
Introduction to IBM

Integration Bus on z/OS

Session 17887
10th August 2015

Geza Geleji (gezagel@uk.ibm.com)
Staff Software Engineer, IBM Integration Bus Development

David Coles (dcoles@uk.ibm.com)
Technical Lead, IBM Integration Bus Level 3 Service

Important Disclaimer

• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL

PURPOSES ONLY.

• WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE

INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED.

• IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,

WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE.

• IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR

OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

• NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

– CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS AFFILIATES OR ITS OR THEIR

SUPPLIERS AND/OR LICENSORS); OR

– ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT GOVERNING THE

USE OF IBM SOFTWARE.

8/10/2015Introduction to IBM Integration Bus on z/OS 2

• Introduction

• Inside IBM Integration Bus

• Development

• Administration

• Developer Edition

• Industry Solutions

• Key Usage Scenarios

• Questions?

8/10/2015Introduction to IBM Integration Bus on z/OS 3

Agenda

• enterprise systems consist of many logical endpoints

– off-the-shelf applications, services, web apps, devices, appliances, custom built software

• endpoints expose a set of inputs and outputs, which comprise

– protocols: MQ, TCP/IP, HTTP, file system, FTP, SMTP, POP3, etc.

– message formats: binary (C / COBOL), XML, industry (SWIFT, EDI, HL7), user-defined

• integration is about connecting these endpoints together in meaningful ways

– Route, Transform, Enrich, Filter, Monitor, Distribute, Decompose, Correlate, Fire and Forget,

Request/Reply, Publish/Subscribe, Aggregation, Fan-in, Complex Event Processing, etc.

8/10/2015Introduction to IBM Integration Bus on z/OS 4

Introduction: what do we mean by integration?

Notes for slide 4

Three strands are involved in connecting applications together.

1. Applications need to talk with each other over a communications protocol. Typical

protocols in use today include TCP/IP, and higher level protocols such as FTP, SMTP and HTTP.

2. Over the communications protocol applications exchange data, typically in discrete structures known

as messages. The format of these messages can be defined from C structures or COBOL copybooks

(for example), or simply use a standard format such as XML.

3. In order to connect applications together so that their protocols and message formats interoperate,

mediation patterns need to be applied to one or both systems you’re trying to connect. These

mediation patterns can be relatively straightforward, e.g. routing messages from one place to

another, or the transformation of one message format into another… to relatively complex patterns

such as aggregating multiple outputs from an application into a single message for a target system.

8/10/2015Introduction to IBM Integration Bus on z/OS 5

Web

service

File Database

Integration solutions simplify integration
• avoid rewrites in response to new integration requirements

• simplify maintenance by reducing expensive coupling

• flexibility adding anonymity between producers and consumers of data

• add insight into applications and business value they bring

8/10/2015Introduction to IBM Integration Bus on z/OS 6

Integration solutions: reducing cost

[Customer, Order, Quantity, Price, Date]

Mr. Smith,

Graphics Card, 32,

100, 25/12/2011

Database

8/10/2015Introduction to IBM Integration Bus on z/OS 7

Example integration

<order>

<name>

<first>John</first>

<last>Smith</last>

</name>

<item>Graphics Card</item>

<quantity>32</quantity>

<price>200</price>

<date>12/25/2011</date>

</order>

[Customer, Order, Quantity, Price, Date]

Web

service

File

Analytics

Notes for slide 7

This chart describes an application integration scenario.

1. Application A sends some data to application B. At design time, the two applications

agreed on the format of the data as the ordered set {Customer, Order, Quantity, Price, Date}. Further,

the date is in UK format, the price in UK pounds sterling, and all fields are represented by character

strings in code page 500. Finally, the data is delimited using commas.

2. Some time later, Application C is introduced. It needs the same data, but because it is a packaged

application from a vendor or may be an application that already existed, it expects data to arrive in a

different format. The date is in US format, the price is in dollars and the data is in XML.

So, we now have an integration choice to make. Either application C must be enhanced to support the

data format between A and B, or application A must be enhanced to support application C's data format.

(This is an interesting use of the word “enhanced”, but you'll probably want to use it to justify the

expenditure!)

• By introducing a solution that can mediate between these applications, you can integrate them without

spending time and money modifying and retesting the existing applications. IBM Integration Bus is one

such solution.

• In addition, a solution like IBM Integration Bus will also allow you to intercept or record the data as it is

processed, allowing you to satisfy audit requirements or for further analysis for use cases like fraud

prevention.

