
Introduction to MQ:

Can MQ Really Make My Life Easier?

Chris Leonard

IBM UK

ChrisL@uk.ibm.com

Session 17885

Monday 10th August 2015

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

2

Why use messaging…?

• Messaging simplifies the challenges of connecting systems:

– Extended Reach – Connecting anywhere to anywhere

– Reliability – Assured delivery of data, securely and performant

– Flexibility – Ease of application change

– Scalability – Incremental growth of applications and capacity

From the simplest pairs of

applications…

...to the most complex business processes.

3

Extended Reach – Universal Connectivity

We want to connect applications running on

different hardware and operating systems,

and written in different programming

languages.

4

Reliability

5

• As systems becomes

more tightly coupled, their

reliance on each other

increases.

– The cost of a failure of a

process increases

• Maximum number of

connections goes up with

the square of the number

of systems

Reliability

6

• The risk of failure can be

reduced by:

– Removing dependencies

– Introducing redundancy

– Assuring data delivery

– Providing robust security

Flexibility

• A process was originally designed for one purpose...

• … It then needed to change to meet new requirements

• Being able to respond rapidly to internal and external

challenges by rapidly modifying existing services gives a

competitive advantage.

7

Process Scalability

• Many applications and processes start out on a single

system.

• The business grows, and the capacity of the system can no

longer cope with the workload demand.

• A scalable architecture enables the

capacity to be incrementally grown to

meet increasing workloads

8

Decoupling Systems

These issues can be overcome by choosing an alternative
communication architecture:

The interdependence between systems can be decoupled
through the use of a common messaging system, providing a
scalable environment which is more tolerant of individual
system outage.

9

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

10

• Rapid development

– Standards

– Reduce Complexity

– Ease of use

• Reliability
– Assured message delivery

– Performance

• Ubiquitous
– Breadth of support for platforms,

programming languages and API

• Loose application coupling
– Location transparency

– Time independence

– Data transparency (with IBM
Integration Bus)

– Platform independence

• Scalability
– Incremental growth

Fundamentals of MQ

11

The Vision – The Universal Messaging Backbone

The vision for MQ is that it provides a range of capabilities, making it

suitable to be a transport backbone across all environments in an IT

Infrastructure.

MQ does not provide all these capabilities today. It evolves with new technologies

as they develop and become widely adopted.

12

MQ is not a substitute for:

• Well written applications

• Robust network

• Good operational procedures

• Well managed systems

13

What is Asynchronous Messaging?

• Paradigm 1: Point to Point

• Paradigm 2: Publish Subscribe

14

Messaging Paradigm 1: Point to Point Messaging

15

• FIFO – First In, First Out

• One object in, one object out

Asynchronous Messaging – Point to Point

• Messages can be created from many sources:

– Data, Messages, Events, Files, Web service requests /

responses

16

MQ – Point to Point Messaging

• The physical world is frequently organised in queues. Consider for a
moment just how many queues you have been involved in today alone.
We queue at the Post Office, Supermarket checkout, at traffic lights.
We write shopping lists and to do lists. We use the postal service, voice
mail, and of course, the ever present e-mail.

• The truth is that queuing is a natural model that allows us to function
efficiently. Perhaps not surprisingly therefore it turns out that it is also a
very useful model in which to organise our applications.

• Instead of application A talking synchronously to Application B have
Application A 'send a message' to a queue which Application B will
read.

• Messages can be of any form, the content is not restricted, so they
could contain:

• - General data
- Data packaged as messages
- It might be notification events
- Files being moved in a Managed File Transfer application
- SOAP messages for invoking services

17

• Parallel access by applications

– Managed by the queue manager

• A queue holds messages
– Various Queue Types

• Local, Alias, Remote,
Model

• Queue creation
– Predefined

– Dynamically defined

• Message Access
– FIFO

– Priority

– Direct

– Selected by Property (V7+)

– Destructive & non-destructive
access

– Transacted

What is a Queue?

18

What is a Queue?

• A Queue is a named object (up to 48 characters) which is defined with a queue type.

• Local Only queue type which can actually hold messages

• Alias A queue name which 'points' to another queue

• Remote A queue which 'points' to a queue on a remote machine

• Model A template definition which when opened will create a local queue with a new
name

• Applications open queues, by name, and can either put or get messages to/from the queue.
Messages can be got from the queue either in FIFO order, by priority or directly using a
message identifier or correlation identifier.

• As many applications as required can open a queue either for putting or for getting making it
easy to have single server responding to many clients or even n servers responding to many
clients.

