
New C/C++ and PL/I releases

Visda Vokhshoori

visdav@ca.ibm.com

Insert

Custom

Session

QR if

Desired

2

Insert

Custom

Session QR

if Desired.

z/OS V2.2 XL C/C++

3

z/OS V2.2 XL C/C++ availability

 Preview announce date, January 2015

 Availability announce date, July 2015

 General availability date, September 30, 2015

Source: If applicable, describe source

origin

4

z/OS V2.2 XL C/C++ highlights

 Support for the new hardware

 Asm and hardware model support

 Two new high performance libraries

 Improved functionality

Source: If applicable, describe source

origin

#Slide 5
#Asm and hardware model support (Notes)
#Slide 31
#Slide 82

5

Support for the new hardware

6

ARCH(11)

 To enable the compiler with the z13 feature we are introducing new sub

options for ARCHITECTURE and TUNE options

 ARCH(11) will prompt the compiler to utilize the list of hardware

instructions new in z13

 TUNE(11) will prompt the compiler to improve run time performance

according to the micro-architecture characteristics of z13

7

Support for Load Halfword Immediate on

Condition
 The new instructions LOCHI and LOCGHI are like LHI and LGHI except

that the load depends on the conditional code and the mask in the

instruction

 The immediate value, as indicated in the name of the instruction, is

halfword in size, so this applies only to values that fit in 16 bits

 The compiler will exploit this under OPTimize and ARCH(11)

8

Support for Convert from|to Packed

 The new instructions

– Convert from Packed

• CDPT – Convert to long DFP

• CXPT – Convert to extended DFP

– Convert from Packed

CPDT – Convert from long DFP

CPXT – Convert from extended DFP

Under OPT and ARCH(11) the back-end utilizes these instructions where

it finds the right pattern; these will improve the run-time performance as

the DFP instructions are performed in registers and in general faster

than packed decimal

9

Support for the Vector Facility

 Vector programming support provides programmers direct access to

SIMD instructions from the z13 Vector Facility for z/Architecture

 Language extensions based on the AltiVec Programming Interface

specification with suitable changes and extensions

10

Support for the Vector Facility

 A new VECTOR option

 macro: __VEC__

 Compile options: -qARCH(11) -qVECTOR

 FLOAT(AFP(NOVOLATILE)) and TARGET(zOSV2R2) are assumed default

 Vector data types:

–{vector, vector} {bool, signed, unsigned} {char, short, int, long long}

–{vector, vector} double

 Various language extensions on the vector types for natural usage just like for

the native types

–Ex.

• Assignment operator (=)

• Address operator (&)

• Pointer arithmetic

• Unary operators (++, –, +, -, ~)

• Binary operators (+, -, *, /, %, &, I, ^, <<, >>)

• Relational operators (==, !=, <, >, <=, >=)

11

Support for the Vector Facility

 Comprehensive set of vector built-in functions for access and

manipulation of individual vector elements

–In the following high-level categories:

• Arithmetic

• Compare

• Compare ranges

• Find any element

• Gather and scatter

• Generate Mask

• Isolate Zero

• Load and Store

• Logical

 Merge

 Pack and unpack

 Replicate

 Rotate and shift

 Rounding and conversion

 Test

 All Predicates

 Any Predicates

12

Support for the Vector Facility

 Example:

#include <builtins.h>

#include <stdio.h> int main() {

vector signed int a = {-1, 2, -3, 4}; // declare and initialize a vector with 4 signed integer elements

vector signed int b = {-5, 6, -7, 8};

vector signed int c, d; // declare vectors with 4 signed integer elements

c = a + b;

d = vec_abs(c);

// Generates VAF

// Generates VLPF

printf("d[0] = %d\n",d[0]); // prints 6 -- d[0] extract the 1st element from the vector

printf("d[1] = %d\n",d[1]); // prints 8

printf("d[2] = %d\n",d[2]); // prints 10 printf("d[3] = %d\n",d[3]); // prints 12

return 0;

}

13

Support for the Vector Facility

 AutoSIMD compiler optimization

 Identifies source statements that are safe and profitable to be

transformed into vector form, i.e. using single instruction that

operates on multiple data

 Example:

 unsigned int i,n,x;

 unsigned int *a, *b;

 for (i=0; i<n; ++i) {

 a[i] = a[i] + 4*b[i];

 }

 AutoSIMD can process the loop 4x faster.