8/10/2015Introduction to IBM Integration Bus on z/OS 8

8/10/2015Introduction to IBM Integration Bus on z/OS 9

Some examples of integration topologies

Bridges

• often used for single point-to-point

connections

• usually cheap and quick to configure

• more difficult to scale to larger numbers of

endpoints

Enterprise Service Bus (ESB)

• logical construct that combines

messaging and enrichment

• scales very well; can integrate small

and large numbers of endpoints, and

can be easily distributed

• often applied as a backbone for a

Service Oriented Architecture (SOA)

• solutions can usually also be applied

to hub and spoke style architectures

Gateways

• provides connectivity to third

parties or to a specific class of

endpoint

– e.g.: internet, cloud, security,

DMZ, B2B

• simplicity of configuration

• commonly on-ramp to

back-end ESB

cloud

B2B etc.

internet

IBM’s Strategic Integration Technology

• single engineered product for .NET, Java and fully heterogeneous integration
scenarios

• DataPower continues to evolve for integration gateway use cases

8/10/2015Introduction to IBM Integration Bus on z/OS 10

Introducing IBM Integration Bus

Edge

Integration
Gateway Integration Bus

ERP/EIS/

CRM
Files Devices Retail MQ, JMS,

MSMQ
Applications

Mainframe

CICS/IMS

Web 2.0 Web Services Microsoft Healthcare Databases Mobile

IBM Integration Bus is the new name for WebSphere Message Broker

 technology progression over 15 years, installed at 2500+ customers worldwide across all
industries

 fully supported worldwide by IBM global support network, standard 5 + 3 years support policy

 version to version migration is key design consideration

 global skills availability - SME’s available globally via IBM and partners

 close interaction with growing and loyal customer base: beta and lab advocacy programs

 also incorporates WebSphere ESB use-cases

8/10/2015Introduction to IBM Integration Bus on z/OS 11

IBM Integration Bus

• provides endpoints and the ability to connect to other endpoints

– off-the-shelf applications, services, web apps, devices, appliances, custom built software

• protocols and message formats

– MQ, TCP/IP, HTTP, file system, FTP, SMTP, POP3 etc.

– binary (C/COBOL), XML, industry (SWIFT, EDI, HL7), user-defined

• mediation patterns

– Route, Transform, Enrich, Filter, Monitor, Distribute, Decompose, Correlate, Fire and Forget,

Request/Reply, Publish/Subscribe, Aggregation, Fan-in, Complex Event Processing

Notes for slide 11

We can now revisit this earlier slide in the context of IBM Integration Bus.

• IBM Integration Bus enables “universal connectivity” by integrating protocols, message

formats and mediation patterns.

• IIB provides the ability to be an endpoint and to connect to other endpoints. It can do this over a

variety of protocols and using a variety of message formats, sometimes with more than one in use at a

time.

• IIB supports a wide range of mediation patterns, helping to support the use of the various message

formats and protocols in many ways.

• As we go through the rest of this presentation we will see how IBM Integration Bus supports all of

these.

8/10/2015Introduction to IBM Integration Bus on z/OS 12

Broad range of operating system and hardware platforms supported
• AIX, Windows, z/OS, HP-UX, Linux on xSeries, pSeries, zSeries,

Solaris (x86-64 & SPARC), Ubuntu

• optimized 64-bit support on all platforms; 32-bit option available
for Windows and x/Linux

• support for Windows 8 and Windows Server 2012;
.NET CLR V4.5 included on Windows

• Express, Standard and Advanced editions make IIB applicable
for all solutions and budgets

Virtual images for efficient utilization & simple provisioning
• extensive support for virtualized environments, e.g. VMWare, AIX Hypervisor… any!

• support for public and private clouds: SoftLayer, Pure, non-IBM, RYO etc.

• chef scripts for automated building of flexible IIB images (see GitHub)

• pre-built images (Hypervisor editions) available on xLinux and AIX

Includes access to full range of industry standard databases and ERP systems
• DB2, Oracle, Sybase, SQL Server, Informix, solidDB

• Open Driver Manager support enables new ODBC databases to be accessed

• JDBC Type 4 for popular databases

• SAP, Siebel, PeopleSoft, JDEdwards

Technology components and pre-requisites (@v9)
• Java 7 on all platforms

• MQ 7.1 prerequisite

8/10/2015Introduction to IBM Integration Bus on z/OS 13

Broad Platform and Environment support

Traditional
OS

IBM Pure

Private
Cloud

IBM Workload
Deployer

Public Cloud

8/10/2015Introduction to IBM Integration Bus on z/OS 14

What’s inside?

Notes for slide 14

We’ll start off by taking a look at the architectural components of IBM Integration

Bus. We’ll then see how these elements are used in more detail.

• The Integration Toolkit is the development environment. Based on the Eclipse platform, all the objects

required to perform application integration using IIB are developed, deployed and tested here. It

provides standard ways to build integration applications, perform version control and provide for the

development of custom plug-ins, such as resource editors to allow users to create project resources

easily. Examples are custom editors to aid flow creation, ESQL editing and syntax checking, message

set modelling, and a raft of other activities. It includes a unit test broker environment.

• The integration node (or broker) is the container that hosts integration servers (or execution groups).

Each server is an operating system process that contains a pool of threads responsible for running the

integration logic that is deployed to it. The integration servers directly interact with the endpoints that

are being integrated.

• There is also a web user interface that provides administration capability, including monitoring of

deployed objects and the ability to start, stop, delete, deploy, manage workloads etc. The APIs that the

web UI uses can be used by custom administration applications, either through Java, REST or

command line scripts.

8/10/2015Introduction to IBM Integration Bus on z/OS 15

input source

output target
(failure)

• Reusable

• Scalable

• Transactional

output target

output targetTransform

Message Flows

8/10/2015Introduction to IBM Integration Bus on z/OS 16

Notes for slide 16 (1 of 3)

Message flows provide the processing sequence required to connect applications together.

