lot of additional processing for the integration bus queue manager

[assuming the application is local to the queue manager]. In the HTTP world you want to ensure that

persistent sessions (not to be confused with MQ persistence) are used for example so that session

set-up and tear-down costs are minimised. Make sure that you understand the sessions management

behaviour of the transport that is being used and that you know how to tune the transport for maximum

efficiency.

• IBM Integration Bus give you the ability to easily switch transport protocols, so data could come in

over MQ and leave the message flow in a file or be sent as a JMS message to any JMS 1.1 provider.

In your processing you should aim to keep a separation between the transport used and the data

being sent over that transport. This will make it easier to use different transports in the future.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 47

Processing Logic

• Performance characteristics of the different options is
rarely an issue

– Choose an option based on skills, ease-of-use and
suitability for the scenario

• Think carefully before mixing transformation options in
the same message flow

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 48

• Various options available

– Java

– ESQL

– .NET

– Mapping

– XSL

Notes for slide 48 (1 of 2)

• There are a number of different transformation technologies available with IBM Integration Bus.

Theses are:

– ESQL, an SQL like syntax, which runs in nodes such as the Compute, Filter and Database.

– Java which runs in a JavaCompute node.

– The Graphical Data Mapping node.

– Extensible Stylesheets (XSL) running in an XML Transformation node. This provides a good

opportunity to reuse an existing asset.

– The .NET compute node routes or transforms messages by using any Common Language

Runtime (CLR) compliant .NET programming language, such as C#, Visual Basic (VB), F# and

C++/CLI (Common Language Infrastructure).

• As there is a choice of transformation technology this offers significant flexibility. All of these

technologies can be used within the same message flow if needed.

• Different technologies will suit different projects and different requirements.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 49

Notes for slide 48 (2 of 2)

• Factors which you may want to take into account when making a decision about the use of

transformation technology are:

– The pool of development skills which is available. If developers are already skilled in

the use of ESQL you wish continue using this as the transformation technology of choice. If you

have a strong Java skills then the JavaCompute node may be more relevant, strong C# skills will

make the .NET node more relevant, rather than having to teach your programmers ESQL.

– The ease with which you could teach developers a new development language. If you have

many developers it may be not be viable to teach all of them ESQL for example and you may

only educate a few and have them develop common functions or procedures.

– The skill of the person. Is the person an established developer, or is the mapping node more

suitable.

– Asset re use. If you are an existing user of Message Broker you may have large amounts of

ESQL already coded which you wish to re-use. You may also have any number of resources that

you wish to re-use such as Java classes for key business processing, stylesheets, or .NET

assemblies. You want to use these as the core of message flow processing and extend the

processing with one of the other technologies.

– Performance is rarely an issue.

– Think carefully before combining a lot of different transformation technologies within a path of

execution of a message flow. ESQL, Java, .NET and Mapping node will happily intermix but

there is an overhead in moving to/from other technologies such as XSL as they do not access the

message directly. The message has to be serialised when it is passed to those other

technologies and then the results parsed to build a new message tree.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 50

Agenda

• What are the main performance costs inside

message flows?

… and what are the best practices

that will minimize these costs?

• What other performance considerations are there?

• Understanding your integration node’s behavior

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 51

Consider the end-to-end flow of data

• Interaction between multiple applications can be expensive!
– Store and Forward

– Serialise … De-serialise

• Some questions to ponder:
– Where is data being generated? Where is data being consumed?

– What applications are interacting in the system?

– What are the interactions between each of these applications?

• And as data passes through the integration server:
– Where are messages arriving? Where are they leaving?

– Are multiple message flows being invoked?

• Request/Reply?

• Flow-to-flow?

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 52

Integration Bus

Consider the sequencing of message flows

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 53

vs.

3x (Read Msg – Parse – Process – Serialise – Write Msg)

Read Msg – Parse – 3x (Process) – Serialise – Write Msg

Notes for slide 53 (1 of 3)

• It is important to think about the structure of your message flows and to think about how they will

process incoming data. Will one message flow process multiple message types or will it process a

single type only. Where a unique message flow is produced for each different type of message it is

referred to as a specific flow. An alternative approach is to create message flows which are capable of

processing multiple message types. There may be several such flows, each processing a different

group of messages. We call this a generic flow.

• There are advantages and disadvantages for both specific and generic flows.

– With specific flows there are likely to be many different message flows. In fact as many message

flows as there are types of input message. This does increase the management overhead which

is a disadvantage. A benefit of this approach though is that processing can be optimized for the

message type. The message flow does not have to spend time trying to determine the type of

message before then processing it.

