VSAM New Features in z/OS 2.2
(and revisit those from 2.1)

Neal Bohling
IBM, VSAM RLS Development

Session 17835
Overview

• **z/OS 2.2 New Features**
 – Index Record Locking *(RLS)*
 – Space Constraint Relief Enhancement for VSAM *(all)*
 – IDCAMS LISTSTATAT support *(RLS)*
 – Chained I/O for Spanned Records *(all)*
 – LSR Dynamic Buffer Addition *(VSAM)*
 – Linear DS Constraint Relief *(VSAM)*
 – Verify Enhancements *(VSAM)*
 – Other RAS Enhancements *(all)*
Index Record Locking
(sometimes called CA-level locking)
Current Split Logic

1. INSERT/SPLIT

2. ERASE/CI RECLAIM

Only one split/erase/reclaim per data set can occur simultaneously
With Index Record Locking

1. INSERT/SPLIT

2. INSERT/CI RECLAIM

Logically Locks the at the CA level
Lock based on Index sequence set CI
Example of old Component 1 Locking

- No more space in CI, so a SPLIT is needed
- SPLIT gets the Component1 lock (one per data set)
- Any other SPLIT or RECLAIM or spanned record activity must WAIT
Example of old Component 1 Locking

- No more space in CI, so a SPLIT is needed
- SPLIT gets the Component1 lock (one per data set)
- Any other SPLIT or RECLAIM or spanned record activity must WAIT
Example of old Component 1 Locking

Control Area 1

Control Interval
01 05 10

Control Interval
15 17 20 25

Control Area 2

Control Interval
61 65 70 75 80 85

Comp1 Lock

INSERT RECORD REC0017

INSERT RECORD REC0077

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Example of New Method

- No more space in CI, so a SPLIT is needed
- SPLIT gets the Component 1 class 4 lock (one per CA)
- Only other SPLIT / RECLAIM / spanned activity in the same CA must wait.
Example of New Component 1 Locking
Index Record Locking

- Locks at the CA level during:
 - CI SPLIT, CI RECLAIM, Spanned record activity
- CA split / reclaim activity will still use data-set level lock

- **Greatly reduces split pain point**
 - Reduced contention
 - Higher throughput for workloads with heavy INSERT

- New SMF fields (SMF42 subtype 15, 16 :: Component 1 class 4)
 - Obtain (ex. SMF42FPH)
 - True Contention (ex. SMF42FPI)
 - False Contention (ex. SMF42FPJ)
 - Release (ex. SMF42FPK)

- Lower releases will require toleration OA42676
Performance Measurements

- Three workloads on zEC12 / 8 logical CPs, CF 1 CP

- **Test #1 – Best Case**
 - 30 regions spread across 3 systems
 - Records inserted into different CAs throughout the DS

- **Test #2 – Average Case**
 - 30 regions across 3 systems
 - Random inserts that may include some CA splits

- **Test #3 – Worst Case**
 - Single task on a single system
 - Inserting randomly through the data set
Performance Improvement

Batch RLS Non-BWO Workload Runtime

- Best: 54% reduction
- Average: 15%
- Worst:

Elapsed Time (s)

V2R1

V2R2

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Performance Improvement

Batch RLS BWO Workload Runtime

- Best: 85%
- Average: 30%
- Worst: 56%

- V2R1
- V2R2

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Performance Improvement

SMSVSAM CPU (Best Case)

CPU (s)

0 5 10 15 20 25 30 35

z/OS 2.1 Non-BWO
z/OS 2.2 Non-BWO
z/OS 2.1 BWO
z/OS 2.2 BWO

SMSVSAM SRB SMSVSAM TCB

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

8/10/2015
Locking Performance Improvement

Component 1_1 Locking and Contention Across BWO and Non-BWO Batch Workloads

- Requests: Count
- Contention: Count

<table>
<thead>
<tr>
<th>Component</th>
<th>2.1</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests</td>
<td>Ideal</td>
<td></td>
</tr>
<tr>
<td>Contention</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Request</td>
<td>Worst</td>
<td></td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Space Constraint Relief Enhancement
Overview of Change