14

Support for the Vector Facility

 AutoSIMD compiler optimization is turned on by default when

 HOT,FLOAT(AFP(NOVOLATILE)),ARCH(11)

 This optimization makes use of the z13 vector facility. Using the

instructions that can operate on multiple data streams, introduced in

z13 compiler can produce parallel code to improve throughput;

more data processed in the same window of time

 Workloads that can benefit from SIMD include string processing-

intensive workloads, security and cryptographic workloads, and

mathematical modeling workloads

15

Initialization of 40 bytes starting at
GPR4+2160 with 7 has been SIMDized,

Reduced path length, more data processed

16

Support for the Vector Facility

 Vector programming references:

 SIMD Business Analytics Acceleration on z Systems

[http://www.redbooks.ibm.com/abstracts/redp5145.html?Open]

 z/OS V2.2 XL C/C++ Programming Guide

[http://publibz.boulder.ibm.com/epubs/pdf/cbc1p210.pdf

Chapter 35: Using vector programming support]

 AltiVec Technology Programming Interface Manual

[www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf]

http://www.redbooks.ibm.com/abstracts/redp5145.html?Open
http://publibz.boulder.ibm.com/epubs/pdf/cbc1p210.pdf

17

asm and hardware model support

18

Ability to insert asm statements

 Clients have asked us to support HLASM statements for all C or C++

programs and not just with Metal C

 Now you can inline hardware instructions in your LE enabled C or C++

program using the __asm keyword

 Compiler output is program object, doesn't generate assembly source

like MetalC

 Requires certain level of HLASM PTF

19

Ability to insert asm statements

 New options and sub-options

–ASM: causes __asm, __asm__to be statements

–Keyword(ASM): gives asm the same semantic as __asm

–ASMLIB: specifies the macro libraries to be used when assembling the

inline assembler source code; libraries will be concatenated

Example: -qASMLIB=A -qASMLIB=B

//ASMLIB DD DISP=SHR,DSN=A

// DD DISP=SHR,DSN=B

 New messages will be reported by the compiler under message CCN1148

20

Ability to insert asm statements

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CCNDRVR,

// PARM='/SEARCH(''CEE.SCEEH.+'') NOOPT SO OBJ ASM KEYWORD(ASM) ASMLIB(//SYS1.MACLIB)'

//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR

// DD DSNAME=CEE.SCEERUN2,DISP=SHR

// DD DSNAME=CBC.SCCNCMP,DISP=SHR

// DD DSNAME=SYS1.SASMMOD1,DISP=SHR

//SYSLIN DD DSNAME=MYID.MYPROG.OBJ(MEMBER),DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.h>

···

int my_cipher(char* in, char* out, int* len, int parmBlock, int* mode) {

/* Inline CIPHER Message */

asm("REDO KMC %3,%0\n"

“ BRC 3,REDO\n":”+XL:RP:e"(x),”+r”(*len),”+XL:NR:r1”(parmBlock), \

“+XL:RP:e”(out):"XL:NR:r0"(*mode):); ·

}

@@

//SYSUT1 DD DSN=...

···

//*

21

Support for inline asm

 z/OS V2.2 XL C/C++ User's Guide

 New options ASM and ASMLIB

[Chapter 4 http://publibz.boulder.ibm.com/epubs/pdf/cbc1u210.pdf]

z/OS V2.2 XL C/C++ Language Reference

– [Chapter 7

http://publibz.boulder.ibm.com/epubs/pdf/cbc1l210.pdf]

22

Mixing ARCH levels in one compile

 Before, you had to put code using different ARCH levels into separate

functions – and you had to pay for the expense of calling the appropriate

function

 You can now have code using different ARCH levels within one

compilation unit

23

Mixing ARCH levels in one compile

 Now this code can be inlined with the new

 #pragma arch_section(<architecture>)

 The pragma indicates the start of a section of the source intended for the

machine indicated by <architecture>

 The compiler switches to architecture specified, and at the end the section

switches back to the previous architecture

24

Identifying the hardware model and features

 Programs may need to check the machine model before doing some

processing

 Three new builtins help with this:

 builtin_cpu_init(void)

–Runs the CPU detection code, and saves the CPU information in a

compiler defined/managed buffer

–Must be called at least once before either of the following is invoked

25

Identifying the hardware model and features

 builtin_cpu_is(const char* cpumodel)

–Returns 1 if the CPU is of type cpumodel (“5”, “6”, …, “11”)

 builtin_cpu_supports(const char* feature)

–Returns 1 if the CPU supports one of the features indicated

–feature values are

–"longdisplacement", "etf2", "etf3", "dfp",

"prefetch", "storeclockfast", "loadstoreoncond",

"popcount", "interlocked", "tx", "dfpzoned",

"vector128", "5", ..., "11"

26

Identifying the hardware model and features

xlc -c –qARCH=9 –o popcnt.o popcnt.c
xlc -c –qARCH=5 –o main.o main.c
xlc –o a.out popcnt.o main.o
./a.out

>cat main.c

// Counts bits that have the value of 1 in a byte

unsigned long myBytePopcount(char op)

{

unsigned long count = 0;

for (int i = 0; i < 8; i++) {

if ((op & 1) == 1) {

count++;

}

op >>= 1;

}

return count;

}

27

Identifying the hardware model and features

//main.c continued

#define arch9 2217

int main() {

struct utsname ruon;

uname(&runon);

int archLevel = atoi(runon.machine);

unsigned long output;

unsigned long input = 55;

//Check architecture level
if (archLevel >= arch9) {

output = callArch9Builtin(input);
} else {

output = myBytePopcount(input);
}
printf(“%lu\n”, output);
return 0;
}

28

Identifying the hardware model and features

>cat popcnt.c
#include <builtins.h>

//Compiled with ARCH(9)

unsigned long callArch9Builtin(unsigned long op) {

return __popcnt(op);

}

29

Using the #pragma arch_section, and run-time check builtins the above can be

simplified to one file.