• A key feature of MQ is its transaction support. Messages can be both put and got from queues
in a transaction. The transaction can be just local, involving just messaging operations or global
involving other resource managers such as a database. A classic example, is an application
which gets a message, updates a database and sends a reply message all within a single
transaction. If there is a failure before the transaction commits, for example a machine crash,
both the database update and the received message will be rolled back. On machine restart
the request message will still be on the queue allowing the application to reprocess the
request.

19

Example application architectures (1)

20

Example application architectures (1)

• These examples show some of the ways in which MQ queues can be
used and, thereby, shows some of the styles of applications that may
benefit from the use of a message/queuing model.

• 'Send and Forget'

• This style is one where there is no (direct) response required to a
message. The message/queuing layer will guarantee the arrival of the
data without the application having to solicit a response from the
receiver.

• Request/Response

• This style is typical of many existing synchronous applications where
some response is required to the data sent. This style of operation
works just as well in an asynchronous environment as in a
synchronous one. One difference is that - in this case - the sender does
not have to wait for a response immediately. It could pick up the
response at some later time in its processing. Although this is also
possible with the synchronous style, it is less common.

21

Example application architectures (2)

22

Example application architectures (2)

• Chain

Data does not have to be returned to the originating application. It
may be appropriate to pass a response to some other application
for processing, as illustrated in a chain of applications.

• Workflow

There may be multiple applications involved in the processing
before a response comes back to the originating application.These
various modes of interaction may be arbitrarily combined to provide
as complex/sophisticated topology as is necessary to support a
particular application. The loosely coupled nature of the message
queuing model makes it ideal for this style of interaction.
Furthermore, it makes it straightforward to develop applications in
an iterative style.

23

Messaging Paradigm 2: Publish / Subscribe

• One message is published, several messages are

produced, one for each subscriber.

– One to many relationship

24

MQ – Messaging Topology 2

• Our daily life is full of examples of requests for information on a given
topic and providing information about a given topic.

• Let us consider an example:-

• You have installed a piece of software on your computer and you would
like to know when there are updates available for it. The software
provider has a service to inform you of updates when they occur.

• You ask the software provider to let you know when there are updates
available for the software (a topic) in which you are interested (a
subscription)

• The software provider informs you when updates become available (a
publication)

• The software provider can use a message to provide this information

• You can provide a destination (queue) to which the information is
published

25

Asynchronous Messaging – Publish/Subscribe

26

App 1

App 2

App 3

Service

Provider Topic

What is a Topic?

• A Topic is defined by a “Topic String”. This is a case sensitive
character string, where the following characters have a special
meaning:

– '/' The topic level separator – provides structure to topic trees

– '#' The wildcard character

– '+' The single-level wildcard character

• Example:

 Price/Fruit/Apple

• The Topic can be defined in a number of ways:

– Predefined by the MQSC command

– Predefined by the PCF interface (as used by the MQ Explorer)

– Subscribing or Publishing to the Topic object

27

By arranging Topic strings in a tree hierarchy,
a 'Topic Tree' is created. Every node in the tree
is a Topic.

Topic Trees provide two benefits:

• Wildcard characters can be used to
subscribe to multiple Topics.

• Security policies can be established

For example, to subscribe to both Topics:

 Price/Fruit/Apple

 Price/Fruit/Orange

The subscription string is:

 Price/Fruit/+

Note this is different to the subscription string:

 Price/Fruit/#

Topic Trees

28

Green Red

What is a Topic?

• A topic is a character string that describes the nature of the data that is published in a
publish/subscribe system. Topics are key to the successful delivery of messages in a
publish/subscribe system. Instead of including a specific destination address in each message,
a publisher assigns a topic to the message. The queue manager matches the topic with a list of
subscribers who have subscribed to that topic, and delivers the message to each of those
subscribers.

• Note that a publisher can control which subscribers can receive a publication by choosing
carefully the topic that is specified in the message.

• Each topic that you define is an element, or node, in the topic tree. The topic tree can either be
empty to start with or contain topics that have been defined by a system administrator using
MQSC or PCF commands. You can define a new topic either by using these create topic
commands or by specifying the topic for the first time in a publication or subscription.

• Although you can use any character string to define a topic's topic string, choose a topic string
that fits into a hierarchical tree structure. Thoughtful design of topic stings and topic trees can
help you with the following operations:

• Subscribing to multiple topics.

• Establishing security policies.

• Although you can construct a topic tree as a flat, linear structure, it is better to build a topic tree
in a hierarchical structure with one or more root topics.

• Topics can be defined by a system administrator using MQSC or PCF commands. (Topic
objects)

• However, the topic of a message does not have to be defined before a publisher can use it; a
topic is created when it is specified in a publication or subscription for the first time.

29

Durable Publish/Subscribe in action

Durable subscriptions results in published messages being

retained when the subscriber is not connected.