– With the generic flow there is a processing cost over and above the specific processing required

for that type of message. This is the processing required to determine which of the possible

message types a particular message is. Generic flows can typically end up parsing an input

message multiple times. Initially to determine the type and then subsequently to perform the

specific processing for that type of message. A benefit of the generic flow is that there are likely

to be fewer of them as each is able to process multiple message types. This makes

management easier. Generic flows tend to be more complex in nature. It is relatively easy to add

processing for another type of message though. With generic message flows it is important to

ensure that the most common message types are processed first. If the distribution of message

types being processed changes over time this could mean processing progressively becomes

less efficient. You need to take account of this possibility in you message flow design. Use of the

RouteToLabel node can help with this problem.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 54

Notes for slide 53 (2 of 3)

• There are advantages to both the specific and generic approaches. From a message

throughput point of view it is better to implement specific flows. From a management

and operation point of view it is better to use generic flows. Which approach you choose

will depend on what is important in your own situation.

• To bring clarity to your message flow processing consider using the RouteToLabel node. It can help

add structure and be effective in separating different processing paths with a message flow. Without

flows can become long and unwieldly resulting in high processing costs for those messages with have

a long processing path. See the two examples on the foil. Both perform the same processing but have

different structures. One is clearly more readable than the other.

• There are several ways of achieving code reuse with IBM Integration Bus. They are subflows, ESQL

procedures and functions, invoking external Java classes and calling a database stored procedure.

There are some performance implications of using the different techniques which we will briefly look

at.

• Subflows are a facility to encourage the reuse of code. Subflows can be embedded into message

flows or deployed separately in v8 and above. There are no additional nodes inserted into the

message flow as a result of using subflows. However be aware of implicitly adding extra nodes into a

message flow as a result of using subflows. in some situations compute nodes are added to subflows

to perform marshalling of data from one part of the message tree into a known place in the message

tree so that the data can be processed by the message flow. The result may then be copied to

another part of the message tree before the subflow completes. This approach can easily lead to the

addition of two compute nodes, each of which performs a tree copy. In such cases the subflow

facilitates the reuse of logic but unwittingly adds an additional processing head. Consider the use of

ESQL procedures instead for code reuse. They provide a good reuse facility and the potential

additional overhead of extra Compute nodes is avoided.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 55

Notes for slide 53 (3 of 3)

• Existing Java classes can be invoked from within a message flow using either ESQL or Java.

The same is true for .NET applications which can also be called from ESQL in V8 and above.

– From ESQL it is possible to declare an external function or procedure which specifies the name

of the Java or .NET routine to be invoked.. Parameters (in,out, in-out) can be passed to the

method.

– From within a Java or .NET compute node the class can be invoked as any other class. You will

need to ensure that the class file is accessible to the integration server runtime for this to work.

• A database stored procedure can be called from within ESQL by using an external procedure. It is

also possible to invoke a stored procedure using a PASSTHRU statement but this is not

recommended as it is not as capable as a porcedure definition directly in ESQL.

• The cost of calling these external routines will vary and be dependent on what is being called

(Java/.NET VS Stored procedure) and the number and type of parameters. The performance reports

give the CPU cost of calling different procedure types and you can compare the cost of using these

methods to other processing which you might do.

• There are no hard and fast rules about whether to call an external procedure or not. It will very much

depend on what code you want to access. It is important to bear in mind the cost of making the call

against the function that is being executed. Is it really worth it if the external procedure is only a few

lines of code. It might easier to re-write the code and make it available locally within the message

flow.

• Database stored procedures can be a useful technique for reducing the size of the result set that is

returned to a message flow from a database query. Especially where the result set from an SQL

statement might contain hundreds or thousands of rows otherwise. The stored procedure can perform

an additional refinement of the results. The stored procedure is close to the data and using it to refine

results is a more efficient way of reducing the volume of data. Otherwise data has to be returned to

the message flow only to be potentially discarded immediately.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 56

Consider the use of patterns

Patterns provide top-down,
parameterized connectivity of
common use cases

• e.g. Web Service
façades, Message
oriented processing,
Queue to File…

They help describe best
practice for efficient message
flows

• There are also quick to
create and less prone to
errors

Write your own patterns too!

• Help new message flow
developers come on
board more quickly

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 57

Consider your operational environment

• Network topology

– Distance between integration server and data

• What hardware do you need?

– Including high availability and disaster recovery requirements

– IBM can help you!

• Transactional behaviour

– Early availability of messages vs. backout

– Transactions necessitate log I/O – can change focus from CPU to I/O

– Message batching (commit count)

• What are your performance requirements?