>xlc –qARCH=5 –o a.out main.c
#include <builtins.h>

unsigned long myPopCountOnByte(unsigned long op)

{

unsigned int count = 0;

for (int i = 0; i < 8; i++) {

if ((op & 1) == 1) {

count++;

}

op >>= 1;

}

return count;

}

int main()

{

unsigned char input = 55;

unsigned long output;

__builtin_cpu_init();

if (__builtin_cpu_supports("popcount")) {

#pragma arch_section(9)

{

output = __popcnt(input)&0xFF;

}

} else {

output = myPopCountOnByte(input);

}

printf("%lu\n", output);

return 0;

}

30

Identifying the hardware model and features

 z/OS V2.2 Language Reference

[Chapter 18 #pragma arch_section

http://publibz.boulder.ibm.com/epubs/pdf/cbc1l210.pdf]

 z/OS V2.2 Programming Guide

[Chapter 34 __builtin_cpu_xxxx

http://publibz.boulder.ibm.com/epubs/pdf/cbc1p210.pdf]

http://publibz.boulder.ibm.com/epubs/pdf/cbc1l210.pdf

31

Insert

Custom

Session QR

if Desired.

New high performance libraries

32

New high performance math library

 MASS (Mathematical Acceleration Sub-System) library

 A comprehensive set of elementary/special mathematical functions (e.g. exp, log,

sin, etc.) tuned for high performance on zEC12 and z13

 3 kinds of libraries:

– 59 scalar functions

• Easiest to use in existing code since names match existing runtime library

functions

– 77 vector functions

• Generally provides the highest performance, provided vector_length is

sufficient (approximately >2 to >10 depending on the function)

– 8 SIMD (z13 only) functions

• Convenient for code written to use vector datatypes and built-in functions

 Single- and Double-precision FP, in IEEE

33

New high performance math library

MASS archives /usr/lpp/cbclib/lib:
libmass.arch10.a libmassv.arch10.a libmass.arch11.a

libmassv.arch11.a libmass_simd.arch11.a

MASS header files /usr/include:
mass.h mass_simd.h massv.h

Mass in batch mode:
MASS archives:
CBC.SCCNM10 scalar MASS library overlap with LE
CBC.SCCNN10 scalar and vector MASS library not overlap with LE
CBC.SCCNM11 single precision MASS ARCH(11) library
CBC.SCCNN11 double precision MASS ARCH(11) library
MASS Header files:
CEE.SCEEH.H

Compile Options:
FLOAT(IEEE)
ARCHITECTURE(10) -the minimum for zEC12/zBC12
ARCHITECTURE(11) -the minimum for the z13
VECTOR -if using the mass_simd
NOEXH -if using C++
Do not change the rounding mode from the default value: ROUND(N)
Include the appropriate header files
If using scala MASS, include both mass.h and math.h
If using vector MASS, include massv.h
If using SIMD MASS, include mass_simd.h

34

MASS performance

 z/OS MASS (Mathematical Acceleration Subsystem) vector functions on

z13 demonstrate up to 2.9x higher throughput than the corresponding

z/OS V2.1 XL C/C++ runtime library math functions on zEC12.

 A key subset of MASS vector functions are heavily used in Analytics and

are accelerated using SIMD instructions.These functions demonstrate

up to 6.8x higher throughput than the corresponding z/OS V2.1 XL

C/C++ runtime library math functions on zEC12.

Disclaimer

This claim is based on results from internal lab measurements. A subset of the MASS vector functions is accelerated using

SIMD instructions on z13. The SIMD benefit is demonstrated using this subset. The performance improvements achieved will

vary depending on the workload and other factors.

Source: If applicable, describe source

origin

35

New high performance linear algebra library

 ATLAS (Automatically Tuned Linear Algebra Software) library

 A high-performance versions of all the BLAS (basic linear algebra
subprograms) routines, and a subset of the LAPACK (linear algebra package)
routines

 Tuned for high performance on zEC12/zBC12 and z13

 Both single and multi-threaded versions available, with IEEE floating point

 Supplied libraries

– ATLAS main libraries

• ATLAS specific variants of the BLAS, CBLAS, and LAPACK routines

– CBLAS libraries

• C interface versions of the BLAS routines

– LAPACK libraries

• C interface versions of the LAPACK routines

– Fortran BLAS libraries

• Fortran 77 interface versions of the BLAS routines

– Supports 31-bit C linkage, 31-bit XPLINK, and 64-bit XPLINK

36

New high performance linear algebra library

 ATLAS is provided on USS only

 Library & header file location:

