
Understanding Someone Else's

ACS Routines

Neal Bohling and Chris Taylor

IBM

August 13, 2015

Session# 17836

Agenda

• The Problem

• Quick ACS Review

• Tools and Preparation

• Scenarios

• Debugging ACS

• Adding a Rule

• Preparing for Transitions

• Considering a Rewrite?

• General ACS Tips

IF &LABEL ¬= &DSN(3)

THEN

DO

WRITE '&LABEL NOT SET AS INDICATED BY &DSN(3)'

WRITE '&LABEL NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE '&LABEL = '&LABEL' VERIFIED BY DATACLAS'

END

IF &DSN(4) = 'ONE'

THEN

DO

IF &FILENUM ¬= 1

THEN

DO

WRITE '&FILENUM NOT 1 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE 'DATACLAS ACS ROUTINE -

VERIFIED &FILENUM = '&FILENUM' '

END

END

ELSE

IF &DSN(4) = 'TWO'

THEN

DO

IF &FILENUM ¬= 2

THEN

DO

WRITE '&FILENUM NOT 2 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

ELSE

IF &DSN(4) = 'TWO'

THEN

DO

IF &FILENUM ¬= 2

THEN

DO

WRITE '&FILENUM NOT 2 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

IF &LABEL ¬= &DSN(3)

THEN

DO

WRITE '&LABEL NOT SET AS INDICATED BY &DSN(3)'

WRITE '&LABEL NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE '&LABEL = '&LABEL' VERIFIED BY DATACLAS'

END

IF &DSN(4) = 'ONE'

THEN

DO

IF &FILENUM ¬= 1

THEN

DO

WRITE '&FILENUM NOT 1 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE 'DATACLAS ACS ROUTINE -

VERIFIED &FILENUM = '&FILENUM' '

END

END

IF &LABEL ¬= &DSN(3)

THEN

DO

WRITE '&LABEL NOT SET AS INDICATED BY &DSN(3)'

WRITE '&LABEL NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE '&LABEL = '&LABEL' VERIFIED BY DATACLAS'

END

IF &DSN(4) = 'ONE'

THEN

DO

IF &FILENUM ¬= 1

THEN

DO

WRITE '&FILENUM NOT 1 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

EXIT CODE(16)

END

ELSE

DO

WRITE 'DATACLAS ACS ROUTINE -

VERIFIED &FILENUM = '&FILENUM' '

END

END

ELSE

IF &DSN(4) = 'TWO'

THEN

DO

IF &FILENUM ¬= 2

THEN

DO

WRITE '&FILENUM NOT 2 AS INDICATED BY &DSN(4)'

WRITE '&FILENUM NOT VERIFIED BY DATACLAS'

2

The Problem

• All routines require periodic updates

• Multiple writers may have different styles

• Special clauses can get added

• Over time, these updates can

cloud the original intent and logic

3

The Solution!

• Unfortunately there is no easy solution.

• But you can do to make it easier!

• The Purpose of this Presentation:

– Demonstrate how to find the info you need

– Tips and tricks for making current ACS easier to read

– Discuss concepts for good ACS

4

Part 1 – ACS Review

SMS Review

SMS has 4 classes:

– Data class – assigns allocation
defaults (like size, volcnt)

– Storage class* – assigns
performance attributes

– Management class – defines
backup characteristics

– Storage group* – groups of
volumes

Each class has it's own ACS
routine

*required to be SMS-managed

6

Base Configuration

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

CONTROL DATA SET

DC SC MC SG

• Automated Class

Selection

• User-defined rules

• Assigns SMS classes

• YOU tell SMS how to act

What is ACS?