30

Subscriber 1

Service

Provider Topic

Subscriber 2

What is Publish/Subscribe?

• In this environment, the receiving applications notify an
intermediary of their interest in particular sets of information. The
receiving (or subscribing) application provides a subject and a
queue where messages matching this subject may be delivered.

• The sending (publishing) applications generate information,
together with a subject name, and sends the information to the
pub/sub engine. The pub/sub engine contains a matching
service which determines the subscribing applications interested
in receiving this information.

• Note that the publish/subscribe model provides for the situation
where a message may be published by an application using a
subject which has no subscribers. In this instance the message
data is discarded.

• There are many publish/subscribe products available in the
marketplace today. MQ publish/subscribe differentiates itself by
providing support for the publish/subscribe model and combining
it with the exactly once delivery model of MQ message/queuing.

31

The MQ Queue Manager

The Queue Manager is the process which controls the

storage and flow of messages

32

Queue Manager

Topic

Topic

Topic

Message

Message

Message

What is a message?

• Message = Header + User Properties + User Data

33

• Message Types

• Persistent ... recoverable

• Non Persistent

• Up to 100MB message length

What is a Message?

• A message in MQ is merely a sequence of bytes in a buffer of a given length. The
current products support up to 100MB in a single message although the vast
majority of messages are in the order of a few thousand bytes.

• Messages have various attributes associated with them such as their identifier, their
priority and their format. Each application is free to define its own format for
messages although there are a number of predefined formats. One common format
for messages is XML for example.

• A key attribute of a message is its persistence. A message is either persistent or
non-persistent. This attribute tells the Queue Manager how important the message
is.

• Persistent: persistent messages are written to disk and are logged. The Queue
Manager will ensure that the messages are recovered in the case of a system crash
or network failure. These messages are delivered once and only once to the
receiving applications.

• Non-persistent: The messages are identified by the application as non-critical. The
Queue Manager will make every effort to deliver these messages but since they are
not necessarily written to disk they will be lost in the case of a system crash or
network failure. Clearly with no disk IO involved these messages are much faster
than persistent ones.

34

The Queue Manager

35

Kernel

Message

Moving

MQ API

Put Get

Local
queuing

PubSub
Engine

Storage

Storage

What is a Queue Manager?

• A queue manager may - generally - be thought of as 3 components:

• The Kernel is the part of the queue manager that understands how to implement
the MQ APIs. Given that the APIs are common across the queue manager family, it
stands to reason that the Kernel is mostly common code across the set of queue
managers. (The primary exception to this is the z/OS queue manager where the
same functions are implemented differently to support the same APIs).

• The Local Queuing component is the part of the queue manager responsible for
interacting with the local operating system. It manages memory, the file system and
any operating system primitives such as timers, signals, etc. This component
insulates the Kernel from any considerations of how the underlying operating
system provides services and so enables the Kernel to be operating system
independent.

• The Message Moving component is responsible for interacting with other queue
managers and with MQI clients. For environments where all of the message
queuing activity is local to a system then this component is unused - though this is a
very rare case.

• The message moving functions are provided by specialised MQ applications, called
Message Channel Agents

36

37

Program A Program B

QM 1

Messaging

 and

Queuing

Program C

QM 2

Messaging

 and

Queuing

MQI MQI

Put Q1 Get Q1

Q1
Q2

Put Q2
Get Q2

QM 2 XmitQ

TCP/IP, APPC etc

Channel

Local and Cross-System Communication with MQ

Cross-System Communication with MQ

• In the diagram we see Program A sending messages to two other
programs.

• To Program B: in this case the actual physical queue that both
applications access are the same. This therefore does not require any
network communication.

• To Program C: in this case Program A wants to put a message to queue
Q2 on Queue Manager QM2. It can't do this directly without requiring
that the network and QM2 Queue Managers are available so instead
the message is put to a 'holding' queue called a transmission queue.
Asynchronously, another part of MQ called a channel will read this
transmission queue and deliver any messages to the queues on QM2.

• Any number of applications running on QM1 can send messages to
QM2 via the same transmission queue and channel.

38

Communicating with the Queue Manager

39

Application

Server

Model

MQ Server

Library

MQ

Server

Inter process

Communications

Local or bindings

mode

MQ

Server
Network

Communications

Client

Model

Application

MQ Client

Library

Application code is independent of the client to queue manager

connection mode

Client mode

What is an MQ Client?

• MQ clients provide a low cost, low resource mechanism to gain access to MQ
facilities. The client provides a remote API facility, allowing an MQ application to run
on a machine that does not run a queue manager.