– Library: /usr/lpp/cbclib/lib/atlas/

– Header: /usr/lpp/cbclib/include/atlas/

 Compile options requirement

– FLOAT(IEEE)

– ROUND(N) -default rounding for FLOAT(IEEE)

– ARCHITECTURE(10) -the minimum required ARCH level

– ARCHITECTURE(11) -required to enable vector functionality

– VECTOR -required to enable vector functionality

 More information can be found:

– z/OS V2.2 Programming Guide

[Chapter 43 http://publibz.boulder.ibm.com/epubs/pdf/cbc1p210.pdf]

– External ATLAS web site

[http://math-atlas.sourceforge.net]

http://publibz.boulder.ibm.com/epubs/pdf/cbc1p210.pdf

37

ATLAS performance

 A key subset of z/OS ATLAS 3.10.0 (Automatically Tuned Linear Algebra

Software) double precision functions on z13 demonstrate up to 44%

higher throughput than the corresponding functions on zEC12.

 Selected key z/OS ATLAS 3.10.0 (Automatically Tuned Linear Algebra

Software) functions are accelerated using SIMD instructions. These

functions demonstrate up to 80% higher throughput on z13 than the

corresponding functions on zEC12.

Disclaimer:

This claim is based on results from internal lab measurements. The double precision function improvement is derived from

comparisons of a select set of commonly used z/OS ATLAS 3.10.0 functions executing on z13 to the equivalent functions

executing on zEC12. A subset of these functions is accelerated using SIMD instructions on z13. The SIMD benefit is

demonstrated using this subset. The performance improvements achieved will vary depending on the workload and other

factors.

Source: If applicable, describe source

origin

38

Insert

Custom

Session QR

if Desired.

Increased functionality

39

Improved make

 'make' dependency file generation through -M did not include non-existent

headers or allow named targets

 New make options address these and similar concerns:

 -MT allows setting the dependent target name

 -MQ is -MT but also escapes 'make' special characters for easier dependency file

usage

 -MG allows missing header files to be included in the dependency list

 The -qmakedep=pponly suboption will run the include preprocessing only

– A dependency file will be generated

– But no object code will be generated

40

Expanded user-reserved space on the Metal C

stack

 This is an enhancement to an existing feature

 The option DSAUSER, available only with MetalC, allows the user to

reserve a pointer on the stack

 However, the user may want to leave more space on the stack

 DSAUSER has been enhanced to allow you to specify how much space

to reserve on the stack

–xlc -qDSAUSER=12

• This will reserve a space equal to the size of 12 words on the stack

41

Eliminating a null pointer check

 The C++11 ANSI Standard requires

–checking the pointer returned from the placement new operator

–and performing the initialization only when the pointer is not null

 The check for null pointer returned from other operators new and new[] is

not required but performed

 New sub-option LANGLVL(NOCHECKPLACEMENTNEW) will remove the

check of the pointer returned by the placement new operator

–And can thus speed up the program by eliminating unnecessary null

pointer checks

42

Improvements to dbgld utility

 A new option has been added to prompt dbgld to capture source files

without executable statement, e.g. variable declarations

–dbgld -cf a.out

–JCL CAPSRC(FULL)

43

Improvements to c89 utility

 Enable c89 to pass environment variables to the binder

 Accept mixed case, longer than 9, and hyphenated symbol or entry point

name to be specified to SYMTRACE, and EP binder options

int one_TWO_three() { return 1+2+3; }

export IEWBIND_OPTIONS="SYMTRACE=one_TWO_three"

c89 -Wl,'MSGLEVEL=0' t.c >o 2>&1

grep one_TWO_three o

IEW2420I A61B SYMTRACE: SYMBOL one_TWO_three IS DEFINED IN SECTION

$PRIV000010

IEW2422I A61D SYMTRACE: SYMBOL one_TWO_three DEFINITION ORIGINALLY CAME FROM

44

Insert

Custom

Session

QR if

Desired.

Enterprise PL/I 4.5

45

Enterprise PL/I 4.5 highlights

 Improved performance

 Enhanced middleware support

 Increased string length limit

 Introduced support for JSON

 Increased functionality

 Added features to enforce code quality

 Satisfied 28 RFE's

46

Insert

Custom

Session QR

if Desired.

Improved performance

47

ARCH(11)

 Under ARCH(11), the compiler will exploit

The new Load Halfword Immediate on Condition instruction

The new vector hardware instructions (and registers)

 The latter significantly improves the performance of the code generated
for (MEM)SEARCH and (MEM)VERIFY of CHAR and WIDECHAR strings

 The vector facility consists of:

Support instructions

Integer instructions

String instructions

Float instructions

48

ARCH(11)

 PL/I currently exploits only the support and string instructions

 In particular, to implement SEARCH and VERIFY, these the vector

instructions are very useful

find_any_element_equal

find_any_element_not_equal

string_range_compare

49

ARCH(11)

 For example, this simple code that tests if a UTF-16 string is numeric

wnumb: proc(s);

dcl s wchar(*) var;

dcl n wchar value('0123456789');

dcl sx fixed bin(31);

sx = verify(s, n); if sx > 0 then

...