7

Base Configuration

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

FILT

IF &
THEN

DO

CONTROL DATA SET

DC SC MC SG

Sample ACS

PROC STORCLAS
FILTLIST DBVOLS INCLUDE(IMS*,DB2*) /* ALL DATABASE VOLUMES */

EXCLUDE('IMS053','DB2007')
FILTLIST DBJOBS INCLUDE(IMS*,PROD*,ACCT*) /* ALL DATA BASE JOBS */
FILTLIST VALID_UNITS
INCLUDE('3330','3340','3350','3375','3380',

'3390','SYSDA','') /* VALID UNITS FOR SMS */
IF &UNIT ^= &VALID_UNITS

THEN DO
SET &STORCLAS = ''
WRITE 'INVALID UNIT TYPE FOR SMS ALLOCATION'
EXIT

END
SELECT

WHEN (&DSN = SYS1.**) /* SYSTEM DATA */
SET &STORCLAS = 'SYSTEM'

WHEN ((&ALLVOL = &DBVOLS) && (&JOB = &DBJOBS)) /* DATABASE DATA */
SET &STORCLAS = 'DBPOOL'

WHEN ((&DSN(3) = 'CLEAR') | (&ANYVOL ^= TSO*)) /* NON-SMS DATA */
SET &STORCLAS = '‘

WHEN (&DEF_STORCLAS ^= '') /* IF DEFAULTS EXIST */
SET &STORCLAS = &DEF_STORCLAS;

OTHERWISE
SET &STORCLAS = 'COMMON' /* ALL OTHER DATA */

END

8

ACS Syntax Notes

• Always start with a PROC

• END everything – DO, PROC, SELECT

• IF needs THEN

• SELECT should have WHEN and OTHERWISE

• /* Comments look like this */

• Literals are in quotes: 'MY.DATASET' or '3390'

• Masks are not in quotes: MY.* or 33*

• +/- continue literals to the next line

9

10

Processing Order

DC

MC SG

SC

VOL

JOB StartsJOB Starts DATACLAS

Routine

DATACLAS

Routine
STORCLAS

Routine

STORCLAS

Routine

Data Set AllocatedData Set Allocated

Volume

Selection

Volume

Selection
STORGRP

Routine

STORGRP

Routine
MGMTCLAS

Routine

MGMTCLAS

Routine

ACS Philosophy

Several Approaches to ACS routines:

(note: not mutually exclusive)

11

Speedy Clever Maintainable

Best Method

• No such thing – very dependent on needs

• Good idea to lean toward MAINTAINABLE

• Don’t overcomplicate - KISS

13

Part 2 – Preparation and Tools

15

Step 1 – Make a Pass through ACS

• Make a copy of your ACS and SCDS

• For safety – do any edits on the copy

• Example JCL at end of presentation

• Indent <optional>

• Indent after every DO, IF, SELECT

• Remove indent at every END, ELSE

• Many text-editors have auto-indent

• Comment where you can -

• /* document what you already know */

• Add WRITE statements to help trace routines

• Write down all the variables involved in decisions

New:

/* Check for test data */

IF &DSN(1) = 'TEST' THEN DO

/* Check if UNITs are VALID */

IF &UNIT ^= &VALID_UNITS THEN DO

/* if invalid, set NULL */

SET &STORCLAS = ''

WRITE 'INVALID UNIT TYPE'

EXIT

END

ELSE DO

SET &STORCLAS = 'TEST'

WRITE 'TEST DATA'

END

END

Old:

IF &DSN(1) = 'TEST' THEN DO

IF &UNIT ^= &VALID_UNITS

THEN DO

SET &STORCLAS = ''

EXIT

END

ELSE SET &STORCLAS = 'TEST'

END

Example

16

Step 2 – Chart the Logic

• Spreadsheet or Table

• Variables across the top

• Classes down the side

17

18

Set Up Your Tools

• Set Up Your Text Editor!

• Highlight DO/END pairs (ISPF HILITE LOGIC)

• Highlight IF/ELSE pairs (ISPF HILITE LOGIC)

• Enable auto-indent (if available)

• Possibly build your own highlighting (if available)

• ISMF Option 7.4 and NaviQuest – ACS Testing

• Run combinations of variables to see what comes out

• Define sets of test cases and run them together

• Compare results before and after ACS changes

Example of HILITE LOGIC

ACS Testing – ISMF 7.4

20

Panel Utilities Help
──

ACS APPLICATION SELECTION
Command ===>

Select one of the following options:
4 1. Edit - Edit ACS Routine source code

2. Translate - Translate ACS Routines to ACS Object Form
3. Validate - Validate ACS Routines Against Storage Constructs
4. Test - Define/Alter Test Cases and Test ACS Routines
5. Display - Display ACS Object Information
6. Delete - Delete an ACS Object from a Source Control Data Set

If Display Option is Chosen, Specify:

CDS Name . . 'NEAL.SMS.SCDS'
(1 to 44 Character Data Set Name or 'Active')

Use ENTER to Perform Selection;
Use HELP Command for Help; Use END Command to Exit.