• Each MQ API command is passed to a Server queue manager where a proxy
executes the required API command. The connection between client and server is
entirely synchronous providing an 'rpc-like' mechanism - though NO regular (well-
known) rpc mechanism is used !

• The client machine does not own any MQ resources - all resources are held by the
Server machine. Thus, if local queuing capability is required then a server (rather
than a client) must be used.

• The MQ Client support is part of the MQ product that can be installed and used
separately from the MQ server. It provides a set of libraries which can be linked with
your applications to provide access to MQ queues without requiring the application
to run on the same machine as the queues.

• Generally speaking an application is linked either with the client libraries or with the
server libraries (often called ‘local’ or ‘bindings’ mode). In bindings mode the
application communicates with the Queue Manager via an inter-process
communications link of some kind. In client mode the application communicates via
a network connection. However, as can be seen from the diagram, the two models
are logically equivalent. For this reason the functionality provided at the client is
almost identical to that provided by local applications.

40

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

41

Programming API

• Broad support for:
– Programming languages, messaging interfaces, application

environments and OS platforms.

42

 HP-UX Windows zLinux Solaris AIX IBM I

.NET (WCF)

Microsoft

MQI C, RPG, COBOL

IBM de facto

JMS (Java)

Industry standard

XMS (C/C++,C#)

IBM standard

 zOS Linux

MQ

MQI C++, Java, C#

OO MQI

Programming API

• One of MQ’s key strengths is its breadth. It can run on

virtually any commercially available platform and is

accessible through a wide number of programming

languages and API. The MQ Interface (MQI) is the de facto

API for MQ, providing simple common access across all

platforms. It has both a procedural implementation and an

object oriented implementation.

• Standards based interfaces such as JMS, and its IBM

equivalent for C, C++ and .NET, XMS are also available.

43

44

Sending Application

Queue Manager

1. MQCONN (QM1)

2. MQOPEN (APP.Q for PUT)

3. MQPUT (MSG1)

4. MQCLOSE

5. MQDISC

Receiving Application

1. MQCONN (QM1)

2. MQOPEN (APP.Q for GET)

3. MQGET

4. MQCLOSE

5. MQDISC

QM1

APP.Q

The MQ API (MQI)

The MQ API (MQI)

• The most common verbs are MQOPEN, MQCLOSE, MQPUT and
MQGET which are concerned with the processing of messages on
queues. The first example shows an application putting a message to a
queue and another getting the message off the queue. We refer to this
as the Point-to-Point application model. The second example shows an
application publishing a message to a topic and another subscribing to
messages about that topic. We refer to this as the Publish/Subscribe
application model.

• There are many, many options associated with these verbs. However,
in general, most of these options may be left to take their default values
- and MQ provides a set of default structures to allow for easy
assignment of these default values.

• There are 24 verbs in total in the MQ API, known as the MQI. We have
briefly illustrated the most common ones. The rest have less frequent
use and we have summarised them in a table.

• To use the MQ verbs in your application you link with the MQ library
provided with MQ, which will send your call to the MQ queue manager
to process.

45

46

Sending Application

Queue Manager

1. MQCONN (QM1)

2. MQOPEN (“Price/Fruit”)

3. MQPUT (MSG1)

4. MQCLOSE

5. MQDISC

Receiving Application

1. MQCONN (QM1)

2. MQSUB (“Price/Fruit”)

3. MQGET

4. MQCLOSE

5. MQDISC

QM1

The MQ API – Publish/Subscribe

Price

Fruit

The MQ API (MQI) – Summary of all verbs

47

MQI C, RPG, COBOL

IBM de facto

Connection

MQCONN

MQCONNX

MQCTL

MQDISC

Object attributes

MQINQ

MQSET

Application

MQ

Library

MQ

Queue Manager
Call Queue manager

Message Properties

MQCRTMH

MQDLTMH

MQSETMP

MQINQMP

MQDLTMP

MQMHBUF/MQBUFMH

Resource Use

MQOPEN

MQSUB

MQSUBRQ

MQCLOSE

Messages

MQPUT

MQPUT1

MQGET

MQCB

Transactions

MQBEGIN

MQCMIT

MQBACK

Java Message Service (JMS) and XMS

• JMS is the standard Java API for messaging

– Point-to-point and Publish/subscribe messaging

– Enables greater portability between messaging providers

– Vendor-independent messaging API in Java

• Managed by The Java Community Process

• Expert Group includes IBM

– MQ supports all Java Enterprise Edition (JEE) 1.4+

application servers

– Features such as message-driven beans greatly simplify

creation of messaging applications

48

Java Message Service (JMS) and XMS

• IBM Message Service Clients (XMS) renders a JMS-like

API in non-Java languages

– (Almost) full compatibility with JMS 1.1 API

– Full interoperability with IBM JMS implementations on MQ

and WPM

– Shared administered objects in JNDI with JMS

– Current implementations include: C, C++ and .NET

49

Example JMS receiving application

• Some of the client APIs need no MQI programming knowledge!