– Now…

...and in five years

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 58

Consider how your integration logic will scale

• How many integration servers?
– As processes, integration servers provide isolation

– Higher memory requirement than threads

– Rules of thumb:

• Group small numbers of applications in an integration server

• Allocate all instances needed for a message flow over those integration
servers

• Assign heavy resource users (memory) to specialist integration server

• How many message flow instances?
– Message flow instances provide thread level separation

– Lower memory requirement than integration servers

– Potential to use shared variables

– Rules of thumb:

• There is no pre-set magic number

• What message rate do you require?

• Try scaling up the instances to see the effect; to scale effectively, message
flows should be efficient, CPU bound, have minimal I/O and have no
affinities or serialisation.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 59

General notes (1 of 10)

• So far we have focused on the message and contents of the message flow. It is important

to have an efficient message flow but this is not the whole story. It is also important to have

an efficient environment for the message flow to run in.

• We collectively refer to this as the environment. It includes:

– Configuration of the integration node and any servers

– Configuration of the associated queue manager

– The topology of the environment in which the messages are processed

– Business database configuration

– Hardware

– Software

• It is important that each of these components is well configured and tuned. When this occurs we can

get the best possible message throughput for the resources which have been allocated.

• We will now briefly look at each of these aspects. The aim is to outline those aspects which you

should be aware of and further investigate rather than to provide full guidance in this presentation.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 60

General notes (2 of 10)

• It is possible to run an integration node as a trusted application on Windows, Solaris,

HP-UX and AIX. The benefit of running in trusted mode is that the cost of an application

communicating with the queue manager is reduced and MQ operations are processed

more efficiently. It is thus possible to achieve a higher level of messaging with a trusted application.

However when running in trusted mode it is possible for a poorly written application to crash and

potentially corrupt the queue manager. The likelihood of this happening will depend on user code,

such as a plugin node, running in the message flow and the extent to which it has been fully tested.

Some users are happy to accept the risk in return for the performance benefits. Others are not.

• It is possible to increase the number of instances of a message flow which are running. Similarly you

can increase the number of integration servers and assign message flows to those integration servers.

This gives the potential to increase message throughput as there are more copies of the message

flow. There is no hard and fast rule as to how many copies of a message flow to run. For guidelines

look at the details in the Additional Information section

• Tuning is available for non MQ transports. For example:

– When using HTTP you can tune the number of threads in the HTTP listener

– When using JMS nodes follow the tuning advice for the JMS provider that you are connecting to.

• As the integration node is dependent on the queue manager to get and put MQ messages the

performance of this component is an important component of overall performance.

• When using persistent messages it is important to ensure the queue manager log is efficient. Review

log buffer settings and the speed of the device on which the queue manager log is located.

• It is possible to run the WebSphere queue manager channels and listener as trusted applications.

This can help reduce CPU consumption and so allow greater throughput.

• In practice an integration node’s queue manager is likely to be connected to other queue managers. It

is important to examine the configuration of these other queue managers

as well in order to ensure that they are well tuned.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 61

General notes (3 of 10)

• The input messages for a message flow do not magically appear on the input queue and

disappear once they have been written to the output queue by the message flow. The

messages must some how be transported to the input queue and moved away from the

output queue to a consuming application.

• Let us look at the processing involved to process a message in a message flow passing between two

applications with different queue manager configurations.

– Where the communicating applications are local to the integration server, and they use the same

queue manager, processing is optimized. Messages do not have to move over a queue manager

to queue manager channel. When messages are non persistent no commit processing is

required. When messages are persistent 3 commits are required in order to pass one message

between the two applications. This involves a single queue manager.

– When the communicating applications are remote from the integration node’s queue manager,

messages passed between the applications must now travel over two queue manager to queue

manager channels (one on the outward, another on the return). When messages are non

persistent no commit processing is required. When messages are persistent 7 commits are

required in order to pass one message between the two applications. This involves two queue

managers.

• If the number of queue managers between the applications and the integration node were to increase,

so would the number of commits required to process a message. Processing would also become

dependent on a greater number of queue managers.

• Where possible keep the applications as close as possible in order to reduce the overall overhead.

• Where multiple queue managers are involved in the processing of messages it is important to make

sure that all are optimally configured and tuned.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 62

General notes (4 of 10)

• The extent to which business data is used will be entirely dependent on the business

requirements of the message flow. With simple routing flows it is unlikely that there will

be any database access. With complex transformations there might be involved database

processing. This could involve a mixture of read, update, insert and delete activity.

• It is important to ensure that the database manager is well tuned. Knowing the type of activity which is

being issued against a database can help when tuning the database manager as you can focus tuning

on the particular type of activity which is used.

• Where there is update, insert or delete activity the performance of the database log will be a factor in

overall performance. Where there is a large amount of read activity it is important to review buffer

allocations and the use of table indices for example.

• It might be appropriate to review the design of the database tables which are accessed from within a

message flow. It may be possible to combine tables and so reduce the number of reads which are

made for example. All the normal database design rules should be considered.