ACS Testing – Define Testcase

21

Panel Utilities Help
──

ACS TEST SELECTION
Command ===> _

Select one of the following Options:

1 1. DEFINE - Define an ACS Test Case
2. ALTER - Alter an ACS Test Case
3. TEST - Test ACS Routines

If DEFINE or ALTER Option is Chosen, Specify:

ACS Test Library . . 'NEAL.SMS.ACS' _
ACS Test Member . . TSTDA___

ACS Testing – Define Testcase

22

Panel Utilities Scroll Help
──

ACS TEST CASE ALTER Page 1 of 4
Command ===>

ACS Test Library : NEAL.SMS.ACS
ACS Test Member . : TSTDA

To ALTER ACS Test Case, Specify:
Description ==> TESTING NEW RULE
Expected Result DC = BDAMSTUF
DSN (DSN/Collection Name) . . SPECIAL.JKTEST.NONVSAM
MEMN (Object Name)
Sysname . . . Xmode Def_dataclas . .
Sysplex . . . ACSenvir . . ALLOC Def_mgmtclas . .
DD Dataclas . . Def_storclas . .
Dsorg DA Mgmtclas . . Dsntype
Recorg . . . Storclas . . If Ext
Dstype . . . Storgrp . . . Seclabel
Dsowner . . . Size Space_Type . . .
Expdt Maxsize . . . Second_Qty . . .
Retpd Blksize . . .

Use ENTER to Perform Verification; Use DOWN Command to View next Panel;
Use HELP Command for Help; Use END Command to Save and Exit; CANCEL to Exit.

ACS Testing – Running a Test

23

ACS TEST SELECTION MEMBER TSTDA SAVED
Command ===>

Select one of the following Options:

3 1. DEFINE - Define an ACS Test Case
2. ALTER - Alter an ACS Test Case
3. TEST - Test ACS Routines

If DEFINE or ALTER Option is Chosen, Specify:

ACS Test Library . . 'NEAL.SMS.ACS'
ACS Test Member . . TSTDA

ACS Testing – Running a Test

24

TEST ACS ROUTINES
Command ===>

To Perform ACS Testing, Specify:

CDS Name 'NEAL.SMS.SCDS'
(1 to 44 Character Data Set Name or 'Active')

ACS Test Library . . 'NEAL.SMS.ACS'
ACS Test Member . . TSTDA (fully or partially specified or * for all

members)
Listing Data Set . . LISTING2

(1 to 44 Character Data Set Name or Blank)

Select which ACS Routines to Test:

DC ===> Y (Y/N) SC ===> Y (Y/N) MC ===> Y (Y/N) SG ===> Y (Y/N)

Use ENTER to Perform Verification and Testing;
Use HELP Command for Help; Use END Command to Exit.

ACS Testing - Results

25

ACS TESTING RESULTS

CDS NAME : NEAL.SMS.SCDS
ACS ROUTINE TYPES: DC SC MC SG
ACS TEST LIBRARY : NEAL.SMS.ACS

ACS TEST
MEMBER EXIT CODE RESULTS
--------- ---------- ------------------------------------
DESCRIPTION: TESTING NEW RULE
EXPECTED RESULT: DC = BDAMSTUF
TSTDA 0 DC = BDAMSTUF

0 SC = SMS
MSG : STORCLAS=SMS

0 MC = NULL VALUE ASSIGNED
0 SG = SGA

MSG : STORGRP=SGA

ACS TESTING RC: 00

NaviQuest – ISMF 11

• Subset of ISMF Panels (option 11)