• A message flow contains the set of operations required to take a message from an

originating application and deliver copies of it, some possibly transformed, to any

number of connected applications for processing.

• As a message passes through a message flow, it is transformed and routed according to the nodes it

encounters, and the processing decisions made within those nodes. Later we'll see how the nodes can

modify the values within, or transform the structure of, a message to provide the data transformations

necessary to drive back-end server applications.

• For a given application scenario, the message flow describes all possible outcomes when processing

a message. For example, if the message has a high monetary value, a copy of it might have to be

routed to an audit application. Or if the message is not well-formed (maybe it's not encrypted in the

right format), it might be routed to a security application to raise an alert.

• Equally important is the visualization of the application integration within then organization. Very often,

for any particular application scenario, the application connectivity requirements (business!) are held

within the heads of domain experts. Being able to view the integration structure brings benefits in

scenario understanding, reuse potential, and application architecture/standards conformance.

• After a message has been processed by a message flow, the flow does not maintain any state. It is

possible to maintain such state in an external database, or within the message by using an extensible

header such as the MQRFH2 or message properties.

8/10/2015Introduction to IBM Integration Bus on z/OS 17

Notes for slide 16 (2 of 3)

Message flows are general purpose, reusable integration applications.

• If you were designing a general purpose integration application, linking client and server applications,

the logic would comprise separate routines, each performing a well-defined function. The input routine

would wait for a message, and after receiving it and checking its integrity (well formed etc.), it would

transfer to the next routines to continue processing.

• After performing their processing, (e.g. enriching / reformatting / routing), these routines would pass

control on through to the lowest functional levels, where output processing would occur. Here,

messages would be written to devices, subsequently read by connected applications. At any level of

processing an exception could be raised for subsequent processing.

• After the last output routine had completed, control would return back up through the levels to the input

routine. Once here, all the changes would be committed and the input routine would wait for more

input.

8/10/2015Introduction to IBM Integration Bus on z/OS 18

Notes for slide 16 (3 of 3)

Message flows are transactional.

• Message flows provide vital processing and data manipulation and are therefore fully

transactional. A message flow either completes all or none of its processing successfully.

• However, if required, individual nodes can elect to perform operations outside of the message flow

transaction. (e.g. audit)

Message flows are multithreaded.

• A given message passing through a series of nodes will execute on a single thread. To allow increased

message throughput, message flows can be defined with many additional threads assigned to them.

Peak workloads use additional threads, which are pooled during inactivity. We'll see more

implementation details later. This means application scaling can be an operational rather than design

time decision.

Message flow nesting and chaining allow construction of enhanced capabilities.

• Sophisticated flows can be rapidly constructed by linking individual flows together as well as nesting

flows within each other.

References:

1. Message Flow overview at http://www-

01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac00310_.htm

8/10/2015Introduction to IBM Integration Bus on z/OS 19

http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac00310_.htm

Message Flow example

8/10/2015Introduction to IBM Integration Bus on z/OS 20

Notes for slide 20

Here is an example of a message flow.

• The ‘Read from MQ Queue’ node tells IIB to take messages from an

MQ queue (the name of which is embedded as a property of the node,

or overridden by an administrator at deployment time).

• The message is passed onto the ‘Is Gold Customer?’ node, where a routing decision is made based

on a field described in the incoming message, again which is a property on the node itself. We’ll see

exactly how this condition is specified later on.

• If the described condition holds, the message is routed to the ‘Generate WS Request’ node where

the message is transformed – presumably into an SOAP message that is recognisable by the web

service which is invoked by the subsequent ‘Call WS’ node.

• If the described condition does not hold, the message is routed to the ‘Generate batch file’ node,

which formats the message for subsequent output to a file in the ‘Write file’ node.

This flow may not tell the complete integration story between the calling application and the target Web

Service/File applications. For example, there is no communication back to the calling application to say

that the message has been processed (or even received). Nor is there any logic in the message flow to

cope with failures – for example, if the web service is not available. This is logic that could be incorporated

into the flow, but not visualised here for clarity.

8/10/2015Introduction to IBM Integration Bus on z/OS 21

Nodes

8/10/2015Introduction to IBM Integration Bus on z/OS 22

• the building blocks of

message flows

• each node type performs a

different (input, output or

processing) action

• many different node types

– grouped into logical

categories in the editor

– nearly 100 nodes available

out-of-the-box

Notes for slide 22

Nodes can be grouped in several ways; for example, by where in the flow they are used:

• Input nodes do not have input terminals; processing of the message flow starts when a message is

retrieved from an input device, for example WebSphere MQ.

• Output nodes do not have output terminals (or at least, they are not wired to any other node). The final

stage of output processing is after a message is put using one or more output nodes, and processing

control returns to the input node which commits or backs out the transaction. Recalling that a message

flow is analogous to a functional decomposition, it makes sense that the top most level (i.e. the input

node) controls the overall transaction.

• Processing nodes are nodes that are neither input nor output nodes. They will be connected to nodes

both upstream (i.e. towards the input nodes) and downstream (i.e. towards the output nodes).

They can also be grouped by the function that they perform:

• Protocol-specific nodes give the broker the ability to interact with particular systems, such as MQ and

Web Services.