 Is done with an expensive library call with ARCH <= 10

50

ARCH(11)

 With ARCH(11), the vector instruction facility is used to inline it as

E700 E000 0006 VL v0,+CONSTANT_AREA(,r14,0)

E740 E010 0006 VL v4,+CONSTANT_AREA(,r14,16)

@1L2 DS 0H

A74E 0010 CHI r4,H'16'

4150 0010 LA r5,16

B9F2 4054 LOCRL r5,r4

B9FA F0E2 ALRK r14,r2,r15

E725 E000 0037 VLL v2,r5,_shadow1(r14,0)

E722 0180 408A VSTRC v2,v2,v0,v4,b'0001',b'1000'

E7E2 0001 2021 VLGV r14,v2,1,2

EC5E 000D 2076 CRJH r5,r14,@1L3

A74A FFF0 AHI r4,H'-16'

A7FA 0010 AHI r15,H'16'

51

Other performance improvements

 Much faster code is now generated for MOD and REM of large FIXED

DEC

 Previously, calls to a library routine were used for this

 Now inline code using DFP makes the calculation much faster

 ARCH(11) is not required for this

52

Other performance improvements

 ARCH(11) not required is also not required for improvements to

 INLIST of CHAR(1)

 BETWEEN for CHAR(1) and WCHAR(1)

 SEARCH and VERIFY of WCHAR(1)

53

Other performance improvements

 A SELECT statement of the form

select(x); when('..') ..

when('..') ..

...

 Was turned into a (fast) branch table if x was CHAR(1) and into a (slow)
series of string compares if x had length > 1

 Now it will also be turned into a branch table if x is CHAR(2) or CHAR(4)

54

Other performance improvements

 One user has some code with this SELECT statement

SELECT(PLAUS.PLZ); WHEN('0000') ...

WHEN('9999') ...

WHEN('1000') ...

WHEN('1004') ...

 With more than 2500 WHEN clauses

 With 4.4, it takes 90 seconds to compile under OPT(2)

 With 4.5, it takes 5 seconds, and the generated code is much better, too!

55

EXEC CICS statements

 The code generated for every EXEC CICS statement consists of a call to

a CICS entry point with a first parameter that is an unprintable character

string often longer than 100 bytes

 This string encodes for CICS what the statement is requesting

 Since the call appears to be an ordinary call to the compiler, it allocates a

temporary on the stack and generates a MVC instruction to copy the 100+

bytes from the constant area to that temporary

56

EXEC CICS statements

 The 4.5 compiler now marks the first parameter of the CICS entry point

with the INONLY attribute

 This eliminates the allocation of the temporary on the stack and the (slow)

MVC instruction to copy to it

 This means the code will run faster, and your DSA will be smaller too

57

Enhanced middleware support

58

Structures as indicator variables

 Previously, if you wanted to use indicator variables with a structure in an

EXEC SQL statement, you had to name each element of the structure and

an associated indicator variable. For example, given

dcl 1 h3, 2 a fixed dec, 2 b fixed dec, ..., 2 z fixed dec;

 You had to code a matching structure and then name everything

dcl 1 in3, 2 a fixed bin(15), 2 b fixed bin(15), ..., 2 z fixed dec; exec

sql insert into mytable

values(:h3.a:in3.a, :h3.b:in3.b, ..., :h3.z:in3.z);

59

Structures as indicator variables

 you can use the matching indicator structure and name only the structures

•dcl 1 in3, 2 a fixed bin(15), 2 b fixed bin(15), ..., 2 z fixed dec; exec

sql insert into mytable

• values(:h3:in3);

 Not fun and not easy to maintain or enhance. But now you can use a

structure as indicator variable. So, given

dcl 1 h3, 2 a fixed dec, 2 b fixed dec, ..., 2 z fixed dec;

60

Structures as indicator variables

 But it gets better: with the new INDFOR attribute (it's like LIKE except the

copied names all get the FIXED BIN(15) attribute), the matching indicator

structure is easy to declare. So, given

dcl 1 h3, 2 a fixed dec, 2 b fixed dec, ..., 2 z fixed dec;

 you can use INDFOR and code simply

dcl 1 in3 indfor h3;

exec sql insert into mytable

values(:h3:in3);

61

Structures as indicator variables

 And multi-row fetch (and dimacross) work here, too! So, given

dcl 1 h3(3) dimacross, 2 a fixed dec, 2 b fixed dec, ..., 2 z fixed dec;

 you can use INDFOR and code the very simple

dcl 1 in3(3) dimacross indfor h3; exec sql

insert into mytable

values(:h3:in3);