• Generates Libraries of Test Cases

• Data from ISMF Lists, DCOLLECT data, SMF data

• Compare test results from before / after changes

• Generates reports

• Can be done via BATCH

• For more info, see Share Seattle session 17045

26

26

6 Storage Group - Specify Volume Names and Free Space Thresholds
7 Automatic Class Selection - Specify ACS Routines and Test Criteria
8 Control Data Set - Specify System Names and Default Criteria
9 Aggregate Group - Specify Data Set Recovery Parameters
10 Library Management - Specify Library and Drive Configurations
11 Enhanced ACS Management - Perform Enhanced Test/Configuration Management
C Data Collection - Process Data Collection Function
G Report Generation - Create Storage Management Reports
L List - Perform Functions Against Saved ISMF Lists
P Copy Pool - Specify Pool Storage Groups for Copies
R Removable Media Manager - Perform Functions Against Removable Media

27

Computers are like

Old Testament gods;

lots of rules and no mercy.”

- Joseph Campbell

Part 3 – Scenarios

29

The Common Question

“Why was X assigned

when I expected Y?”

30

Break it Down

Why was X assigned

when I expected Y?

Why was X assigned?
How do we get

Y assigned?

Start at the End

• Find all SETs that match

• Work backwards, noting
IF/SELECT requirements

• Eliminate redundant
requirements

• Pros / Cons

– Shorter

– Need less DS information

• Two+ ways to solve this.

Start at the Beginning

• Trace ACS

• Take each IF that matches

• End when you find the right
SET

• Pros / Cons

– Can be long

– There could be multiple
paths

– May miss fall-through logic

Why was X assigned?

31

Working Backwards - Example

• “WRONGDC” data class was incorrectly assigned

• DSNAME : 'SPECIAL.JKTEST.NONVSAM'

• Step 1 – Find where “WRONGDC” is set..

• Two places, with IF just before each SET:

– IF &DSN(2) = ‘JKTEST’

– IF &DATACLAS = ‘’

• Step 2 – Find IF statement before IF statements:

– IF &JOB = &CICSJOB

– ELSE (aka IF &JOB NE &CICSJOB)

32

33

PROC DATACLAS

FILTLIST ADMINS INCLUDE('BOB','LARRY','MOE')
FILTLIST CICSJOBS INCLUDE(CICS*,'CISPECL')

/* DATA CLASSES */
/* FLATSM - flat files, small, < 50mb */
/* FLATBIG - flat files, big > 50mb */
/* LIBS - PDS, PDSE */
/* VSAM - VSAM files */
/* CICSVS - VSAM files for CICS */
/* TEMPS - temporary */
/* JACKS - jacks testing DC */
/* WRONGDC - invalid combination */

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMPS'

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'
IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO
IF &DSORG = 'PS' THEN DO

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'
IF &SIZE > 50MB THEN SET &DATACLAS = 'FLATSM'
ELSE SET &DATACLAS = 'FLATBIG'

END

IF &DSORG = 'PO' THEN SET &DATACLAS = 'LIBS'

IF &USER = &ADMINS THEN DO
SET &DATACLAS = 'ADMIN'
EXIT

END

IF &DSORG = 'VS' THEN DO
SET &DATACLAS = 'VSAM'
IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'
END

IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'

END
END

34

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'

IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO
..<omitted for brevity>..

IF &DSORG = 'VS' THEN DO
SET &DATACLAS = 'VSAM'
IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'
END

IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'

IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'
END
END

1

1

2

2

35

Working Backwards - Example

• Combine set of IF statements before SET to make a rule:

• IF &JOB = &CICSJOB AND &DSN(2) /= 'JKTEST'

• IF &JOB /= &CICSJOB AND &DATACLAS = '' (not set)

• Now we have the 2 cases where WRONGDC gets set

• Update the table:

&JOB &DSN(2) &USER &DATACLAS

WRONGDC &CICSJOBS NOT ‘JKTEST’

WRONGDC NOT &CICSJOBS null

36

Break it Down

Why was X assigned

when I expected Y?

Why was X assigned?
How do we get

Y assigned?

37

How do we get Y assigned?

• Let's say the DS is supposed to have DC = 'JACKS'

• Identify all places JACKS is set:

• IF &DSN(2) = 'JKTEST'

• IF &JOB = 'JKTEST'

• Find Second-level tests:

• IF &JOB = &CICSJOBS

• IF &JOB /= &CICSJOBS

38

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'
IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO
..<omitted for brevity>..