• Transformation nodes will take a message in one format on the input terminal and output a converted

message on the output terminal.

• Logical constructs give the message flow designer the vocabulary required to solve complex

integration scenarios, for example, the ability to aggregate messages from multiple places or the ability

to filter messages based on their content.

References:

• More on nodes can be found here:

http://www-

01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac04550_.htm

8/10/2015Introduction to IBM Integration Bus on z/OS 23

http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac04550_.htm

8/10/2015Introduction to IBM Integration Bus on z/OS 24

Message Flow Nodes

Notes for slide 24 (1 of 2)

Here's a list of the protocol specific nodes built in to IBM Integration Bus V9. For example:

• The WebSphere MQ nodes allows Integration Broker to interact with queues on MQ

Queue Managers. For example, MQInput is an input node that triggers a flow when a message arrives

on a queue; MQOutput puts a message to a queue.

• The WebSphere Adapters nodes provides native support in Integration Bus for inbound and outbound

communication with Enterprise Information Systems.

• Web Services nodes provide a rich environment for running as a Web Services requestor, provider

and intermediary. Support for WS-Security, WS-Addressing, import and export of WSDL and validation

against the WS-I Basic profile. The RegistryLookup and EndpointLookup nodes provide support for

WebSphere Registry and Repository (WSRR).

• The File nodes are very sophisticated and include support for the FTP and SFTP protocols, as well as

advanced processing scenarios such as record detection. These nodes are complemented by

additional nodes which provide support for managed file transfer systems (IBM’s MQ File Transfer

Edition and Sterling Connect:Direct).

• HTTP nodes complement the Web Services capability. Support is provided for HTTP 1.0, 1.1 and

HTTPS.

• JMS nodes work with any JMS 1.1 compliant provider.

• The EmailOutput node is a highly configurable node that allows e-mail messages to be sent over the

SMTP protocol. EmailInput allows e-mails to be received from POP3 or IMAP servers.

• TCP/IP nodes allow the Integration Bus to communicate with any client or server talking the ubiquitous

TCP/IP protocol.

• CORBA, IMS and CICS request nodes for integrating with CORBA, IMS and CICS applications

respectively.

8/10/2015Introduction to IBM Integration Bus on z/OS 25

Notes for slide 24 (2 of 2)

• Database nodes allows message flows to interact with many different data sources, including DB2,

Oracle and Sybase.

• Timer nodes provide support for triggering message flows and certain times or intervals.

• The Routing category allows messages to easily flow around a network, and also allow multiple

messages to be aggregated or propagated in the correct sequence.

The Transformation category provides Integration Bus with the capability to transform messages from one

format into another. Six ways of doing this are available out-of-the-box. More on these later.

Construction nodes:

• Nodes have error handling as part of their design. If an error is detected within a primitive node (e.g.

database error), the message is transferred to the failure output terminal. If the failure terminal is not

connected, an exception is generated and propagated back towards the input node. There is also a

specialized Throw node which allows a flow designer to generate an exception in a controlled way.

Nodes can have transaction scope inside or outside of the flow.

• A TryCatch node is used to process any such exceptions. Its ‘try’ terminal is used for normal

processing, but if an exception occurs along this path, the TryCatch node regains control and the

original message is propagated through the ‘catch’ terminal.

• If the message reaches the input node, it is subject to "back out" processing. In this case, it will be

propagated down its catch or failure terminal, returned to the input queue, put to a back out or dead

letter queue, or discarded, as appropriate.

8/10/2015Introduction to IBM Integration Bus on z/OS 26

Many other nodes and

features available

through product

extensions
• Tibco RV, VSAM, QSAM

Write your own nodes
• native node framework

available in C and Java

• OT4i connector framework

provides means to implement

full lifecycle, including endpoint

discovery

IBM and third-party extensions

8/10/2015Introduction to IBM Integration Bus on z/OS 27

V3.0.0.1
Aug 2014

V1.0.0.0
Jun 2014

V1.0.0.0
Dec 2013

Action
input

terminal

input
connector

output
connectors

node

input
message

tree output
terminals

error
terminal

output
message

trees

Node Terminology

8/10/2015Introduction to IBM Integration Bus on z/OS 28

Notes for slide 28 (1 of 2)

Message flow nodes provide the individual processing elements that make up a message flow.

We've seen that a message flow is the combination of operations required to achieve application

integration. We build a message flow from small units called nodes; these nodes represent the base

elements required to connect messaging applications together.

Looking at a message flow, you can see several objects identifiable with this processing.

• Nodes represent functional routines encapsulating integration logic

• Terminals represent the various outcomes possible from node processing

• Connectors join the various nodes through their terminals

A message processing node defines a single logical operation on a message.

A message processing node is a stand alone procedure that receives a message, performs a specific

action against it, and outputs zero or more messages as a result of the action it has taken.

The action represented by a message processing node encapsulates a useful and reusable piece of

integration logic. Nodes can be thought of as reusable components in an integration library.

8/10/2015Introduction to IBM Integration Bus on z/OS 29

Notes for slide 28 (2 of 2)

A node is joined to its neighbours in the data flow through connectors attached to its data

terminals.

• Every node has a fixed number of connection points known as "input" terminals and "output" terminals.