62

Named constants as host variables

 You can now use named constants as SQL host variables if

DB2 allows a simple, unamed constant at that place in the EXEC SQL statement

 And

the named constant has either the attribute

 CHARACTER, in which case its VALUE attribute must specify a character string

or

 FIXED, in which case its VALUE attribute must specify a decimal number or an

expression that can be reduced to an integer constant

63

Statement validation

 Previously, when the SQL preprocessor scanned an EXEC SQL

statement, it would report only the first error in the statement

 Now, it will report all the errors in every EXEC SQL statement

64

SQL CODEPAGE option

 Using the new SQL preprocessor option (NO)CODEPAGE, you can

control the preprocessor's use of the compiler's CODEPAGE option when

it sets the CCSID of a host character variable

 When CODEPAGE is in effect, the compiler's CODEPAGE option is

always used as the CCSID for SQL host variables of character type

 When NOCODEPAGE is in effect, the compiler's CODEPAGE option is

used as the CCSID for SQL host variables of character type only if the

SQL preprocessor option NOCCSID0 is also in effect

 NOCODEPAGE is the default for compatibility with previous releases

65

SQL WARNDECP option

 Using the new SQL preprocessor option (NO)WARNDECP, you can

control whether the SQL preprocessor issue a warning message if it uses

the DB2-provided DSNHDECP module

 PP(SQL('WARNDECP')) matches what the previous releases did

 But NOWARNDECP is now the default (since this message is almost

meaningless to most users and hence is just distracting noise)

66

Less noise from the SQL preprocessor

 Message DSNH4760I is now suppressed – this shows up as

IBM3024I I …… DSNH4760I DSNHPSRV The DB2 SQL Coprocessor is

using the level 2 interface under DB2 V9

 This is almost always uninteresting

 This has been removed for 4.3 as well as 4.4

67

Increased string length limit

68

From 32K to 128M

 Previously no string could be 32K or longer, and VARYING strings had

only a 2-byte length prefix

 The new VARYING4 attribute will let you declare strings as having a 4-

byte length prefix

 The new STRING suboption of the LIMITS option will let you set the

threshold for string lengths to be 32K, 512K, 8M, or 128M

69

From 32K to 128M

 The maximum length is one less than the threshold

 The default is 32K

 The threshold values may be specified using K or M suffices or as decimal

numbers, i.e. as 32K or 32768 or as 128M or 134217727

 But ...

70

From 32K to 128M

 A threshold bigger than 32K may be specified only if the CMPAT(V3)

option is also in effect – because an expanded string descriptor is needed

 And mixtures of code compiled with CMPAT(V2) and CMPAT(V3) face the

same restrictions as mixtures of code compiled with CMPAT(V1) and

CMPAT(V2) faced 30-years ago

 Fwiw, the new VARYING4 attribute may be used with CMPAT(V2) - but

then the length must still be less than 32K

71

Long string considerations

 Specifying LIMITS(STRING(n)) where n > 32K may also greatly increase

the amount of stack storage used by your code

 For example, in PUT LIST(A || B) where A and B are CHAR(*)

VARYING4, the compiler will allocate a temporary on the stack equal to

the maximum string size – so under LIMITS(STRING(128M)) this would

be 128M off the stack!!

 The MAXTEMP compiler option will alert you to such statements

72

Long string considerations

 The STRING limit applies to all kinds of strings: BIT, CHAR, GRAPHIC

and WIDECHAR

 The VARYING4 attribute is also supported for all kinds of strings

 ALIGNED VARYING strings are halfword-aligned – ALIGNED VARYING4

strings will be fullword-aligned

73

CMPAT(V3) considerations

 The descriptors generated under CMPAT(V3) are different than those

generated under CMPAT(V2) – and not just for strings

 The offsets in structure descriptors and the bounds etc in array descriptors

are all 8-byte integers

74

Support for JSON

75

JSON overview

 A series of built-in functions provide the ability to

Generate JSON text

Parse JSON text

Validate JSON text

76

JSON generation

 All JSON written out will be in UTF-8 with the compiler and library

handling any necessary conversions from EBCDIC

 a series of "put" functions are provided and all have a buffer address and

buffer length as their first 2 arguments, and all return the number of bytes

written

 attempts to write variables containing data types incompatible with JSON

will be flagged at compile time

 escaped characters will be created as needed

77

JSON parsing

 All JSON to be parsed must be in UTF-8 with the compiler and library

handling any necessary conversions to EBCDIC

 a series of “get” functions are provided and all have a buffer address and

buffer length as their first 2 arguments, and all return the number of bytes

read

 attempts to read variables containing data types incompatible with JSON

will be flagged at compile time

 whitespace characters will be skipped over when found

78

JSON

 For example, suppose we have this sample JSON text

{ "passes“ : 3, "data“ :

[

]

}

 And that it is in a buffer at address p and of length n

{ "name“ : "Mather", "elevation“ : 12100 }
, { "name“ : "Pinchot", "elevation“ : 12130 }
, { "name“ : "Glenn", "elevation“ : 11940 }