• VSAM Secondary Space Allocation now supports Space Constraint Relief (SCR)

• If SCR enabled, system obtains largest available extent rather than failing
VSAM Space Allocation Processing

Previous Method:

- Space is obtained in amounts defined by PRI / SEC
- **Primary Allocation:**
 - Tries Best-Fit (if VOLCNT > 1)
 - Tries Space Constraint Relief:
 - Reduces request amount by % specified
 - Removes 5-extent limit
- **Secondary Allocation:**
 - Tries to obtain secondary amount
 - Tries a new volume (EOV)
Current Secondary Space Allocation

- Volume A has 5 CYL free space
- Secondary allocation request comes in for 7 CYL

- It won't fit.
- Request fails.
VSAM Space Allocation Processing

New Method:
• Space is obtained in amounts defined by PRI / SEC
• Primary Allocation:
 – Tries Best-Fit (if VOLCNT > 1)
 – Tries SCR:
 • Removes 5-extent limit
 • Creates minimum size based on SCR values
 • Requests space in range (MIN – PRI)

• Secondary Allocation:
 – Requests largest extent available between minimum size defined by SCR and secondary size
 – Tries a new volume (EOV)
Fields

• **Data Class fields:**
 – Space Constraint Relief: Y
 – Reduce Space Up to (%): 0-99%

• **Reduce Space Up To means Remove up to that amount**

 • **Ex: 100cyl primary, 50cyl secondary, SCR set to 80%**
 – For primary: 100cyl * (1-.8) = 20cyl
 – For secondary: 50cyl * (1-.8) = 10cyl

• **Will return largest available extent that fits the range:**
 – Primary: 20cyl – 100cyl
 – Secondary: 10cyl – 50cyl
Current Secondary Space Allocation

- Volume A has 5 CYL free space
- Secondary allocation request comes in for 7 CYL

<table>
<thead>
<tr>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocated Space (10 cyl)</td>
</tr>
<tr>
<td>Satisfied Space (5 cyl)</td>
</tr>
<tr>
<td>Allocated Space (5 cyl)</td>
</tr>
</tbody>
</table>

- SCR set to 50%
 - Range is 3 – 7 CYL
- Request satisfied with 5 CYL extent
Space Reduction Enhancement

• Non-striped VSAM/RLS/PDSE/BAM/SAM all supported
• Data set must be SMS-managed
• For VSAM, resulting extent must be multiple of CA size

• To enable, set Data Class fields:
 – Space Constraint Relief: Y
 – Guaranteed Space Reduction. _ (Y or N)
 – Reduce Space Up to (%): 0-99

• New SMF fields:
 – SMF64SSR – if secondary space reduction was used
 – SMF64NTA – size of extent returned in Tracks

• On by default, but can be disabled via DISABLE(SSR) in DEVSUPxx
LISTSTAT – Statistics while VSAM is OPEN (RLS only)
LISTSTAT Command

- New IDCAMS command

IDCAMS SHCDS LISTSTAT(‘cluster’)*

- Provides point-in-time statistics:
 - SYSPLEX-wide
 - For currently OPEN VSAM data sets
 - VSAM RLS only

- Subset of LISTCAT and SMF64 information, but **does not require CLOSE**

- Available via OA42435 for 1.13 and 2.1
SHCDS LISTSTAT('NB.RLS.TEST2')