• Where a message flow only reads data from a table, consider using a read only view of that table.

This reduces the amount of locking within the database manager and reduces the processing cost of

the read.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 63

General notes (5 of 10)

• Allocating the correct resources to the integration node is a very important implementation

step.

• Starve a CPU bound message flow of CPU and you simply will not get the throughput. Similarly

neglect I/O configuration and processing could be significantly delayed by logging activities for

example.

• It is important to understand the needs of the message flows which you have created. Determine

whether they are CPU bound or I/O bound.

• Knowing whether a message flow is CPU bound or I/O bound is key to knowing how to increase

message throughput. It is no good adding processors to a system which is I/O bound. It is not going

to increase message throughput. Using disks which are much faster such as a solid state disk or SAN

with a fast-write non-volatile cache will have a beneficial effect though.

• As we saw at the beginning IBM Integration Bus has the potential to use multiple processors by

running multiple message flows as well as multiple copies of those message flows. By understanding

the characteristics of the message flow it is possible to make the best of that potential.

• In many message flows parsing and manipulation of messages is common. This is CPU intensive

activity. As such message throughput is sensitive to processor speed. Integration nodes will benefit

from the use of faster processors. As a general rule it would be better to allocate fewer faster

processors than many slower processors.

• We have talked about ensuring that the integration node and its associated components are well tuned

and it is important to emphasize this. The default settings are not optimized for any particular

configuration. They are designed to allow the product to function not to perform to its peak.

• It is important to ensure that software levels are as current as possible. The latest levels of software

such as IBM Integration Bus and WebSphere MQ offer the best levels of performance.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 64

General notes (6 of 10)

• Avoid use of array subscripts [] on the right hand side of expressions – use reference

variables instead. See below. Note also the use of LASTMOVE function to control loop

execution.
DECLARE myref REFERENCE TO OutputRoot.XMLNSC.Invoice.Purchases.Item[1];

-- Continue processing for each item in the array

WHILE LASTMOVE(myref)=TRUE DO

-- Add 1 to each item in the array

SET myref = myref + 1;

-- Move the dynamic reference to the next item in the array

MOVE myref NEXTSIBLING;

END WHILE;

• Use reference variables rather than long correlation names such as InputRoot.DFDL.A.B.C.D.E. Find

a part of the correlation name that is used frequently so that you get maximum reuse in the ESQL. You

may end up using multiple different reference variables throughout the ESQL. You do not want to

reference variable pointing to InputRoot for example. It needs to be deeper than that.
DECLARE myref REFERENCE TO InputRoot.DFDL.A.B.C;

SET VALUE = myRef.D.E;

• Avoid use of EVAL if possible, it is very expensive!

• Avoid use of CARDINALITY in a loop, e.g.

while (I < CARDINALITY (InputRoot.DFDL.A.B.C[]))

This can be a problem with large arrays where the cost of evaluating CARDINALITY is expensive and

as the array is large we also iterate around the loop more often. See use of reference variables and

LASTMOVE above.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 65

General notes (7 of 10)

• Combine ESQL into the minimum number of compute nodes possible. Fewer compute

nodes means less tree copying.

• Use FORMAT clause (in CAST function) where possible to perform data and time formatting.

• Limit use of shared variables to a small number of entires (tens of entries) when using an array of ROW

variables or order in probability of usage (current implementation is not indexed so performance can

degrade with higher numbers of entries).

• For efficient code re-use consider using ESQL modules and schema rather than subflows. What often

happens with subflows is that people add extra compute nodes to perform initialisation and finalisation
for the processing that is done in the subflow. The extra compute nodes result in extra message tree

copying which is relatively expensive as it is a copy of a structured object.

• Avoid use of PASSTHRU with a CALL statement to invoke a stored procedure. Use the

"CREATE PROCEDURE ... EXTERNAL ..." and "CALL ..." commands instead

• If you do have to use PASSTHRU use host variables (parameter markers) when using the statement.