IF &USER = &ADMINS THEN DO
SET &DATACLAS = 'ADMIN'
EXIT

END
..<omitted for brevity>..

IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'

END
END

39

Update Table Again

• Now we know how to get what we want:

• &JOB = &CICSJOB AND &DSN(2) = 'JKTEST'

• &JOB /= &CICSJOB AND &JOB = 'JKTEST'

&JOB &DSN(2) &USER &DATACLAS

WRONGDC &CICSJOBS NOT ‘JKTEST’

WRONGDC NOT &CICSJOBS null

JACKS &CICSJOBS JKTEST

JACKS NOT &CICSJOB

& JKTEST

41

So what went wrong?

• Sort Rules by &JOB to consolidate

– IF &JOB = &CICSJOB

• IF &DSN(2) = 'JKTEST' – what we want

• ELSE – what we don't want

– IF &JOB /= &CICSJOB

• IF &JOB = 'JKTEST' – what we want

• IF &DATACLAS = '' - what we don't want

• We know &JOB was NOT &CICSJOB

&JOB ▼ &DSN(2) &USER &DATACLAS

WRONGDC NOT &CICSJOBS null

JACKS JKTEST

WRONGDC &CICSJOBS NOT ‘JKTEST’

JACKS &CICSJOBS JKTEST

42

What went wrong?

• Only two rules left:

• Difference is &JOB and &DATACLAS test…

• However, note that for &DATACLAS to be null (rule 1),
these other rules could not have hit:

– IF &DSORG = ‘PS’ or ‘PO’ or ‘VS’

– IF &USER = &ADMINS

– IF &JOB = ‘JKTEST’

&JOB ▼ &DSN(2) &USER &DATACLAS

WRONGDC NOT &CICSJOBS null

JACKS JKTEST

WRONGDC &CICSJOBS NOT ‘JKTEST’

JACKS &CICSJOBS JKTEST

43

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'
IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO
..<omitted for brevity>..

IF &USER = &ADMINS THEN DO
SET &DATACLAS = 'ADMIN'
EXIT

END
..<omitted for brevity>..

IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'

END
END

44

Finish the Table

• Update the Table with this new Info

&JOB ▼ &DSN(2) &USER &DC &DSORG

WRONGDC NOT &CICSJOBS

NOT ‘JKTEST’

NOT

&ADMINS

NOT ‘PS’ or

‘PO’ or ‘VS’

JACKS JKTEST NOT

&ADMINS

WRONGDC &CICSJOBS NOT ‘JKTEST’

JACKS &CICSJOBS JKTEST

45

Getting it Right

• We Now Know:

– Variable combinations for WRONGDC

– Variable combinations for JACKS

• So to get JACKS, what needs to change?

• We're still missing some information…

• Gather available information about the job that ran:

• &JOB = 'MYTEST'

• &DSN(2) = 'JKTEST'

• &USER = 'JACK'

• &DATACLAS = TBD

• &DSORG = 'DA' (BDAM)

46

Add allocation knowns

• Add a row to the table with known information:

• FILTLIST reference:

– FILTLIST ADMINS INCLUDE('BOB','LARRY','MOE')

– FILTLIST CICSJOBS INCLUDE(CICS*,'CISPECL')

&JOB ▼ &DSN(2) &USER &DC &DSORG

WRONGDC NOT &CICSJOBS

NOT ‘JKTEST’

NOT

&ADMINS

NOT ‘PS’ or

‘PO’ or ‘VS’

JACKS JKTEST NOT

&ADMINS

MYDS ‘MYTEST’ ‘JKTEST’ ‘JACK’ ? ‘DA’

47

What went wrong?

• Jack was doing some CICS testing under a different job

name than usual: ‘MYTEST’ instead of ‘JKTEST’

• To get DC = 'JACKS', for NON-CICS, the

JOBNAME needs to be 'JKTEST'

• This was just a simple example – working through the logic

this way can help with bigger, more complex ACS

• Use ACS testing to verify results!