79

JSON

 If we had a corresponding PL/I structure

• dcl

• 1 info

• 2 passes fixed bin(31), 2 data(3),

• 3 name char(20) varying,

• 3 elevation fixed bin(31);

 Then jsonGetValue(p, n, info) will by itself fill in the whole structure

 This one simple function call would do all the work for you

80

JSON

 But if we did not know how many data instances we would get, our
PL/I structure might instead look like

dcl

1 info based(q)

2 count fixed bin(31),

2 data(passes refer(count)),

3 name char(20) varying,

3 elevation fixed bin(31);

 And it would have to be dynamically allocated – but this is still easy:

81

JSON

 And this works, of course, no matter how much whitespace is present

 Four built-in references would suffice:

rd = jsonGetObjectStart(p,n); /* read over { */

rd = jsonGetMember(p+rd,n-rd,passes); /* read “passes”:3 and assign it */

allocate info;

rd = jsonGetComma(p+rd,n-rd); /* read over , */

rd = jsonGetValue(p+rd,n-rd,info.data); /* read “data” … and assign it */

82

Insert

Custom

Session QR

if Desired.

Increased functionality

83

INLIST

 This built-in function is useful in determining if a value belongs to a set of

values and allows you to put a SELECT in the middle of an IF

 It requires a minimum of 3 arguments and accepts a maximum of 64

 INLIST(x, a, b, c, …) is equivalent to (x = a) | (x = b) | (x = c) …

 All the arguments must have computational type

 The compiler will optimize this when possible

84

INLIST

 The arguments can be numbers, strings, or arbitrary expressions

if inlist(stadt, ‘Berlin’, ‘Bern’, ‘Rom’, ‘Wien’) then

if inlist(uppercase(stadt), ‘BERLIN’, ‘BERN’, ‘ROM’, ‘WIEN’) then

if inlist(x, 2, y, 7, z) then

if inlist(b, b1 | b2, ‘1100’b, b3 & b4) then

 These would all be converted to a short-circuited series of compares

85

INLIST

 But if the first argument is “nice” and the rest are all similar values, then the

compiler will turn the inlist reference into a branch table. For example,

inlist(x, 2, 3, 5, 7, 11, 13, 17, 19)

 would become a branch table if x is FIXED BIN(p,0) with p <= 31 or if X is FIXED

DEC(p,0) with p <= 9

 The values 2, 3, 5, etc don’t have to be literals – they can be named constants

(VALUEs) or restricted expressions

 And if all are CHAR(1), a simple table look-up is generated

86

INLIST

 Branch tables would also be built if

X is BIT(n) with 1 <= n <= 16 and the other arguments are bit constants

X is CHAR(1) and the other arguments are CHAR(1) constants

 Again the second and subsequent arguments don’t have to be literals –

they can be named constants (VALUEs) or restricted expressions

87

BETWEEN

 This built-in function is useful in determining if a value is in an interval

 It requires exactly 3 arguments

 BETWEEN(x, a, b) is equivalent to (x >= a) & (x <= b)

 All the arguments must be ordinals or have real numeric type

 The compiler will optimize this when possible

For example, if x, a, and b are all FIXED BIN(p,0) with p <= 31, then the

compiler will turn BETWEEN(x, a, b) into one comparison (not two!)

OORDINAL, CHAR(1), and WCHAR(1) are optimized in the same way

88

NULLENTRY

 This built-in function allows you to initialize an entry variable with a null

value – including static variables

 Dcl function_pointer limited entry static init(nullentry());

 You can also use it to test an entry value to see if it is null

89

PLISTCK, PLISTCKE, and PLISTCKF

 These built-in subroutiness will generate the corresponding instructions

 PLISTCK(x) sets an UNSIGNED FIXED BIN(64)

 PLISTCKE(x) sets a CHAR(16) NONVARYING

 PLISTCKF(x) sets an UNSIGNED FIXED BIN(64)

 Each returns a FIXED BIN(31) that is the condition code set by the

corresponding hardware instruction

90

SMFTOJULIAN and JULIANTOSMF

 These built-in functions convert between the Julian and SMF date formats

 SMFTOJULIAN(d) converts a CHAR(4) SMF date to a CHAR(7)
YYYDDDD

 JULIANTOSMF(d) converts a CHAR(7) YYYDDDD to a CHAR(4) SMF

 No error checking is done at run-time for these functions – the
conversions are done in-line, and the input data must be valid

91

PLISAX

 These built-in functions now allow the event function pointers to be null

 When null, the event will not be called

 This allows you to write smaller, faster XML parsing code

 It requires a library PTF (but not the 4.5 compiler)