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER</td>
<td>NB.RLS.TEST2</td>
</tr>
<tr>
<td>DATA</td>
<td>NB.RLS.TEST2.DATA</td>
</tr>
<tr>
<td>TOTAL RECORDS</td>
<td>101</td>
</tr>
<tr>
<td>RECORDS DELETED</td>
<td>0</td>
</tr>
<tr>
<td>RECORDS INSERTED</td>
<td>1</td>
</tr>
<tr>
<td>RECORDS UPDATED</td>
<td>0</td>
</tr>
<tr>
<td>RECORDS RETRIEVED</td>
<td>0</td>
</tr>
<tr>
<td>HI-A-RBA</td>
<td>829440</td>
</tr>
<tr>
<td>INDEX</td>
<td>NB.RLS.TEST2.INDEX</td>
</tr>
<tr>
<td>TOTAL RECORDS</td>
<td>1</td>
</tr>
<tr>
<td>CA RECLAIMS</td>
<td>0</td>
</tr>
<tr>
<td>RECLAIMED-CA REUSES</td>
<td>0</td>
</tr>
<tr>
<td>RECORDS UPDATED</td>
<td>0</td>
</tr>
<tr>
<td>RECORDS RETRIEVED</td>
<td>0</td>
</tr>
<tr>
<td>HI-A-RBA</td>
<td>33792</td>
</tr>
<tr>
<td>HI-LEVEL-RBA</td>
<td>0</td>
</tr>
<tr>
<td>CI Splits</td>
<td>0</td>
</tr>
<tr>
<td>CA Splits</td>
<td>0</td>
</tr>
<tr>
<td>EXCPS</td>
<td>209</td>
</tr>
<tr>
<td>EXTENTS</td>
<td>1</td>
</tr>
<tr>
<td>FREE SPACE</td>
<td>774144</td>
</tr>
<tr>
<td>HI-U-RBA</td>
<td>829440</td>
</tr>
<tr>
<td>INDEX LEVELS</td>
<td>1</td>
</tr>
</tbody>
</table>
Chained I/O for Spanned Records
Chained I/O Simile

Vs.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Chained I/O

- Old Way – Segment Spanned Records into parts and loop

Record A

CI1 | CI2 | CI3

Write #1

Record A (1) → Record A (2)

Write #2

Record A (1) → Record A (2) → CI3

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Chained I/O

• New Way – Combine segments into one I/O call
Chained I/O

• **NSR and RLS supported**
 • LSR and GSR not currently supported

• VSAM NSR uses Chained IO for READ, PUT, and ERASE
• RLS uses Chained IO for PUT, ERASE (not read)

• No co-existence maintenance needed

• Benefits:
 – Reduces I/O overhead when using spanned records
 – Avoids a RC x’8C’ that can occur if I/O or system fails, ABEND, or cancel between writes of spanned records
VSAM Dynamic Buffer Addition
LSR Dynamic Buffer Addition

Connected components:

- Base Cluster
- PATH with UPGRADE
- Another PATH with UPGRADE

LSR Buffer Pool

Sometimes, it's not big enough!

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
LSR Dynamic Buffer Addition

• **GOAL:** Avoid failing a request due to buffer shortages
• **SOLUTION:** Dynamically add buffers to LSR pool as needed

• Invoked when LSR processing receives “no buffers available”
• Expands current pool with same settings
• New message: IDA9990I – indicates addition occurred

• NSR/GSR not supported
• Cross-memory mode, SRB mode, and TCB Key 9 not supported
LSR Dynamic Buffer Addition

• New Message:
 – IDA9990I VSAM DBA ADDED xxxx DATA|INDEX BUFFERS of yyyyy BYTES EACH TO SHRPOOL zzz BECAUSE THERE WERE INSUFFICIENT BUFFERS TO PROCESS THE REQUEST.

 RECOMMENDATION: FOR PERFORMANCE, REBUILD THE SHARED POOL WITH AN INCREASE IN SIZE.

• Will add buffers indefinitely if you let it!
• Added buffers may affect performance
 – LSR hash built with original pool size
 – Added buffers may cause unnecessary hash conflicts

• Final note:
 – Prevents errors from minor space miscalculations
 – Not meant to replace well-sized LSR pools
Linear Data Set Constraint Relief
Constraint Relief for Linear VSAM

• **Constraint #1 – Space below the bar**
 – VSAM control blocks are below the bar
 – Limits number of open data sets

• **Solution:**
 – Move some control blocks above the bar
 – Allows for many more open data sets

• **Constraint #2 – Close speed impacted by data set number**
 – Large numbers of data sets create large numbers of AMBL blocks
 – Large numbers of users per data set adds even more blocks
 – CLOSE processing takes time to find the right one