This allows the dynamic SQL statement to be reused within DB2 [assuming statement caching is

active]

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 66

General notes (8 of 10)

• Declare and Initialize ESQL variables in same statement

• Example:
Declare InMessageFmt CHAR;
Set InMessageFmt = 'SWIFT';
DECLARE C INTEGER;
Set C = CARDINALITY(InputRoot.*[]);

• Better to use:
Declare InMessageFmt CHAR ‘SWIFT’;
DECLARE C INTEGER CARDINALITY(InputRoot.*[])

• Initialize MRM output message fields using MRM null/default rather than ESQL

– Messageset.mset > CWF>Policy for missing elements

• Use null value

– Cobol import

• Create null values for all fields if initial values not set in Cobol

– Avoids statements like
Set OutputRoot.MRM.THUVTILL.IDTRANSIN.NRTRANS = '';

• For frequently used complex structures consider pre-building and storing in a ROW variable which is

also a SHARED variable (and so accessible by multiple copies of the message flow). The pre-built

structure can be copied across during the processing of each message so saving processing time in

creating the structure from scratch eace time. For an example of ROW and SHARED variable use see

the message flow Routing_using_memory_cache which is part of the Message Routing sample in the

IBM Integration Bus samples gallery.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 67

General notes (9 of 10)

• For Java follow applicable points from ESQL like reducing the number of compute nodes

• Store intermediate references when building / navigating trees

Instead of
MbMessage newEnv = new MbMessage(env);

newEnv.getRootElement().createElementAsFirstChild(MbElement.TYPE_NAME,"Destination", null);

newEnv.getRootElement().getFirstChild().createElementAsFirstChild(MbElement.TYPE_NAME,
"MQDestinationList", null);

newEnv.getRootElement().getFirstChild().getFirstChild()

createElementAsFirstChild(MbElement.TYPE_NAME, "DestinationData", null);

Store references as follows:
MbMessage newEnv = new MbMessage(env);

MbElement destination = newEnv.getRootElement().createElementAsFirstChild(MbElement.TYPE_NAME,
"Destination", null);

MbElement mqDestinationList = destination.createElementAsFirstChild(MbElement.TYPE_NAME,
"MQDestinationList", null);

mqDestinationList.createElementAsFirstChild(MbElement.TYPE_NAME, "DestinationData", null);

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 68

General notes (10 of 10)

• Although XPath is a powerful statement from a development point of view it can have an

unforeseen performance impact in that it will force a full parse of the input message.

By default it will retrieve all instances of the search argument. If you know there is only

one element or you only want the first then there is an optimization to allow this to happen.

The benefit of using this is that it can save a lot of additional, unnecessary parsing.

• The XPath evaluation in IBM Integration Bus is written specifically for the product and has a couple of

performance optimizations that are worth noting.

• XPath performance tips:

– Use /aaa[1] if you just want the first one

• It will stop searching when it finds it

– Avoid descendant-or-self (//) if possible

• It traverses (and parses) the whole message

• Use /descendant::aaa[1] instead of (//aaa)[1]

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 69

Server / flow instances

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 70

How many Integration Servers should I have?
How many Additional Instances should I add?

Additional Instances

• Results in more processing threads
• Low(er) memory requirement
• Thread level separation
• Can share data between threads
• Scales across multiple servers

Integration Servers

• Results in a new process/address-space
• Increased memory requirement
• Multiple threads including management
• Operational simplicity
• Gives process level separation
• Scales across multiple servers

Recommended Usage

• Check resource constraints on system
• How much memory available?
• How many CPUs?

• Start low (1 server, No additional instances)
• Group applications in a single integration server
• Assign heavy resource users to their own integration server
• Increment integration servers and additional instances one at a time

• Keep checking memory and CPU on machine
• Don’t assume configuration will work the same on different machines

• Different memory and number of CPUs

Notes for slide 70 (1 of 4)

• Within an integration node it is possible to have one or more integration servers.

• Integration server is a container in which one or more message flows can run.

• The implementation of an integration server varies with platform. On Windows and UNIX platforms it is

implemented as an operating system process. On z/OS it is implemented as an address space.

• The integration server provides separation at the operating system level. If you have message flows

which you must separate for some reason, you can achieve this by assigning them to different

integration servers.

• An individual message flow runs as an operating system thread on the Windows and UNIX platforms

and as a Task Control Block (TCB) on z/OS.

• It is possible to run more than one copy of a message flow in an integration server, in which case there

will be multiple threads or TCBs running the same message flow. Equally you can run a message flow

in more than one integration server. In which case there will be one or more threads or TCBs running

the message flow in each of the processes or address spaces to which the message flow has been

assigned.

• A significant benefit of using IBM Integration Bus is that the threading model is provided as standard.

The message flow developer does not usually need to explicitly provide code in order to cope with the

fact that multiple copies of the message flow might be run.

• How many copies and where they are run is an operational issue and not a development one. This

provides significant flexibility.

• The ability to use multiple threads or TCBs and also to replicate this over multiple processes or

address spaces means that there is excellent potential to use and exploit multiprocessor machines.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 71

Notes for slide 70 (2 of 4)

• In testing and production you will need to decide which message flows are assigned to which

integration servers and how many integration servers are allocated. There are a number of

possible approaches: Allocate all of the message flows in to one or two integration servers:

Have an integration server for each message flow; Split message flows by project and so on. Before

considering what the best approach is, lets look at some of the characteristics of integration servers

and additional instances.