ACS Testing Example

ACS TEST CASE ALTER Page 1 of 4

Command ===>

ACS Test Library : NEAL.SMS.ACS

ACS Test Member . : TEST1

To ALTER ACS Test Case, Specify:

Description ==> TESTING JKTEST

Expected Result

DSN (DSN/Collection Name) . . SPECIAL.JKTEST.NONVSAM

MEMN (Object Name)

Sysname . . . Xmode Def_dataclas . .

Sysplex . . . ACSenvir . . ALLOC Def_mgmtclas . .

DD Dataclas . . Def_storclas . .

Dsorg DA Mgmtclas . . Dsntype

Recorg . . . Storclas . . If Ext

Job MYTEST Pgm Vol

Run once with MYTEST (TEST1)

Run again with JKTEST (TEST2)

ACS Testing Results

ACS TESTING RESULTS

CDS NAME : NEAL.SMS.SCDS
ACS ROUTINE TYPES: DC
ACS TEST LIBRARY : NEAL.SMS.ACS

ACS TEST
MEMBER EXIT CODE RESULTS
--------- ---------- ------------------------------------
DESCRIPTION: TESTING JKTEST
EXPECTED RESULT:

TEST2 0 DC = JACKS

ACS TESTING RC: 00

ACS TESTING RESULTS

CDS NAME : NEAL.SMS.SCDS
ACS ROUTINE TYPES: DC
ACS TEST LIBRARY : NEAL.SMS.ACS

ACS TEST
MEMBER EXIT CODE RESULTS
--------- ---------- ------------------------------------
DESCRIPTION: TESTING JKTEST
EXPECTED RESULT:

TEST1 0 DC = WRONGDC

ACS TESTING RC: 00

50

A few notes:

• Logic Chart works best where all SETs are mutually exclusive

• If you have fall-through logic, you may consider using an
ORDER field as well to sequence logic

• Try to avoid testing &DATACLAS in DC routines
– Often a failsafe, but complicates logic

– Or remove / add WRITE when debugging

• Adding EXIT after each SET is good practice,
but can complicate logic

• Strategic WRITE statements can help
demonstrate decision logic

• Use ACS testing to run your modified ACS to track logic

51

Summary of Scenario 1:

• Tracked backwards from the SET

• Created a TABLE or MAP to detail conditions / rules

• Compared actual rules to expected result

• Found culprit

• Tested changes with ACS Tester

52

“To err is human - and to blame it on a

computer is even more so.”

- Robert Orben

53

Scenario 2

“We added a class, and now we

need to update the routines.”

54

Updating Routines - Overview

• Varying difficulty, depending on new rules

• Simpler with a table or MAP

• Basic steps:

• Copy and work on copy!

• Find logic section that matches

• Insert new rule

• Test, fix, test, fix

55

Updating Routines – Don't

• Don't just add a simple rule to the beginning:

• IF &DSORG=”VS” THEN SET &DATACLAS = “VSAM”

• You’ll bypass all your old routines!

• Don't just add a simple rule to the end:

• It might never get run

• It might overwrite a different set (watch out for fall through)

• Don't forget to comment

• Don't use variables that are not used anywhere else

• You'll end up with non-exclusive paths

• Try to use consistent logic

56

Understand the Logic

• How do the routines select classes?

• What variables are used?

• Build a table or MAP:

57

Adding Rules - Example

• We want to add a new class BDAMSTUF

• Non-CICS

• DSORG='DA'

• Add to the MAP:

58

Adding Rules - Example

• Compare to other rules by Variable

• Only two in play: &JOB and &DSORG

• Fits in our NOT &CICSJOB section

• Fits next to other &DSORG tests

59

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMPS'

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'
IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO
IF &DSORG = 'PS' THEN DO

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'
IF &SIZE > 50MB THEN SET &DATACLAS = 'FLATSM'
ELSE SET &DATACLAS = 'FLATBIG'

END

IF &DSORG = 'PO' THEN SET &DATACLAS = 'LIBS'

IF &USER = &ADMINS THEN DO
SET &DATACLAS = 'ADMIN'
EXIT

END

IF &DSORG = 'VS' THEN DO
SET &DATACLAS = 'VSAM'
IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'

END

IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'

END

&DSORG

Section

NOT

&CICSJOB

60

Adding Rules - Example

• Insert the new rule:

• IF &DSORG='DA' THEN SET &DATACLAS = 'BDAMSTUF'

• This many IF statements should be a SELECT

• Use the best practices already in use in the routine

• Don't change practices unless you're ready to rewrite

• Note your update in the CHANGELOG

• If one doesn't exit, CREATE ONE!