• **Solution:**
 – Use a tree instead of a chain
 – Significant improvements to CLOSE processing time with large numbers of open data sets
• 13% improvement for 100k data sets (11:20 vs 13m)
• Note – the more data sets, the better the close performance
IDCAMS Verify Recover Enhancements
Verify Enhancements

• IDCAMS VERIFY only fixes a small number of problems
• IDCAMS EXAMINE can find many more

• z/OS 2.2 enhances EXAMINE and VERIFY RECOVER
 • EXAMINE passes error information to VERIFY RECOVER
 • VERIFY RECOVER uses that information to repair

• z/OS 2.2 builds the framework for future enhancement
Verify Enhancements

EXAMINE

- Scans DATA and INDEX
- Finds and reports problems
- Bundles problem information
- Passes to VERIFY RECOVER

VERIFY RECOVER

- Receives problem information
- Parses for errors it knows how to fix
- Fixes errors
Ways to Run Verify

- **IDCAMS VERIFY** (current)
 - Corrects end of file information (HURBA / VVR / catalog)
 - Repairs behind the scenes if previous close failed

- **IDCAMS VERIFY RECOVER** (current)
 - Completes or backs out any interrupted CA reclaim activity

- **IDCAMS EXAMINE / VERIFY RECOVER in same step (New)**
 - EXAMINE stores information about any problems
 - VERIFY RECOVER parses error information and attempts repair
 - z/OS 2.2 can repair:
 - IDC11718I DATA COMPONENT HIGH-USED RBA IS NOT EQUAL TO CA SIZE
 - IDC11728I DATA FOUND IN EMPTY CI
 - IDC11724I DATA COMPONENT CA NOT KNOWN TO SEQUENCE SET
Other RAS Enhancements

• **Additional feedback in message IDA9999I**
 - If VSAM auto dump fails, it currently issues IDA9999I without much helpful information (no RPL/job)
 - IDA9999I updated to output RPL feedback and JOBNAME:
 IDA9999I VSAM AUTO DUMP FAILED TO TAKE A DUMP FOR RPL FEEDBACK CODE rpl_feedback_code DUE TO SDUMPX RSN/RC sdump_reason/return_codes FOR JOB jobname

• **Additional Cleanup for Non-SMS EOV Failures**

• **Catalog Statistics update** – Permanently records stats in VVR for catalogs
Summary

• **z/OS 2.2 New Features**
 – Index Record Locking *(RLS)*
 – Primary and Secondary Space Reduction *(all)*
 – IDCAMS LISTSTAT support *(RLS)*
 – Chained I/O for Spanned Records *(all)*
 – LSR Dynamic Buffer Addition *(VSAM)*
 – Linear DS Constraint Relief *(VSAM)*
 – Verify Enhancements *(VSAM)*
 – Other RAS Enhancements *(all)*
Overview

• **z/OS 2.1 New Features**
 – RLS for Catalogs
 – Dynamic Volume Count for RLS
 – Directory Only Caching (RLS)
 – OMEGAMON XE Support (RLS)
 – Data Class ACCBIAS and RMODE31 (VSAM)
 – Other enhancements
RLS User Catalogs
Current Catalog Limitations

• **Performance**
 – Updates require SYSIGGV2 ENQ – can cause conflict
 – Catalog sharing / caching can be limited
 – Limited VSAM buffers/strings/storage

• **Availability**
 – Catalogs may need to be split to resolve contention
 – Catalogs unavailable during split / recovery

• **Integrity**
 – Catalogs can be damaged by utilities updating while OPEN
 – No central SYSPLEX control and serialization

• **Recovery**
 – Process can be long and tricky
Regular Catalog Access

- Catalog ASID on SYS1
- Catalog ASID on SYS2
- Catalog ASID on SYS3

Potential contention on SYSIGGV2 'ucat' during updates
SMSVSAM is responsible for serialization. Serialization is at the RECORD level instead of DS. No more SYSIGGV2 'ucat' ENQ contention.
Improvements RLS Offers