50

QM1

APP.Q

// Lookup the MQ specific objects in JNDI
Context jndiContext = new InitialContext();
ConnectionFactory cf =
 (ConnectionFactory) jndiContext.lookup("jms/QM1");
Destination dest =
 (Destination) jndiContext.lookup("jms/APP.Q");

// Establish a connection with the queue manager
Connection conn = cf.createConnection();
conn.start();
Session session =
 conn.createSession(false, Session.AUTO_ACKNOWLEDGE);

// Get a message
MessageConsumer consumer = session.createConsumer(dest);
Message msg = consumer.receive();

Java Message Service (JMS) and XMS

• JMS is part of the J2EE specification and is supported by all
J2EE compliant applications servers including; WAS, WebLogic
etc. If you are working in Java or a J2EE environment inside an
app. server, then you will almost certainly use JMS to access
your messaging infrastructure. JMS 1.1 is the current version of
the standard and is fully supported by MQ.

• It simplifies programming – providing simple to use Pub/Sub
messaging in addition to point-to-point, although there are many
similarities with the MQI (Connection = MQCONN(), Session =
UOW)

• XMS syntactically the same as JMS V1.1, but for C, C++ and
C#. It offers good interoperability between JMS & non-Java
applications, and they share administration models – it is ideal
for sending message to JMS application running in an
Application Server.

51

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

52

Example application architectures - Clustering

53

B

Q Mgr 1

Queue 1

Q Mgr 2

B

Queue 1

Q Mgr 4

Queue 1

B

Q Mgr 3

Queue 1
A

Q Mgr 5

Cluster A

Example application architectures – Clustering

• In order to enable highly scalable applications, MQ queue

managers provide support for MQ Clusters. In this

environment, there are several copies (or clones) of a

particular target queue and each message is sent to

exactly one of the possible choices.

• MQ Cluster support also defines and manages all MQ

resources, such as channels, automatically and provides

automatic notification of failed or new queue managers in

the environment.

54

MQ Transactions

• Message level inclusion/exclusion in unit of work

• Single UoW active per connection at any one time

• MQ local units of work
– MQCMIT and MQBACK control the unit of work

• Messages and other resources in a global unit of
work
– Managed by a Transaction Manager

• WebSphere Application Server, CICS, IMS, z/OS
RRS

• Microsoft Transaction Server

• Any XA or JEE App Server Transaction Manager

• Managed by MQ
– MQ is an XA Transaction Manager

– MQBEGIN, MQCMIT and MQBACK control the unit
of work

55

MQ Transactions

• MQ supports units of work (UoW) where a set of resource updates may be
considered as an atomic unit - either all of the changes are made or none of the
changes are made. This support is particularly important when using MQ in a
commercial environment (it's primary focus) as transactions play a major part in this
arena.

• MQ allows messages to be included/excluded from a UoW at the message level.
This differs from some other environments where a UoW starts and all subsequent
actions are included in the UoW. Thus, a set of messages may be considered to be
a UoW. Often, it is necessary to include both MQ messages and some other
recoverable resources (typically database updates) in a UoW. Typically, this has
required the use of some Transaction Monitor and MQ works well with CICS and
IMS on z/OS and with any XA compliant Transaction Manager. In situations where a
Transaction Manager product is not available/suitable, MQ itself may be used as
the Transaction Manager. This does not mean that MQ is transforming itself into a
Transaction Monitor, it is just providing the Transaction Manager aspect of a
Transaction Monitor product.

• The API used in handling transactions differs according to the environment. MQ
provides some verbs to handle UoWs. If a Transaction Monitor is used, however, its
UoW verbs are used in place of the MQI.

56

MQ Security

57

B

A

QMgr 1 QMgr 2

Xmit Q 2

Queue3

Queue 1

Queue 5

Queue 4

Access

Control

Context

Commands

SSL

Exits

Channels

AMS

AMS

MQ Security

• There are several aspects to MQ security.

• Control of MQ commands :Access to MQ commands, like creating and starting
queue managers, can be controlled through operating system facilities and also by
MQ facilities; it is necessary to be in a particular authorisation group to be allowed
to use these commands.

• Access to Queue Manager objects:There is an access control component that is
provided by the MQ Queue Manager, called the Object Authority Manager (OAM),
which controls access to Queue Manager objects, particularly queues. The OAM
can control access to resources at a very granular level, allowing access for
different actions, such as GET, PUT, INQ, SET, etc. This access is (generally)
based upon group memberships.