These allow it to be connected to its neighbours. Each node normally has one input terminal upon

which it receives messages, and multiple output terminals for different processing results within the

node. Different types of node have different numbers of terminals.

• A connector joins an output terminal of one node to an input terminal of the next node in the message

flow. You can leave an output terminal unconnected, or you can connect a single output terminal to

more than one target node.

• After a node has finished processing a message, the connectors defined from the node’s output

terminals determine which nodes process the message next. If a node has more than one output

terminal connected to a target node, it is the node (not you) that determines the order in which the

different execution paths are executed. If a single output terminal has more than one connector to a

target node, it is the broker (again, not you) which determines this execution order.

• A node does not always produce an output message for every output terminal: often it produces one

output for a specific terminal depending on the message received. E.g. a filter node will typically send

a message on either the true or false terminal, but not both.

• When the processing determined by one connector has been completed, the node reissues the

message to the next connector, until all possible paths are completed. Updates to a message are

never propagated to previously executed nodes, only to following nodes.

• The message flow can only start processing the next message when all paths through the message

flow (that is, all connected nodes from all output terminals, as appropriate) have been completed.

8/10/2015Introduction to IBM Integration Bus on z/OS 30

…draCscihparG,htimSderF

input message bit stream

…n/<htimS.rM>eman<>redro<

output message bit stream

8/10/2015Introduction to IBM Integration Bus on z/OS 31

Parsers

Parser converts

logical structure

to bit-stream
Model

Parser converts

bit-stream to

logical structure
Model

Notes for slide 31

On the previous slide we saw that objects called “message trees” are sent to a node’s input

terminals, and either the same or different message tree is propagated from a node’s output

terminals.

• The message tree is a logical definition of a message processed by the broker. It’s described as a tree

because messages are typically hierarchical in structure; a good example of this is XML. Other

message formats too, are also often derived from complex structures which themselves can be

derived from complex structures, and so on, which gives them a tree-like shape with leaf nodes

representing simple data types.

• In IBM Integration Bus, parsers have the job of converting between physical messages (bit-streams)

and logical trees. When a message arrives at the broker through an input node, the message bit-

stream is converted into a tree structure by the parser, which typically uses a model to drive the form

of the logical tree. Built-in parsers handle well known headers within the message (MQMD, MQRFH2

etc.). Finally the user data is parsed into the tree using the domain parser as identified in the MQRFH2

(or input node). Message Broker’s built-in parsers support multiple domains (MRM, SOAP, XMLNSC,

Data Object, XMLNS, JMSMap, JMSStream, MIME, IDOC, BLOB and XML) to enable parsing of user

and industry standard formats.

• As the logical tree is passed from node to node, the form of the logical tree may change depending on

what the node is doing.

• When the message arrives at an output node, the parser converts the logical tree back into a physical

bit-stream where it can be output to the external resource, where it can be read by the target

(receiving) application. However, note that an output node need not indicate the end of a flow; it is

possible to output to multiple destinations within a single invocation of a message flow. In this case,

the logical tree can be passed on to other nodes and manipulated further, even after it has been

converted back into a physical bit-stream for this particular output node.

8/10/2015Introduction to IBM Integration Bus on z/OS 32

<order>

<name>

<first>John</first>

<last>Smith</last>

</name>

<item>Graphics Card</item>

<quantity>32</quantity>

<price>200</price>

<date>07/11/09</date>

</order>

John,Smith,Graphics Card,

32,200,07/11/09

John Smith............

Graphics Card.........

3220020071109.........

Order

Name Item Qty Price Date

First Last
String String

String Integer Integer Date

Physical Logical

Standards
based model
definitions:

• XML

• DFDL

8/10/2015Introduction to IBM Integration Bus on z/OS 33

Message Modeling

Notes for slide 33 (1 of 2)

Here is an example of how a physical data structure could be mapped to a logical tree

• Notice how multiple physical formats can correspond to the same logical tree. The first

physical format is an XML structure that shows our Order message. The second is a comma

separated value (CSV) structure of the same. The third comprises a set of fixed length fields in a

custom wire format.

• By manipulating the logical tree inside the Integration Broker rather than the physical bit-stream, the

nodes can be completely unaware of the physical format of the data being manipulated. It also makes

it easy to introduce new message formats into the broker.

Applications have and require diverse data formats

• We all know that XML is the data format that's going to solve every data processing problem that

exists! We also know that "XML++", the follow-on compatible meta format that someone in a research

laboratory is working on will solve all the problems we don't even know we have today! The fact is that,

without wanting to appear cynical, every generation goes through this process. Surely it was the same

when COBOL superseded assembler.

• The fact is, that for historic, technical, whimsical, political, geographical, industrial and a whole host of

other reasons you probably never even thought of, a hugely diverse range of data formats exist and

are used successfully by a myriad of applications every second of every day. It's something that we

have to live with and embrace because it isn't going to get any better any time soon.

• The advantage IBM Integration Bus brings by modelling all these messages is that we can rise above

the message format detail; so that whether it's a tag delimited SWIFT or EDIFACT message, a custom

record format closely mapping a C or COBOL data structure, or good old XML, we can talk about

messages in a consistent, format independent way. Integration Bus can manage this diversity.