• **Reduced contention**
 – Eliminates SYSIGGGV2 'UCAT' ENQ contention
 – Plans to remove the SYSIGGGV2 'sphere' ENQ
 – No need to split catalogs to lower contention

• **Higher throughput**
 – Significant improvement in elapsed time & CPU
 – Much shorter wait times

• **Improved control**
 – Suspend / resume ALL catalogs, plex-wide
 – Prevents un-serialized updates
RLS for Catalogs

• To ENABLE for a single catalog:
 – Ensure Catalog has Storage Class with Cache Set
 – IDCAMS ALTER ucat LOG(NONE)
 – F CATALOG,RLSENABLE(ucat)
 – IEC352I MODIFY CATALOG cat.name TO STATE RLSENABLE SUCCESSFUL
 – F CATALOG,RLSQUIESCE(ucat)

• Notes:
 – Requires that SMSVSAM be up and active
 – Only available on z/OS 2.1 and up
 – < 1.13 need toleration maintenance
To Check for RLS Mode

F CATALOG,ALLOCATED

IEC348I ALLOCATED CATALOGS 118

*CAS***

* FLAGS -VOLSER-USER-CATALOG NAME % *
* YSU-R- XP0301 0001 BOHLING.RLS.UCAT 1 *
* Y-I--- USRPAK 0001 SYS1.MVSRES9.MASTCAT 1 *

* Y/N-ALLOCATED TO CAS, S-SMS, V-VLF, I-ISC, C-CLOSED, D-DELETED, *
* R-SHARED, A-ATL, E-ECS SHARED, K-LOCKED, U-RLS, W-SUSPENDED *
*CAS***

D GRS,RES=('SYSIGG2',*)

ISG343I 16.27.56 GRS STATUS 077

S=SYSTEMS SYSIGG2 BOHLING.RLS.UCAT

<table>
<thead>
<tr>
<th>SYSNAME</th>
<th>JOBNAME</th>
<th>ASID</th>
<th>TCBADDR</th>
<th>EXC/SHR</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM1</td>
<td>SMSVSAM</td>
<td>0037</td>
<td>008FA680</td>
<td>SHARE</td>
<td>OWN</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
RLS Catalog Performance Benchmark Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Elapsed Time (min)</th>
<th>CPU* (sec)</th>
<th>Deltas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Non-RLS</td>
<td>RLS</td>
<td>Non-RLS</td>
</tr>
<tr>
<td>DELETE</td>
<td>80.42</td>
<td>8.42</td>
<td>1269.3</td>
</tr>
<tr>
<td>DEFINE</td>
<td>48.84</td>
<td>21.42</td>
<td>685.6</td>
</tr>
<tr>
<td>SEQ READ</td>
<td>7.40</td>
<td>5.03</td>
<td>65.1</td>
</tr>
<tr>
<td>DIR READ</td>
<td>26.77</td>
<td>20.33</td>
<td>94.0</td>
</tr>
<tr>
<td>(first sys)</td>
<td>26.86</td>
<td>20.29</td>
<td>95</td>
</tr>
<tr>
<td>DIR READ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(second sys)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU in GRS, CATALOG may see a small increase – best to compare per request

Test environment: Z10 2097 E12, 3 LPARs, 7 CPUs, 1 CF, z/OS 2.1
Catalog parms: TASKMAX=180, CISIZE(32768) and CISIZE(4096), STRNO(255)
RLSABOVETHEBAR(NO) RLSCFCACHE(ALL) RLSMAXPOOLSIZE(100M) CF Cache size 1G
Catalog RLS vs Catalog VLF at z/OS 2.1
Tests: 300,000 data sets, 100 jobs using 1000 data sets on each LPAR
Source: “Unclog your Systems with z/OS 2.1 – Something New and Exciting for Catalog” by Terri Menendez, IBM
Spring 2013 Session #12977, 12978

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Performance Benchmark Test

Elapsed Time RLS vs Non-RLS User Catalog Access

<table>
<thead>
<tr>
<th>Operation</th>
<th>Non-RLS</th>
<th>RLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>DEFINE</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>SEQ READ</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>DIR READ (first sys)</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>DIR READ (second sys)</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
IDCAMS Tools can use RLS