• This security service is a pluggable component of MQ. Thus, if the OAM does not
meet the requirements of the environment it is possible to provide a different (or
additional) component. Note that the OAM is used for all queue managers except
for the z/OS queue manager which uses any SAF compliant security manager.

• Encryption of message data through Advanced Message Security (AMS)

58

MQ Security (contd)

• Channel Security (Authentication)

• MQ 6.0 provides built-in SSL link level security

• MQ also provides a number of exit points during the

transfer of messages between systems. The key exits

concerned with security are :- Security Exit : This exit

allows for (mutual) authentication of partner systems when

they connect to one another. Message Exit: This exit

allows allows for customisation at the message level,

allowing individual messages to be protected, in terms of

message integrity, message privacy and non-repudiation

59

MQ Security (contd)

• Application Security

• This level of security is not implemented directly by the

Queue Manager but such facilities may be implemented at

the application level, outside of the direct control of MQ.

• Advanced Message Security

• Provides end to end security, enabling messages to be

encrypted from the time they are PUT by the sending

application to when they are GET by the receiving

application, so messages are help encrypted when at rest

on queues as well as when in transit.

60

Data Conversion

When receiving messages, MQ can convert the message payload data.
This is most commonly used to convert character data so that it is in a
format which is consumable by the receiving application.

61

CCSID 500 (EBCDIC Latin-1-charset)

Data: H e l l o w o r l d !

Hex: C8 85 93 93 96 40 A6 96 99 93 84 4F

z/OS

Linux (x86)

QUEUE

MQGET

MQGMO_CONVERT

CCSID=1208

CCSID 1208 (UTF-8)

Data: H e l l o w o r l d !

Hex: 48 65 6C 6C 6F 20 77 6F 72 6C 64 21

MQ Systems Management

62

System

Management

 Applications:

BMC, CA,

Landmark,

RYO, Tivoli

MQ

Application

Programmable

Command

Format (PCF)

Kernel

Message

Moving

MQSC

Local

Queueing

Scripting

MQ

Explorer

MQ Systems Management - runmqsc

63

MQ Systems Management - runmqsc

64

MQ Systems Management - runmqsc

65

MQ Systems Management – MQ Explorer

66

MQ Systems Management – MQ Explorer

67

MQ Systems Management – MQ Explorer

68

MQ Systems Management – MQ Explorer

69

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

70

MQ and the wider world

•For a messaging engine to be really useful it should allow access
to the messages from many different environments. We have
already discussed MQs programming language and API support
but what about the environments.

•The complexity of overall business applications is increasing every
year as more and more applications are linked together in some
way. MQ dramatically reduces an individual applications complexity
by providing a consistent, reliable and transactional method of
communicating between applications from hundreds of different
environments.

•We are now going to look briefly at some of the other WebSphere
Business Integration products that make up the portfolio, and how
MQ fits in

71

MQ Telemetry

● Product extension included from MQ

7.1 (MQXR), supporting mass

connectivity for smart devices to the

enterprise

● Utilises MQTT protocol

• a lightweight, public, low bandwidth

messaging protocol for scenarios

where enterprise messaging clients

are too big or bandwidth intensive.

• Established for >10 years

● Java and C API provided, but you

can “roll your own”

72

Petrol
Forecourt

Vehicle

Oil rig

Retail
Store

Medical

Pervasive
Device

Sensor
e.g.

RFID

Enterprise

Smartphones

MQ Telemetry

Ideally suited to:

● Fragile / Expensive networks such

as “sometimes connected”

devices / satellite phones

● Niche platforms such as tiny

sensors, personal devices,

edge/small servers

● Mass Scalability (> 50,000 clients

per queue manager)

73

Petrol
Forecourt

Vehicle

Oil rig

Retail
Store

Medical

Pervasive
Device

Sensor
e.g.

RFID

Enterprise

Smartphones

MQ Advanced Message Security

•Secures application data even before it is passed to MQ

•Upgrade from base MQ – No changes to existing
applications or network required

74

MQ

Securing the data
and the applications

MQ Advanced Message Security

Application A Application Z

MQ Advanced Message Security adds:
+ Authentication policies are based on certificates
associated with each application
+ Message data is protected end-to-end – including
when it resides in queues
+ Much finer granularity in security policies
+ No changes needed to applications or queues

MQ standard security:

Industry standard SSL channels (256-bit)
Certified for Common Criteria
Authentication is based on Operating System identifier
of local process
Message data can be encrypted in transport but not
when it resides in the queues

MQ Managed File Transfer

• MQ MFT/FTE solves problems of auditing, monitoring, scheduling and securing file

transfer operations

– Automated bulk data transfer between distributed heterogeneous systems.