• Integration server:

– Each integration server is an operating system process or address space in which one or more

message flows run. Each new integration server will result in an additional process or address

space being run.

– An integration server might typically require ~150MB of memory to start and load executables. Its

size after initialisation will then depend on the requirements of the message flows which run

within it. Each additional integration server which is allocated will need a minimum of another

~150MB so you can see that using a high number of integration servers is likely to use a large

amount of memory quickly.

– As well as the threads needed to run a message flow, an integration server also has a number of

additional threads which are used to perform management functions. So allocating many

integration servers will result in more management threads being allocated overall.

– An integration server provides process level separation between different applications. This can

be useful for separating applications.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 72

Notes for slide 70 (3 of 4)

• A common allocation pattern is to have one or possibly two integration servers per project

and to then assign all of the message flows for that project to those integration servers. By

using two integration servers you build in some additional availability should one execution

fail. Where you have message flows which require large amounts of memory in order to execute,

perhaps because the input messages are very large or have many elements to them, then you are

recommended to keep all instances of those message flows to a small number of integration servers

rather than allocate over a large number of integration servers [It is not uncommon for an integration

server to use 1GB+ of memory.]. Otherwise every integration server could require a large amount of

memory as soon as one of the large messages was processed by a flow in that integration server.

Total memory usage would rise significantly in this case and could be many gigabytes.

• As with most things this is about achieving a balance between the flexibility you need against the level

of resources (and so cost) which have to be assigned to achieve the required processing

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 73

Notes for slide 70 (4 of 4)

• Additional Instance:

– Each new additional instance results in one more thread being allocated in an existing

integration server. As such the overhead is low. There will be some additional memory

requirements but this will be significantly less than the ~150MB that is typically needed to

accommodate a new integration server.

– Message flows running as instances in a single integration server can access common variables

called shared variables. This gives a cheap way to access low volumes of common data. The

same is not true of messages flows assigned to different integration servers.

• When assigning message flows to integration servers there is no fixed algorithm imposed by IBM

Integration Bus. There is significant flexibility in the way in which the assignment can be managed.

Some users allocate high numbers of integration servers and assign a few message flows to each. We

have seen several instance of 100+ integration servers being used. Others allocate many message

flows to a small number of integration servers.

• A key factor in deciding how many integration servers to allocate is going to be how much free

memory you have available on the machine.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 74

Agenda

• What are the main performance costs inside

message flows?

… and what are the best practices

that will minimize these costs?

• What other performance considerations are there?

• Understanding your integration node’s behavior

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 75

Some tools to understand your integration node’s

behaviour
• PerfHarness – Drive realistic loads through the runtime

– https://ibm.biz/JMSPerfHarness and search for “PerfHarness”.

• OS Tools
– Run your message flow under load and determine the limiting factor.

– Is your message flow CPU, memory or I/O bound?

– e.g. “perfmon” (Windows), “vmstat” or “top” (Linux/UNIX) or “SDSF” (z/OS).

– This information will help you understand the likely impact of scaling (e.g. additional instances),
faster storage and faster networks

• Third Party Tools
– RFHUtil – useful for sending/receiving MQ messages and customising all headers

– NetTool/Fiddler – useful for testing HTTP/SOAP

– Process Explorer – Windows tool to show which files are in use by which processes

– Java Health Center – to diagnose issues in Java nodes

• MQ / Integration Explorer
– Queue Manager administration

– Useful to monitor queue depths during tests

– Resource Statistics, Activity Log

• IBM Integration Bus Web UI (V9 onwards)

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 76

https://ibm.biz/JMSPerfHarness

Displaying broker at the process level on z/OS

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 77

 Use SDSF to

display the

Integration Server

address space and

find the CPU and

memory usage.

Reporting & Chargeback

• System Management Facilities (SMF)
– IBM Integration Bus allows operational staff to control the gathering of SMF

data on a per message flow basis. The message flow developer does not need
to instrument their design in any way.

– Enables efficient and effective tuning of message flows.

– Allows infrastructure departments to charge users according to their utilization
of integration node facilities.

• Coordinated Reporting
– SMF also allows subsystems to report performance and accounting information

at the same time for a given processing interval.

– Makes it possible to correlate statistics between IBM Integration Bus, MQ and
DB2 subsystems and artefacts.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 78

SYS

PLEX

ENF37
SMF

Type 117

subtype 1,2

Integration Node
Integration

Server

Integration
Server

archive

snapshot

Notes on accounting & statistics

Accounting and Statistics Timers

• Information is gathered at regular intervals according to timers. There are two classes

of timers, internal and external.

• Archive and Snapshot timers are internal timers set by integration node parameters which govern

when these data are written to their destinations.