- **REPRO, PRINT, IMPORT, EXPORT** supported
- To use, specify
 - **RLSSOURCE** (YES | NO | QUIESCE)
 - **RLSTARGET** (YES | NO | QUIESCE)

- Options:
 - YES – use RLS mode to access data set
 - NO – use Non-RLS (regular VSAM) to access data set
 - QUIESCE – Use Non-RLS mode, but QUIESCE first.
RLS for Catalogs Summary

- Eliminates (most) SYSIGGV2 contention
- Allows SYSPLEX-wide serialization at the record level
- z/OS 2.1 + only
- User catalogs only (no master catalog)

AMS (IDCAMS) tools support RLS
 - REPRO, PRINT, IMPORT, EXPORT
Directory Only Caching
RLS Caching Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Data CIs and Index CIs stored</td>
</tr>
<tr>
<td></td>
<td>READ or WRITE will add CI to cache</td>
</tr>
<tr>
<td>NONE</td>
<td>Cache on index CIs</td>
</tr>
<tr>
<td></td>
<td>READ or WRITE will add CI to cache</td>
</tr>
<tr>
<td>UPDATES ONLY</td>
<td>Data CIs and Index CIs stored</td>
</tr>
<tr>
<td></td>
<td>Only WRITES will update cache</td>
</tr>
<tr>
<td>DIRONLY</td>
<td>No CI data is stored</td>
</tr>
<tr>
<td></td>
<td>READ or WRITE will update interest</td>
</tr>
</tbody>
</table>
Inside a Cache

Directory Entry

• Holds control information
• Holds interest information
• One per CI
• Relatively Small

Data Element

• Holds the stored data
• Up to 2k in size
• Many per CI (depending on CISIZE)
• Ex: 6k CI would require 3 DE

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Caching Modes

Mode: ALL or UPDATESONLY

<table>
<thead>
<tr>
<th>Dir Entries</th>
<th>Data Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data CI Registered</td>
<td>Data CI Part 1</td>
</tr>
<tr>
<td>Index CI Registered</td>
<td>Data CI Part 2</td>
</tr>
<tr>
<td></td>
<td>Data CI Part 3</td>
</tr>
</tbody>
</table>

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Caching Modes

Mode: NONE

<table>
<thead>
<tr>
<th>Dir Entries</th>
<th>Data Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data CI Registered</td>
<td>Index CI</td>
</tr>
<tr>
<td>Index CI Registered</td>
<td></td>
</tr>
</tbody>
</table>

Mode: DIRONLY

<table>
<thead>
<tr>
<th>Dir Entries</th>
<th>Data Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data CI Registered</td>
<td></td>
</tr>
<tr>
<td>Index CI Registered</td>
<td></td>
</tr>
</tbody>
</table>
Directory Only Caching

- Reduces cache space requirements
- Useful for:
 - Data sets used by only one system
 - Write-only data sets

- To Enable:
 - Data Class definition (page 6)

 \[\text{RLS CF Cache Value} \quad \ldots \quad \text{D} \quad (A, N, U \text{ or } D) \]

- Requires Rls_MaxCFFeatureLevel(A)
- Toleration: OA36443, OA36415

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Dynamic Volume Count for RLS
Dynamic Volume Count for RLS

- Dynamic Volume Count added to RLS
- Eliminates the need to CLOSE / ALTER ADDVOL

- If EOV finds no more candidates, and DVC > VolCNT, RLS will add candidates to catalog

- Dynamic Volume Count is set in Data Class

 Space Constraint Relief . . . Y (Y or N)

 Reduce Space Up To (%) . . . __ (0 to 99 or blank)

 Dynamic Volume Count . . . 10 (1 to 59 or blank)
RLS OMEGAMON XE Support
OMEGAMON XE Support

• RLS at z/OS 2.1 Provides interfaces for OMEGAMON
• OMEGAMON XE v520+ offers RLS Panels
 – 15 new TEP workspaces
 – Many other changes to integrate RLS information
• Monitors all the same info as SMF42 / RMF III