– Capabilities for integrating, managing, and controlling data movement.

• Built on MQ

– Assured delivery of data over MQ

backbone

• Simplicity and flexibility

– MQ Explorer Integration

– Scriptable

– Scheduled, or Triggered

transfers

– Complements MB File Nodes

75

MQ

MQMFT

MQMFT MQMFT MQMFT

MQ

MQ

Clients

Servers

MQMFT Eclipse Tooling

MQMFT

MQMFT

MQMFT

MQMFT Eclipse Tooling

Coordination

Queue Manager

WebSphere Message Broker / IBM Integration Bus

IBM Integration Bus

• Formerly known as WebSphere Message Broker

• Message transformation (mediations)

• Combine data sources: databases, files, etc.

– Update other data stores: databases, files, etc.

– Adapters - SAP, PeopleSoft, ORACLE, Files, e-mail...

– Content based filtering and routing

76

Enterprise

Applications

Enterprise

Applications

Mobile

devices

Web

And Portals

Telemetry

Sensors

Multicast

Subscribers

Mobile

devices

Web

And Portals

Telemetry

Sensors

Inbound

Information

Outbound

Information

Event

Monitoring

And Control

Enterprise

Integration

bus,

Web

Services,

Java

Messaging

Services

IBM

Integration Bus

Internet reach

in a security-rich

environment

Routing

IBM Integration Bus

•MQ provides the assured delivery backbone to an Enterprise
Service Bus. The queue managers are message content agnostic.
Consequently, any data may be exchanged between applications.
However, many applications are dependent upon their data being
routed to particular destinations and are dependent upon particular
data formats. So, the fact that applications may exchange data (via
MQ and/or WebSphere Adapters) does not solve all possible
problems. For the general case of any to any application
integration, an intermediary is required to handle message routing
issues and to handle (both simple and very complex) message
transformation issues.

•Message Broker provides the function that enables complex
message routing and transformation functions to be encapsulated
outside of applications, in a (logically) central component.

77

Tivoli Omegamon and ITCAM

• Range of IBM products for monitoring and managing

common core technologies with product-specific integration

– eg Omegamon for Messaging deals with MQ and Message

Broker

• Enterprise-scale Management with Omegamon

– Much larger environments than the MQ Explorer will handle

– Allows joining of multiple products into single views

• Eg. there might be a situation only if both MQ and DB2

show specific issues

• Part of the "extended" MQ development team

– Make sure Tivoli can support new features

– Monitor SLAs : Drill down to appropriate product/OS

78

Getting MQ : Free Trial

79

http://www.ibm.com/software/products/en/ibm-mq

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

80

• The sales department has been using a legacy

quote application for a number of years

– The application runs standalone, with various

products, prices and rules hardcoded

– Updating this information means rebuilding the

application with the new parameters, and

deploying to each workstation out-of-hours

• This approach has many drawbacks

• Luckily, the CIO has commissioned a new

solution to address this!

Putting it all together…

The sales department scenario

• Agreement is reached that all dynamic

information should be stored in a

database, rather than in application

logic

• Concerns are raised about how to

manage end users’ access to the

database, as well as how best to

handle multiple concurrent requests

• A messaging backbone solution is

proposed

Requirements phase 1

MQ Queue Manager

• A simple request-response model

is implemented

• Lightweight applications on end

users’ systems put requests to a

queue

• Requests are processed by an

application with appropriate

business logic, and returned via a

reply queue

– Message selection is used to

retrieve the correct response

Solution phase 1

Quote.Request

Quote.Reply

Quote

app

MQPUT

MQGET

• The CIO wants to deploy a new

company website, which will allow

users to request their own quotes

without needing to speak with a sales

representative

• An application server is chosen to

host the web content and enterprise

applications to provide this new

capability

• How can the prior investment in the

messaging backbone assist with

this?

Requirements phase 2

MQ Queue Manager

Implementation phase 2

• We can re-use the existing
infrastructure by using the MQ
JEE messaging provider
(Resource Adapter) to connect
the enterprise application to
MQ

• The quote application doesn’t
need to know that the requests
are coming from different
sources

– We could use message
properties if we decide to
pass this information to the
application in future

Quote.Request

Quote.Reply

Quote

app

Requirements phase 3

• The new website was a success

• Now, the sales team want a solution

which will allow their sellers in the

field to obtain a quote directly from

their mobile device

• The CIO has cautioned that he wants

to keep mobile data spend as low as

possible

MQ Queue Manager

Implementation phase 3

• We can provide a low-
overhead connection
mechanism to the mobile
devices using the MQ
Telemetry Service