• An external timer is available on z/OS, namely ENF37. ENF is also important to allow consolidated

reporting of SMF information across major subsystems, e.g. you might coordinate queue manager and

integration node activity to best understand how to tune your queue manager for particular flows.

A Variety of Output Destinations and Formats

• It's possible to gather this information in different formats according to technology used to access it.

• On z/OS there is the option to generate SMF type 117 records, having subtypes 1 and 2 depending on

the granularity of information requested by the user for a particular flow.

• There is also the option of generating Publish Subscribe (XML), UserTrace and JSON.

• You may request different output destinations for Snapshot and Archive Stats by Message Flow.

Options for Reporting Scope and Granularity

• z/OS SMF can be collected for any integration node within a SYSPLEX. It can be integrated with all

other SMF enabled z/OS products and subsystems - literally hundreds!

• UserTrace is collected for the integration node. This data is human readable and relatively useful if

you're prototyping.

• PubSub can be collected for any integration node throughout the domain. This is incredibly powerful;

it means you can sit anywhere in a domain and request information about particular nodes in a flow on

a particular integration server on a integration node on a different machine! OR you could put in wild

card subscriptions to gather information from several different sources!

XML is very structured, which makes it ideal for multi platform reporting.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 79

View accounting & statistics using the WebUI

• Control statistics at all levels

• Easily view and compare flows, helping to understand which are processing the
most messages or have the highest elapsed time

• Easily view and compare nodes, helping to understand which have the highest CPU
or elapsed times.

• View all statistics metrics
available for each flow

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 80

BipSmf.h

Type 117

SubType 1

Threads?

Message flow

Flows/Threads

Message flow data

Thread Data

Terminal data

SubType 2

Terminals>0

Message flow

Message flow data

Nodes

Terminal data

Node data

Terminal data

SubType 2

Terminals==0

Message flow

Message flow data

Nodes

...

Node data

Node data

Node data

...

...

Thread Data

Including Nodes

only

Including

Nodes+Terminals
1 1 N

SMF Record Structure

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 81

Notes on slide 81

SMF 117 records describe the A&S information

• The subtype of SMF 117 records written depends on the data currently being collected.

• A type 1 record is produced when a flow is only collecting message flow or threads data. A single type

1 record is produced with all threads included.

• Type 2 records are produced when a flow is collecting node data. When only node data is collected, a

single type 2 record is written to SMF, whereas when data for nodes and terminals are being collected,

multiple type 2 records are written to SMF.

BipSMF.h describes the SMF records

• You can use the BipSMF.h header file to produce your own reports.

The integration node / server userid must be permitted to the BPX.SMF facility class profile to write SMF

records.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 82

Integration node resource statistics

• The IBM Integration Bus WebUI (V10) enables you to start/stop
resource statistics on the integration server, and view the output.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 83

Workload Management

Workload Scaling

• z/OS SYSPLEX brings a huge amount of potential processing capacity to the IBM
Integration Bus with up to 141 z13 processors.

• Message flows have a built-in multiprocessing capability. Each instance of a message
flow can execute on a separate thread (z/OS TCB) allowing the integration server to
easily exploit multiple CPUs

Workload Isolation

• Simply assign separate integration server address spaces to different types of work.

z/OS Individual Integration Server Workload Management

• Integration Servers automatically assigned to JOBACCT token

• Use WLM Classification panels to map JOBACCT to Service and Report classes

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 84

Notes on slide 84 (1 of 2)

• Goal Oriented Resource Allocation (WLM)

– When an IBM Integration Bus integration server address space starts, it is assigned

a JOBACCT token. This can then be classified in Workload Manager (WLM) to service

and report classes. This enables systems programmers to assign different goals (typically

response time) to this service class through WLM configuration choices

– The ability to assign WLM service classes to message processing workload has two significant

benefits

• As work passes through subsystems which are WLM enabled, the service class can be

maintained. Resources such as CPU and IO “follow” users’ work requests to make sure

these requests meet, if possible, the goals set by WLM

• WLM classification means that in the event of resource constraint (at peak time for

example), high priority workloads can receive appropriate resource to ensure that critical

workloads are completed at the expense of less important work

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 85

Notes on slide 84 (2 of 2)

• Workload Scaling

– z/OS SYSPLEX brings a huge amount of potential processing capacity to

IBM Integration Bus.

– IBM Integration Bus is designed to exploit all of these capabilities without users having to

explicitly design their message flows differently .

– Message flows have a built-in multiprocessing capability.

– Each instance of a message flow can execute on a separate thread (z/OS TCB) allowing the

integration server to easily exploit multiple CPUs.