• Requirements:
 – Omegamon XE V520 or higher
 – Maintenance: OA41786, OA42288, OA42798, OA43380, OA43381, OA43376, OA45578, OA44589
• For full info, see Share Pittsburg session #15548
Example Display

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
RMODE31 and ACCBIAS in Data Class
ACCBIAS

- RMODE31 and new ACCBIAS options added to data class
- Previously, these were available on JCL, but not SMS

DATA CLASS ALTER

Command ===>

SCDS Name . . . : SYS1.SMS.V2R1.SCDS
Data Class Name : DCRLSNC

To ALTER Data Class, Specify:

<table>
<thead>
<tr>
<th>Data Set Name Type EXT</th>
<th>(EXT, HFS, LIB, PDS, Large or blank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Ext R</td>
<td>(P, R or blank)</td>
</tr>
<tr>
<td>Extended Addressability N</td>
<td>(Y or N)</td>
</tr>
<tr>
<td>Record Access Bias S</td>
<td>(S, U, DO, DW, SO, SW or blank)</td>
</tr>
<tr>
<td>RMODE31 ALL</td>
<td>(ALL, BUFF, CB, NONE or blank)</td>
</tr>
<tr>
<td>Space Constraint Relief Y</td>
<td>(Y or N)</td>
</tr>
<tr>
<td>Reduce Space Up To (%) 0</td>
<td>(0 to 99 or blank)</td>
</tr>
<tr>
<td>Dynamic Volume Count 20</td>
<td>(1 to 59 or blank)</td>
</tr>
<tr>
<td>System Managed Buffering (1K to 2048M or blank)</td>
<td></td>
</tr>
</tbody>
</table>
Other Changes

• SHOWCB macro updated with new keywords:
 – BUFNOL – # of buffers allocated to data set (LSR or SMB)
 – BUFUSE – # of buffers in use

• LOGREPLICATE keyword added to IDCAMS
 – Specifies whether VSAM data set is eligible for replication

• VSAM RAS Enhancements

• RLS 64-bit buffering enhancement
 – Moved buffer management information above the bar

• RLS Serialization change – moving toward GRS latches
VSAM New Features in z/OS 2.2
(and revisit those from 2.1)

Neal Bohling
IBM, VSAM RLS Development

Session 17835
Notices & Disclaimers

Copyright © 2015 by International Business Machines Corporation.

No part of this document may be reproduced or transmitted in any form without written permission from IBM Corporation.

Product information and data has been reviewed for accuracy as of the date of initial publication. Product information and data is subject to change without notice. This document could include technical inaccuracies or typographical errors. IBM may make improvements and/or changes in the products and/or programs described herein at any time without notice.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Consult your local IBM representative or IBM Business Partner for information about the product and services available in your area.

Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectually property rights, may be used instead. It is the user's responsibility to evaluate and verify the operation of any non-IBM product, program or service.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR INFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. IBM is not responsible for the performance or interoperability of any non-IBM products discussed herein.
Notices & Disclaimers

The performance data contained herein was obtained in a controlled, isolated environment. Actual results that may be obtained in other operating environments may vary significantly. While IBM has reviewed each item for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.

The responsibility for use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer’s or user’s ability to evaluate and integrate them into their operating environment. Customers or users attempting to adapt these techniques to their own environments do so at their own risk. IN NO EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO, LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not necessarily tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or another claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Trademarks

DFSMSdfp, DFSMSdss, DFSMShsm, DFSMSrmm, IBM, IMS, MVS, MVS/DFP, MVS/ESA, MVS/SP, MVS/XA, OS/390, SANergy, and SP are trademarks of International Business Machines Corporation in the United States, other countries, or both.

AIX, CICS, DB2, DFSMS/MVS, Parallel Sysplex, OS/390, S/390, Seascape, and z/OS are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Domino, Lotus, Lotus Notes, Notes, and SmartSuite are trademarks or registered trademarks of Lotus Development Corporation. Tivoli, TME, Tivoli Enterprise are trademarks of Tivoli Systems Inc. in the United States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks of others.