8/10/2015Introduction to IBM Integration Bus on z/OS 34

Notes for slide 33 (2 of 2)

The Logical Message Model

• Reconsider messages and their structure. When we architect messages (no matter what the

underlying transport technology), we concern ourselves firstly with the logical structure. For example, a

funds transfer message might contain an amount in a particular currency, a transaction date and the

relevant account details of the parties involved. These are the important business elements of the

message; when discussing the message, we refer to these elements.

• However, when we come to realize the message, we have to choose a specific data format. This may

be driven by many factors, but we have to choose one. You may be aware of the advantages of

various message formats or have your own personal favourite, or may fancy inventing a new one, but

the fact remains that you have to choose a physical wire format. So for our transfer message, we

might decide to use XML, with its elements, attributes and PCDATA (and a DTD, if we're being really

exact), or we might map more closely to a C data structure modelling our message with ints, shorts,

chars etc. and worry about their various representations(!)

• The Logical message model provided by Integration Bus allows one to describe a message in terms of

a tree of elements, each of which has a (possibly user defined) type. At the message tree leaf nodes,

the elements have simple types such as strings, integers, decimals, booleans etc. Moreover, elements

can have various constraints and qualifiers applied to them that more fully describe them; e.g.

elements might be optional, appear in a certain order or only contain certain values.

8/10/2015Introduction to IBM Integration Bus on z/OS 35

Message Model

C Header

XML

Schema

COBOL

Copybook
WSDL

DTD

File Import

Business

Object

Discovery

(e.g. SAP,

Siebel,

PeopleSoft)

Pre-built

SOAP, MIME,

CSV, IDOC,

SWIFT,

EDIFACT, X12,

FIX, HL7,

etc.

Define

your own

using the

Eclipse-based

Tooling

Parsers

IBM Integration Bus

8/10/2015Introduction to IBM Integration Bus on z/OS 36

Creating message models

Notes for slide 36

This slide describes some of the options available for creating message models.

1. If you have messages described by COBOL copybooks, C header files XML

DTDs/Schemas or WSDL, use the IBM Integration Bus supplied importers

to generate your message model. A wide range of importers exist, so that you

can kick start your message modelling.

2. If you wish to use the SAP, Siebel or PeopleSoft nodes inside IBM Integration Bus, you can construct

message models directly from the Business Objects on these systems.

3. You can use pre-built models such as those for SWIFT messages.

4. Finally, you can use graphical modelling available in the Message Broker Toolkit to model your

messages. You've seen application connections and processing constructed using message flows

and nodes; the Message Broker Toolkit provides a similarly visual approach to message modelling.

8/10/2015Introduction to IBM Integration Bus on z/OS 37

8/10/2015Introduction to IBM Integration Bus on z/OS 38

Powerful Message Transformation Options

• convert XML to
anything

• uses standard
XSL Style sheets

• describe powerful
transformations quickly

• uses SQL-based
language (ESQL)

• embed Java
programs

• ability to use
XPath for tree
access

• use any of the 40+ .NET
languages (e.g. C#,
VB.NET)

• access COM objects

• Windows only

• graphical, easy to use

• drag and drop fields,
apply functions

Notes for slide 38 (1 of 2)

There are several options available to you out-of-the-box for transforming

between message formats:

1. Use Graphical Mapping to visually represent messages and transform them. The Integration broker

has a mapping node to allows users to visualize and transform messages. The mapping node

presents input and output message views; i.e. visualisation of message definitions. Users can “map”

elements from the input message to the output message using “drag and drop” operations. More

complex operations are possible, such as field concatenation. Graphical mapping is most effective

when you have relatively simple transformations to perform and you don’t want to use a programming

language (ESQL or Java).

2. XSLT (eXtensible Stylesheet Language Transformations) is a language for describing message

transformations. There is a node in IBM Integration Bus that allows you to convert XML messages

using style sheets developed in this language.

3. The Compute node uses ESQL (Extended Structured Query Language). This is a language derived

from SQL3, and is particularly suited to manipulating both database and message data. You do this

with a single syntax (words) which has a common semantic (meaning). ESQL addresses message

fields using a natural syntax. For example, the fourth traveller in a travel request message could be:

InputRoot.Body.TravelRequestMessage.TravellerDetails[4].LastName

ESQL has a rich set of basic data types and operators, as well as the kind of statements and functions

you're used to from procedural programming languages, to allow you to perform powerful

transformations.

8/10/2015Introduction to IBM Integration Bus on z/OS 39

Notes for slide 38 (2 of 2)

Continuing the options available to you for transforming between message formats:

1. You can also use the power of Java to route and transform your messages. The

JavaCompute node is fully integrated into the Eclipse Development Environment to providing usability

aids such as content assist and incremental compilation. You can refer to elements using an

expressive XPATH syntax, so that message navigation and element creation and modification are

vastly simplified, and comparable in simplicity to ESQL field references. JDBC type 4 support allows

you to perform database and message tree operations in the Java Compute node. On z/OS Java

workload is eligible for offload onto the zSeries Application Assist Processors zAAP.

2. .NET is available as an option on Windows platforms, and allows you to transform data and invoke

general purpose integration logic on any of the .NET supported platforms. Templates for Visual Studio

and an integrated Visual Studio debugger make this a natural choice for Windows programmers.