61

PROC DATACLAS

FILTLIST ADMINS INCLUDE('BOB','LARRY','MOE')
FILTLIST CICSJOBS INCLUDE(CICS*,'CISPECL')

/* DATA CLASSES */
/* FLATSM - flat files, small, < 50mb */
/* FLATBIG - flat files, big > 50mb */
/* LIBS - PDS, PDSE */
/* VSAM - VSAM files */
/* CICSVS - VSAM files for CICS */
/* TEMPS - temporary */
/* JACKS - jacks testing DC */
/* WRONGDC - invalid combination */

/* CHANGE LOG */
/* 2013.08.13 – Added BDAMSTUF to NON-CICS group */
/* - Also switched from IF to SELECT block */

62

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMPS'

IF &JOB = &CICSJOBS THEN DO
IF &DSORG = 'VS' THEN SET &DATACLAS = 'CICSVS'
IF &DSN(2) = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
ELSE SET &DATACLAS = 'WRONGDC‘
END

ELSE DO

SELECT (&DSORG)
WHEN ('PS') DO

IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'
IF &SIZE > 50MB THEN SET &DATACLAS = 'FLATSM'
ELSE SET &DATACLAS = 'FLATBIG'

END
WHEN ('PO') SET &DATACLAS = 'LIBS'
WHEN ('VS') DO

SET &DATACLAS = 'VSAM'
IF &DSTYPE = 'TEMP' THEN SET &DATACLAS = 'TEMP'

END
WHEN ('DA') SET &DATACLAS = 'BDAMSTUF'
OTHERWISE SET &DATACLAS = 'WRONGDC'

END /* END SELECT &DSORG */

IF &USER = &ADMINS THEN DO
SET &DATACLAS = 'ADMIN'
EXIT

END
IF &JOB = 'JKTEST' THEN SET &DATACLAS = 'JACKS'
IF &DATACLAS = '' THEN SET &DATACLAS = 'WRONGDC'

END
END

Test Before / After

• Defined testcase with:

– DSN: SPECIAL.JKTEST.NONVSAM

– DSORG: DA

– ACSENVIR: ALLOC

– JOB: MYTEST

• BEFORE:

• AFTER:

ACS TEST
MEMBER EXIT CODE RESULTS
--------- ---------- ------------
DESCRIPTION: TESTING NEW RULE
EXPECTED RESULT:
TSTDA 0 DC = WRONGDC

ACS TEST
MEMBER EXIT CODE RESULTS
--------- ---------- ------------
DESCRIPTION: TESTING NEW RULE
EXPECTED RESULT:
TSTDA 0 DC = WRONGDC

64

Test, Fix, Test

• Use the ACS routine tester!

• Run a series of tests to verify new changes work

• Run a series of tests to ensure old rules still work

• If not, figure out why and fix

• Repeat

• Test again after activation

• You can use NaviQuest to build suites of tests

– See Seattle session 17045 – NaviQuest: Streamlining SMS

65

Adding Rules - Summary

• Make a copy

• Understand the logic

• Find relevant section

• Update CHANGELOG

• Add rule

• Avoid breaking anything

• Test, test, test

Part 4 – Preparing for Transitions
Some tips and things to consider

HSM Transitions

• HSM Transitions feature will re-run ACS routines

to assign to new classes (except DC)

• &ACSENVIR = ‘SPMGCLTR’

– SPace ManaGement CLass TRansitions

ORIGINAL

ALLOCATION

MC=USETRANS

Use Existing Logic

SG=TIER A

TRANSITION

PASS

MC/SC Change?