92

REINIT

 This statement allows you to reset a variable with its INITIAL values

 The variable must be level-one, unsubscripted with storage class

AUTOMATIC

BASED

CONTROLLED

STATIC

93

SYSDIMSIZE

 This preprocessor built-in function returns the number of bytes needed to

hold the largest array bound

 Under CMPAT(V1), SYSDIMSIZE returns 2

 Under CMPAT(V2), SYSDIMSIZE returns 4

 Under CMPAT(V3), SYSDIMSIZE returns 8

94

SYSPOINTERSIZE and SYSOFFSETSIZE

 These preprocessor built-in functions return the size (in bytes) of a

POINTER and an OFFSET

 As of now, they always return a 4

 But when 64-bit code is supported they could return an 8, and they will be

useful in writing code that will compile and run correctly both in 32-bit and

in 64-bit mode

95

SYSPOINTERSIZE and SYSOFFSETSIZE

 For example, you could use syspointersize to declare C's malloc

%then

fixed

%do;

bin(63);

fixed bin(31);

%if syspointersize = 8

define alias size_t

%end; %else %do;

define alias size_t

%end;

dcl malloc ext('malloc')

entry(type size_t byvalue)

returns(byvalue pointer)

options(linkage(optlink) nodescriptor);

 And this would be correct for 32- and 64-bit

96

XML compiler option

 This option now supports an XMLATTR suboption with suboptions of

APOSTROPHE or QUOTE

 It determines whether XML attributes are enclosed as '…' or “....”

 It requires a library PTF (as well as the 4.5 compiler)

97

Quotes in pictures

 The apostrophe symbol is now accepted in PICTURE specifications

 With the same usage as the comma or period symbol

 This requires only a library PTF

98

Insert

Custom

Session QR

if Desired.

Added features to enforce code quality

99

RULES(NOLAXRETURN)

 Previously RULES(NOLAXRETURN) caused the compiler to generate

code to raise the ERROR condition if

RETURN; was hit in a PROC with the RETURNS attribute

RETURN(...); was hit it a PROC without the RETURNS attribute

 Now the options has been enhanced so that the compiler will raise the

ERROR condition if code falls through to the END statement in a PROC

with the RETURNS attribute

100

RULES(NOLAXRETURN)

 This makes it much easier to detect the lack of the desired statement after

the else in this segment of real customer code

func: proc(. . .) returns(fixed bin(31));

. . .

if flags = ''b then; else

return(0);

end;

 This problem would probably now be resolved within minutes rather than

days it took to resolve it previously via the PMR process

101

MAXBRANCH option

 The new MAXBRANCH compiler option lets you find blocks

(PROCEDUREs and BEGIN-blocks) that are perhaps too complex. More

precisely, it flags any block that has too many conditional branches

 A statement of the form "if a then ...; else ..." adds 1 to the total number of

branches in its containing block, and a statement of the form "if a = 0 | b =

0 then ..." adds 2.

 SELECT statements and conditional DO loops also to the total

 The default is MAXBRANCH(2000)

102

NONASSIGNABLE option

 The new NONASSIGNABLE suboption of the DEFAULT compiler option

now supports INONLY and STATIC as suboptions

 NONASSIGNABLE(INONLY) specifies that parameters declared with the

INONLY attribute are given the NONASSIGNABLE attribute.

 NONASSIGNABLE(STATIC) specifies that STATIC variables are given

the NONASSIGNABLE attribute.

 These suboptions have no effect on variables that are explicitly given the

ASSIGNABLE or NONASSIGNABLE attribute or on structure members

that have inherited the ASSIGNABLE or NONASSIGNABLE attribute from

a parent where it was explicitly specified.

103

NONASSIGNABLE option

 BYVALUE parameters are given the INONLY attribute after the resolution
of the (NON)ASSIGNABLE attribute, and hence the
NONASSIGNABLE(INONLY) suboption has no effect on BYVALUE
parameters (unless, of course, they are explicitly given the INONLY
attribute).

 To specify that both STATIC and INONLY variables are to be given the
NONASSIGNABLE attribute, then you must specify the suboption
NONASSIGNABLE(STATIC INONLY).

 The NONASSIGNABLE attribute may be specified without any suboptions,
in which case it has the same meaning as in previous releases, namely
NONASSIGNABLE(STATIC).

104

RULES(NOLAXQUAL)

 The NOLAXQUAL suboption of RULES now accepts another
choice of suboptions:

 Under the default NOLAXQUAL(ALL), the compiler will flag all
violations of the qualifications rules (either STRICT or LOOSE)

 But under NOLAXQUAL(FORCE), the compiler will flag only those
violations when the element belongs to a structure with the new
FORCE(NOLAXQUAL) attribute

 This gives you the ability to enforce mandatory qualification on a
structure-by-structure basis

105

RULES(NOLAXNESTED and NOPADDING)

 The new ALL | SOURCE suboptions to the
RULES(NOLAXNESTED) and RULES(NOPADDING) compiler
options provide finer control over when the compiler flags
questionable coding

 Under ALL, all violations are flagged

 Under SOURCE, only those violations that occur in the primary
source file are flagged

 This matches what is already supported for RULES(NOUNREF)

 For each of these options, ALL is the default