– for example, you can use this node to integrate your Excel spreadsheets!

3. You can mix and match your transformation styles, or use just one throughout your

enterprise. It will probably be your skill set which determines whether you chose to use

Graphical Mapping, Java, XSLT or ESQL to perform your message routing and

transformation.

8/10/2015Introduction to IBM Integration Bus on z/OS 40

public class jcn extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly assembly) throws MbException {

...

String lastName =

(String)assembly.getMessage().evaluateXPath(“/Body/Order/Name/Last”);

...

}

}

IF Body.Order.Date < ‘2008/01/01’ THEN

INSERT INTO Database.OldOrders (LastName,Item,Quantity)

VALUES (Body.Order.Name.Last,

Body.Order.Item,

Body.Order.Quantity);

ENDIF;

8/10/2015Introduction to IBM Integration Bus on z/OS 41

Easily Address Message Elements

Notes for slide 41

• Each node’s configuration (which includes some Java logic in the case of the

Java Compute node) dictates what you want the node to do, and this may include

manipulation of one or more elements in the message tree.

• Here are some examples of node configurations that address elements in the logical tree.

• In most cases, elements can be addressed using either XPath (as shown in the JavaCompute and

Route) or ESQL (as shown in the DataInsert node).

8/10/2015Introduction to IBM Integration Bus on z/OS 42

• Eclipse based

tooling for

developing

integrations

• easy “getting

started”

accelerators

8/10/2015Introduction to IBM Integration Bus on z/OS 43

Development: the Integration Toolkit

Use the DCW to

easily create:

• Queue Manager

• Integration Node

• Integration Server

8/10/2015Introduction to IBM Integration Bus on z/OS 44

Default Configuration Wizard

8/10/2015Introduction to IBM Integration Bus on z/OS 45

Quick Starts

• You can separate your applications
during development and runtime

• Application

– means of encapsulating resources to
solve a specific connectivity problem

– application can reference one or more
libraries

• Library

– a logical grouping of related routines
and/or data

– libraries help with reuse and ease of
resource management

– library can reference one or more
libraries

8/10/2015Introduction to IBM Integration Bus on z/OS 46

Logically separate your applications

Notes for slide 46

Features of Applications and Libraries

• Applications promote encapsulation and isolation

– typically contain “main” message flows and dependent resources

– ESQL, Java, maps, message models, subflows, adapter files, etc.

– dependent resources could live in referenced libraries

– multiple applications can be packaged into a single BAR

– multiple applications can be deployed to an execution group

– visibility of resource restricted to containing application

– referenced libraries are deployed inside application container (by copy)

• Libraries facilitate re-use and simplify resource management

– typically contain reusable helper routines and resources

– subflows, ESQL, Java, maps, message models, adapter files, etc.

– use multiple libraries to group related resources (e.g. by type or function)

– multiple applications can reference the same library

– each application gets its own copy of the library during package/deploy

– libraries are packaged as part of referencing application in the BAR

– a library can reference other libraries

8/10/2015Introduction to IBM Integration Bus on z/OS 47

8/10/2015Introduction to IBM Integration Bus on z/OS 48

Samples

• There are many

product samples that

show how to use IIB

• These are easily

imported into the

development toolkit

workspace, and

deployed to the

integration server

runtime

8/10/2015Introduction to IBM Integration Bus on z/OS 49

Import and Deploy a product sample

• This sample has imported several
integration data flows to
demonstrate a coordinated
request/reply scenario

• The message flows are grouped
in applications and libraries as
can be seen to the left

• Below is one of the message
flows for this sample. It is a
complete transaction

8/10/2015Introduction to IBM Integration Bus on z/OS 50

Sample artefacts

• properties allow

the pattern

instance to be

customised

• user defined

patterns can be

authored and

distributed to

other

developers to

enforce best

practices

8/10/2015Introduction to IBM Integration Bus on z/OS 51

Generate Pattern Instances

• generate message flows based

on patterns which define best

practices

• message flows

are generated in

the pattern

instance

• they are ready to

be deployed to

the integration

server runtime

• any tasks

required to run

the message

flows are listed,

such as creating

MQ Queues

8/10/2015Introduction to IBM Integration Bus on z/OS 52

Pattern Artefacts

• Within IIB, easily create new services that have a well

defined interface and structure

– A whole new service from scratch including the associated

WSDL and message flow

– A service including the message flows, from an existing

WSDL file

– A service, including the message flows, from an existing IBM

BPM service

– A service based on an existing database

– A service based on an existing MQ queue manager and

queue definition

8/10/2015Introduction to IBM Integration Bus on z/OS 53

Services

use the wizard to

create a brand new

service

8/10/2015Introduction to IBM Integration Bus on z/OS 54

Creating a new service

• all artefacts are created for the
new service, including the WSDL
and a SOAP based flow

• a subflow is included for the
operation and error handlers
which the developer can then
update

8/10/2015Introduction to IBM Integration Bus on z/OS 55

Service Artefacts

8/10/2015Introduction to IBM Integration Bus on z/OS 56

Administration: WebUI

• control statistics at all
levels

• easily view and compare
flows, helping to
understand which are
processing the most
messages or have the
highest elapsed time

• easily view and compare
nodes, helping to
understand which have
the highest CPU or
elapsed times.