• This will translate between
messages using the MQTT
protocol, and real MQ
messages
– This means that we can

continue to reuse our
existing quote application

Quote.Request

Quote.Reply

Quote

app

MQ

Telemetry

Service

MQTT

MQ Queue Manager

Phase 4

• With the success of our new solution,
more concurrent capacity is needed

• We can increase the number of
applications servicing the queue very
easily

– We could use message priorities to
give a higher quality of service to
particular requests

Quote.Request

Quote.Reply

Quote

app

MQ

Telemetry

Service

MQTT

Quote

app

Quote

app

Phase 5

• The Marketing Manager asks for new

function to provide feedback such as

special offers to users in real time

• Given the broad audience, this sounds

like an ideal use-case for

publish/subscribe messaging

Marketing

Manager

MQ Queue Manager

• Special offers are
published to an
appropriate topic

• A copy of each
publication is
sent to each
subscribed
application

Phase 5

Quote.Request

Quote.Reply

Quote

app

MQ

Telemetry

Service

MQTT

Quote

app

Quote

app

Pricing/Promotions

MQSUB

MQSUB Marketing

Manager

MQPUT

MQSUB

Future enhancements

So far we’ve only used a small fraction of MQ’s capabilities.

Some other considerations we could make in future

enhancements to our solution are:

• MQ multi-instance capability to provide a backup system in

case of failure

• MQ clustering to provide more advanced workload

balancing options

• MQ Managed File Transfer to provide a reliable, auditable

transport for data files

• MQ Advanced Message Security to sign and encrypt

message bodies

Agenda

• Why use messaging?

• Fundamentals of MQ

• Using the MQ API

• Other key features

• Extensions and related products

• Putting it all together…

• Summary

92

Summary

• MQ - World leader in messaging technology

• Runs everywhere your applications do

• Simplifies application communication

– From simple connectivity…..

– ….. to complex workload balancing, transformation and

routing

• Provides secure, reliable and high-speed infrastructure

93

NEW MQ Labs!

• Wednesday August 12 @ 11:15 in the Dolphin Room Asia 5

– The Dolphin is not the Hursley pub but the Orlando Hotel

• The MQ project including the developers will be there for

Q&A as well

• YOU have the opportunity to be the test subjects for two

NEW MQ labs:

– Developing and Deploying JMS Enabled CICS Applications

• Explore this brand new feature of MQ and CICS

– Introduction to Channel Authorization on z/OS

• You too can keep BOGUS clients off your queue manager

• In addition all the ‘regular’ MQ V8 and V7.1 labs are

available if you want to try things out!

94

Monday Tuesday Wednesday Thursday Friday

08:30 MQ for z/OS, Using and

Abusing New Hardware and

the New v8 Features

Nobody Uses Files Any More

Do They? New Technologies

for Old Technology, File

Processing in MQ MFT and

IIB

Monitoring and Auditing MQ

Securing MQ Initiated CICS

Workload

10:00 Introduction to MQ -

Can MQ Really

Make My Life

Easier?

MQ for z/OS: The Insider

Story

IBM Integration Bus MQ

Flexibility

Common Problems and

Problem Determination for

MQ z/OS

IBM MQ and IBM Integration

Bus - from Migration and

Maintenance to Continuous

Enhancements, How and Why

to Stay Current

11:15 Introduction to IBM

Integration Bus on

z/OS

Introduction to the New

MQ Appliance

MQ V8 Hands-on Labs! MQ

V8 with CICS and COBOL!

MQ SMF Labs!

12:15

1:45 What's New in the

Messaging Family -

MQ v8 and More

Getting Started with

Performance of MQ on z/OS

IBM MQ: Are z/OS &

Distributed Platforms Like Oil

& Water?

3:15 What's New in IBM

Integration Bus

Live!: End to End Security

of My Queue Manager on

z/OS

Digging into the MQ SMF

Data

MQ Parallel Sysplex

Exploitation, Getting the Best

Availability from MQ on z/OS

by Using Shared Queues
Application Programming

with MQ Verbs

4:30 MQ Security: New v8

Features Deep Dive

Live!: What's the Cloud

Going to Do to My MQ

Network?

Giving It the Beans: Using

IBM MQ as the Messaging

Provider for JEE Applications

in IBM WebSphere

Application Server

Challenge the MQ & IIB

Experts

The Do’s and Don’ts of

IBM Integration Bus

Performance

This was Session #17885 The rest of the week …

Copyright and Trademarks

© IBM Corporation 2015. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered

trademarks of International Business Machines Corp.,

registered in many jurisdictions worldwide. Other product and

service names might be trademarks of IBM or other

companies. A current list of IBM trademarks is available on

the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

96