– If a flow is not able to process enough messages due to CPU constraint, it is a simple step to

assign more instances to the message flow to dynamically increase the number of eligible CPUs

for processing. This does not involve flow design or outage .

– And as we’ve seen, it’s simple to scale message flows across the SYSPLEX by deploying to

multiple integration servers within the SYSPLEX domain. Again, this reconfiguration process is

dynamic and does not require restart .

• Workload Isolation

– From a storage isolation perspective, integration servers are completely separated, storage in

one address space is not visible to another. Moreover, if the event of a failure, an integration

server is restarted without affecting any other integration servers owned by the integration node;

failures are isolated to integration servers.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 86

Testing and Optimising Message Flows

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 87

• Run driver application (e.g. PerfHarness) on a machine

separate to the Integration Bus server for load testing

• Test flows in isolation

• Use real data where possible

• Avoid pre-loading queues

• Use a controlled environment – access, code, software,

hardware

• Take a baseline before any changes are made

• Make ONE change at a time.

• Where possible retest after each change to measure

impact

• Start with a single flow instance/server and then

increase to measure scaling and processing

characteristics of your flows

Performance Reports

• IIB V9 reports

– IIB V9 Performance Reports - https://ibm.biz/IIBv9Perf

– IIB V9 Performance Samples - https://ibm.biz/IIBv9PerfSamples

• Previous reports

– http://www-1.ibm.com/support/docview.wss?uid=swg27007150

• Consists of 2 Sections:

– High level release highlights and use case throughput numbers

– Detailed low level metrics (nodes/parsers)

• Please send us your feedback!

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 88

http://www-1.ibm.com/support/docview.wss?uid=swg27007150

Performance improvements in IIB V10 over IIB V9

• The IBM Integration Bus V10 runtime performance exceeds that of V9 in a number
of key areas including:

– DFDL scenarios show a ~20% reduction in cost per message

– Graphical Data Mapper when accessing a Database show a ~10% reduction in cost per
message

– JSON parser shows an ~18% reduction in cost per message

– HTTP Nodes and SOAP nodes over HTTP show a ~5% reduction in cost per message

– SOAP over JMS using MQ show a ~10% reduction in cost per message

– FTE nodes show an ~18% reduction in cost per message

– Reduction in cost of ~50% when declaring statics in an ESQL compute node

• Administration response times have been improved by as much as 33% for
functions such as connect and deploy, and 23% for start and stop.

• Out-of-the-box defaults have been improved for SOAP, HTTP and TCP/IP ensuring
that TCPNoDelay and connection persistence options are set optimally.

• Reduced memory in the Integration Server runtime for some key customer
scenarios, by the implementation of shared libraries (as opposed to libraries in
v8/v9 which were static), ESQL static improvements, and changes to the internal
data structures for flows and subflows.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 89

Integration Bus V9: Performance highlights

• IBM Integration Bus V9 performance exceeds

that of WebSphere Message Broker 8001 by

more than 20% when using the DFDL parser for

data parsing and serialisation, and the

Graphical Data Mapper for message

transformation.

• The performance of processing messages over

HTTP and TCP/IP has also been improved, with

similar performance gains.

• A new WebUI statistics view enables runtime

performance to be analysed and monitored.

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 90

Summary

• What are the main performance costs
inside message flows?

… and what are the best practices
that will minimize these costs?

• What other performance
considerations are there?

• Understanding your integration node’s behavior

• Visit https://developer.ibm.com/integration/ for further
information

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 91

For more information,
including links to

additional material,

download a copy of
this presentation!

8/10/2015Introduction to IBM Integration Bus on z/OS 92

Questions?

Additional resources

• Performance Harness - https://ibm.biz/JMSPerfHarness

• IIB V9 Performance Reports - https://ibm.biz/IIBv9Perf

• IIB V9 Performance Samples - https://ibm.biz/IIBv9PerfSamples

• developerWorks - IBM Integration Bus Home Page

– http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

• Some developerWorks Articles

– Determining How Many Copies of a Message Flow Should Run Within WBI Message Broker V5

– How to Estimate Message Throughput For an IBM WebSphere MQ Integrator V2.1 Message

Flow

– Optimising DB2 UDB for use with WebSphere Business Integration Message Broker V5

– How to monitor system and WebSphere Business Integration Message Broker V5 resource use

– The Value of WebSphere Message Broker V6 on z/OS

– JMSTransport Nodes in WebSphere Message Broker V6

– Connecting the JMS Transport Nodes for WebSphere Message Broker v6 to Popular JMS

Providers

– HTTP transport nodes in WebSphere Message Broker V6

– Testing and troubleshooting message flows with WebSphere Message Broker Test Client

8/11/2015The Do’s and Don’ts of IBM Integration Bus Performance 93