&ACSENVIR=

‘SPMGCLTR’

SG=TIER B

HSM Transitions

SELECT (&ACSENVIR)

WHEN(‘SPMGCLTR’) DO

/* Transition from one to another */

/* Re-use previous logic, but set phase 2 class */

IF(&DSN(2) = ‘LOGDATA’) THEN SET &STORGRP = …

/* Base decision off first assignment (not recommended) */

IF(&DATACLAS = ‘PASS1’) THEN SET &STORGRP = …

/* Completely new logic */

WRITE ‘DONT FORGET THE WRITE STATEMENTS’

END

OTHERWISE DO

/* OLD LOGIC, UNTOUCHED */

IF …

END

END

Part 5 – Considering a Rewrite?
Some tips and things to consider

Rewrite Process

• Make sure you understand the logic

• Have clearly defined rules BEFORE you start

• Consider how things might change in the future

• Group rules by variable in order of importance / frequency

• Code rules using nested SELECT / WHEN

• Create a suite of ACS Test cases (see NaviQuest)

• Run before / after to ensure logic works the same

• COMMENT your logic flow

• Prefer SELECT over IF

• Try to make logic mutually exclusive (one big decision tree)

• Code rules in order of most to least specific

• Use FILTLIST names that are helpful

• Use COPYFILT to keep common FILTLISTS the same

• EXIT after a SET

• Use WRITE statements liberally

• Test repeatedly

Rewrite DOs

Rewrite DON’Ts

• Use lists of IF statements (resist nesting)

• Mirror FILTLISTs between routines unless needed

• Base your logic of the DC or SC assignment

• Use huge numbers of variable

• Work on active SCDS / ACS

• Forget to Test, Test, Test!

References

• DFSMS Implementing System-Managed Storage

• SC26-7407

• DFSMSdfp Storage Administration

• SC26-7402

73

Understanding Someone Else's

ACS Routines

Neal Bohling and Chris Taylor

IBM

August 13, 2015

Session# 17836

Notices & Disclaimers

Copyright © 2015 by International Business Machines Corporation.

No part of this document may be reproduced or transmitted in any form without written permission from IBM Corporation.

Product information and data has been reviewed for accuracy as of the date of initial publication. Product information and data is

subject to change without notice. This document could include technical inaccuracies or typographical errors. IBM may make

improvements and/or changes in the products and/or programs described herein at any time without notice.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs

or services available in all countries in which IBM operates or does business. Consult your local IBM representative or IBM Business

Partner for information about the product and services available in your area.

Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be

used. Any functionally equivalent program, that does not infringe IBM's intellectually property rights, may be used instead. It is the

user's responsibility to evaluate and verify the operation of any non-IBM product, program or service.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"WITHOUT ANY WARRANTY, EITHER EXPRESS

OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR INFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted according to

the terms and conditions of the agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty, International Program

License Agreement, etc.) under which they are provided. IBM is not responsible for the performance or interoperability of any non-IBM

products discussed herein.

Notices & Disclaimers

The performance data contained herein was obtained in a controlled, isolated environment. Actual results that may be obtained in

other operating environments may vary significantly. While IBM has reviewed each item for accuracy in a specific situation, there is no

guarantee that the same or similar results will be obtained elsewhere.

The responsibility for use of this information or the implementation of any of these techniques is a customer responsibility and depends

on the customer's or user's ability to evaluate and integrate them into their operating environment. Customers or users attempting to

adapt these techniques to their own environments do so at their own risk. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE

ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO,

LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other

publicly available sources. IBM has not necessarily tested those products in connection with this publication and cannot confirm the

accuracy of performance, compatibility or another claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or

copyrights. Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and

objectives only.

Trademarks

DFSMSdfp, DFSMSdss, DFSMShsm, DFSMSrmm, IBM, IMS, MVS, MVS/DFP, MVS/ESA, MVS/SP, MVS/XA,

OS/390, SANergy, and SP are trademarks of International Business Machines Corporation in the United States,
other countries, or both.

AIX, CICS, DB2, DFSMS/MVS, Parallel Sysplex, OS/390, S/390, Seascape, and z/OS are registered trademarks
of International Business Machines Corporation in the United States, other countries, or both.

Domino, Lotus, Lotus Notes, Notes, and SmartSuite are trademarks or registered trademarks of Lotus

Development Corporation. Tivoli, TME, Tivoli Enterprise are trademarks of Tivoli Systems Inc. in the United

States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both. UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.

Other company, product, and service names may be trademarks or service marks of others.