• view all statistics metrics
available for each flow

View runtime statistics using the WebUI

fully functional administration

tool based on MQ Explorer

8/10/2015Introduction to IBM Integration Bus on z/OS 58

Integration Explorer

view
resource
statistics for
resource
managers in
IIB such as
JVM,
ODBC,
JDBC, etc.

8/10/2015Introduction to IBM Integration Bus on z/OS 59

Integration Explorer & Resource Statistics

IIB can also be

administered using

8/10/2015Introduction to IBM Integration Bus on z/OS 60

Other forms of administration

• command

line

• REST

interface

• Java API

8/10/2015Introduction to IBM Integration Bus on z/OS 61

Some other useful features

IIB Node 1

Cache.Value = 42;

Cache.Value = 42; MyVar = Cache.Value;

IIB Node 2

v10v9v8v7

• free edition of IIB with all nodes available

and no time limitations

• message rate limited to 1 TPS per integration flow

• assistance through user community (e.g. mqseries.net)

– no formal IBM support

8/10/2015Introduction to IBM Integration Bus on z/OS 62

Developer Edition: download today!

• simple to download, install and use

– single installation package contains

ALL required software:

• MQ 7.5, Integration Bus

(Runtime, Toolkit, Explorer)

– available on Windows

and Linux platforms

Industry Specific Packs providing relevant

support for applications in certain industries

• build on IBM Integration Bus functionality

• contain message models / patterns / nodes

• web-based operational monitoring

8/10/2015Introduction to IBM Integration Bus on z/OS 63

Industry Specific Solutions

V3.0.0.1
Aug 2014

V1.0.0.0
Jun 2014

V1.0.0.0
Dec 2013

Healthcare

• HL7 Message Model

• DICOM / ATNA / Medical

Device Integration Nodes

Retail

• WebSphere Commerce and

Sterling Order Management

integration

• TLog / POSLog / ARTS

transformation and storage

Manufacturing

• OPC / PI / MQTT

nodes

What are the top issues that people want to solve with integration solutions?

• Extend the Reach of Existing Applications

• Distribute Database information to where it’s needed

• Create a File Hub to connect batch and online applications

• Get the most from Packaged Applications

• Take advantage of .NET applications

• Provide a Policy Enforcement Point for Secure Connectivity

• Extend Enterprise to Devices and Mobile

• Monitor your business activity and act intelligently

• Detect and Act Upon Business Events and Rules

• Provide Connectivity and Integration for Business Processes

• Make an inventory and enable Policy based management

New usage patterns are continually emerging as business needs evolve!

8/10/2015Introduction to IBM Integration Bus on z/OS 64

Top Integration Usage Patterns

Common
usage
patterns

Emerging
usage
patterns

IBM’s Strategic Integration Technology

Universal Connectivity FROM anywhere, TO anywhere

• simplify application connectivity for a flexible &
dynamic infrastructure

Protocols, Transports, Data Formats & Processing

• Supports a wide range of built-in transports, protocols & systems
– MQ, JMS 1.1, HTTP(S), SOAP, REST, File (incl. FTP & FTE), Database, TCP/IP, MQTT…

– CICS, IMS, SAP, SIEBEL, PeopleSoft, JDEdwards, SCA, CORBA, email…

• Supports a broad range of data formats
– Binary (C/COBOL), XML, CSV, JSON, Industry (SWIFT, EDI, HL7…), IDOCs, User Defined

• Message Processors
– Route, Filter, Transform, Enrich, Monitor, Publish, Decompose, Sequence, Correlate, Detect…

Simple Programming with Patterns & Graphical Data Flows

• patterns for top-down, parameterized connectivity of common use cases

• graphical data flows represent application & service connectivity
– custom logic via graphical mapping, PHP, Java, ESQL, XSL & .NET

• Services, Applications and Libraries for structure and reuse

Extensive Management, Performance & Scalability

• extensive administration & systems management facilities for developed
solutions

• wide range of operating system and hardware platforms supported, including
virtual & cloud options

• high performance transactional processing, additional vertical & horizontal
scalability

• deployment options include Trial, Express, Standard and Advanced

Industry Packs for Industry Specific Content

8/10/2015Introduction to IBM Integration Bus on z/OS 65

IBM Integration Bus

Integration Bus

8/10/2015Introduction to IBM Integration Bus on z/OS 66

Questions?

• IBM and the IBM logo are trademarks of International Business Machines
Corporation, registered in many jurisdictions. Other marks may be trademarks or
registered trademarks of their respective owners.

• Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

• Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

• Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

• UNIX is a registered trademark of The Open Group in the United States and other
countries.

• Netezza® is a trademark or registered trademark of IBM International Group B.V.,
an IBM Company.

• Worklight® is a trademark or registered trademark of Worklight, an IBM Company.

• Other company, product and service names may be trademarks, registered marks
or service marks of their respective owners.

• References in this publication to IBM products and services do not imply that IBM
intends to make them available in all countries in which IBM operates.

8/10/2015Introduction to IBM Integration Bus on z/OS 67

Trademark Statement

