
What's New in z/OS 2.2 JES2:

Job Execution Controls

SHARE Orlando, Session 17826

Tuesday, August 11, 2015

Tom Wasik

JES2 Development

Rochester, MN

wasik@us.ibm.com

Insert

Custom

Session

QR if

Desired

mailto:wasik@us.ibm.com

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

• IBM®

• MVS™

• Redbooks®

• RETAIN®

• z/OS®

• zSeries®

The following are trademarks or registered trademarks of other companies.
• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

• UNIX is a registered trademark of The Open Group in the United States and other countries.

• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

• All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon

considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput

improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance

characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM

Business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to

non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

8/21/2015 2

Overview

• Problem Statement / Need Addressed
– Single processor speed growth will slow over time.

– To support continued growth parallelism must increase.

– Can be accomplished with application changes :

• Re-code to increase parallelism

• Replicating data bases

– Alternative is to do it in JCL :

• Break multi-step jobs into multiple single step jobs

• Parallelize multiple single step job

• Provide basic execution controls to sequence jobs correctly

• Allow non-dependent steps to run in parallel

• Provide for simultaneous execution of jobs
– Support piping data between jobs

– Not as good as rewriting an application, but can help

• Does not help a single step job

8/21/2015 3

Overview

• Solution – Design Goals

– Should be easy to understand

– Familiar syntax - JCL syntax rules

– Desire to be able to see the whole picture

• Controls defined separate from jobs

– Have basic conditional logic similar to conditional step execution

• Avoid COND= syntax but more like IF/THEN/ELSE

– Application (JCL) writer centric

• Everything submitted via internal reader (or NJE)

– Should be usable by JCL analyzers that want to break up jobs

– Out of the box solution that z/OS components can utilize

– NOT intended to act as a batch job scheduler

8/21/2015 4

Overview

• Solution
– No pre-canned scripts to run jobs

– Separate entity – a job group – defined before jobs are submitted

• Identifies all jobs in a group, dependencies, conditional
processing, etc...

– Everything about a job group is in one entity

– Job structure assigned for logging, management, etc...

– Jobs are associated to a job group via the SCHEDULE JCL
statement (new in V2R2)

• SAF check to register job to a job group

– Can be submitted from various sources

– JES2 commands can act on a job group

• Display current status

• Hold/release, cancel, purge, etc

– No architectural limit on the number of jobs in a job group

• Installation controllable limit of 2,000

8/21/2015 5

Overview

• Benefit / Value

– Native job execution control service within JES2

• Always there and can be exploited by anyone

• Syntax not dependent on product installed

– Application centric design

• Application writer can write and modify JCL as needed

• No “sysprog” needed to implement parallelism

– Installation control over key functions

• Max number of jobs executing concurrently

– Overall goal to allow for increased parallelism

8/21/2015 6

Overview – Simple Job Group Example

A four job example using dependencies and conditionals

B

A D

C

//MULTI JOBGROUP JOBGROUP describes a group of dependent jobs

//A GJOB GJOB describes a job in a group

//B GJOB

// AFTER NAME=A, AFTER is positioned after a GJOB and describes its

// WHEN=(RC=0) dependency to another named job

//C GJOB

// AFTER NAME=A,

// WHEN=(RC=4) WHEN= describes a condition associated with the dependency

//D GJOB

// AFTER NAME=B

// AFTER NAME=C

//MULTI ENDGROUP ENDGROUP marks the end of the job group definition

8/21/2015 7

Overview – JOBGROUP statement

//grpname JOBGROUP accounting information,
// programmer name,
// OWNER=userid,
// GROUP=racf group id,
// PASSWORD=password,
// SECLABEL=seclabel,
// TYPE=SCAN,
// HOLD=NO|YES,
// ERROR=(condition),
// ONERROR=(STOP|SUSPEND|FLUSH),
// SYSAFF=(affinity_list),
// SYSTEM=(system_list),
// SCHENV=scheduling_environment

• Jobs are associated with the job group using the following JCL statement

// SCHEDULE JOBGROUP=grpname

• The ERROR= condition is the same format as the condition on the IF JCL statement

• A JES2 job structure is created to manage the job group and to log important events for

the job group and for the jobs that belong to it. This is called the “logging job”.

– Commands like hold, cancel, display, etc... can act against the group.

8/21/2015 8

Overview – JOBGROUP Logging Job

• The JES2 job identifier for a job group logging job starts
with a G (eg G0001234).

• Operator commands that work on all jobs (JOBQ or JQ) do
not apply to job group logging jobs.

• The job group logging job persists until all jobs in the group
are purged.

• Purpose of the logging job is to maintain a job group log
data set.

– Data set maintained on SPOOL (SYSOUT)

– No option to specify characteristics for the SYSOUT data set.

– Available to SDSF (browse) and SAPI.

• The job group can be purged in its entirety (with all its
constituent jobs).

8/21/2015 9

Overview – JOBGROUP Dependencies

• Dependencies cannot be changed once established.

• You can display dependencies for an individual job in a job

group or all dependencies in the entire job group.

– Indicates status of dependency (pending or complete).

• The extended status SSI can return information about job

groups, jobs within a job group, and dependencies within a

job group.

– Available to SDSF etc...

– New output areas are associated with the job group logging

job.

– A dependency list can be returned for jobs within a job group.

8/21/2015 10

Overview – JOBGROUP Statement keywords

Accounting information Use the accounting information parameter
to enter an account number or other
accounting information. Same usage as
JOB statement.

Programmer's name Use the programmer’s name parameter to
identify the person or group responsible for
a job group. Same usage as JOB
statement.

grpname The name that will be associated with the job group. It
will be the job name of the logging job that is associated
with the group.

OWNER= The userid that is to be associated with the job group.
This will propagate using the same rules as a batch job

GROUP= The RACF group that is to be associated with job
group. This will propagate using the same rules as a
batch job.

8/21/2015 11

Overview – JOBGROUP Statement keywords

PASSWORD= The password (if required) for the userid
associated with the job group. This will propagate
using the same rules as a batch job.

SECLABEL= The security label that is to be associated with the
job group. This will propagate using the same
rules as a batch job.

TYPE=SCAN The job group is validity checked but not
processed. Any error will be recorded in the
logging job. Since the internal structures for this
job group are never created, any jobs
subsequently submitted for this job group will fail.

HOLD=NO|YES The job group can be submitted in a held or non-
held state. If the job is submitted in the held state,
none of the jobs associated with this job group will
run until the job group is released.

8/21/2015 12

Overview – JOBGROUP Statement keywords

ERROR=(condition) Defines conditions, which if
encountered by any job in the job group, will
cause the group to be placed in an error
state. The syntax is the same as for the
WHEN= keyword, which will be described
later. The impact of placing a job in an error
state depends on the setting of the
ONERROR= keyword.

ONERROR=STOP|SUSPEND|FLUSH This is the action to
take when a job group is determined to be in
error. This applies when the condition
defined on the ERROR= keyword is
encountered or when a dependency is
considered to have failed.

8/21/2015 13

Overview – JOBGROUP Statement keywords

• There are 3 possible ONERROR actions

STOP No new jobs in the job group are run. Currently executing

jobs are allowed to complete. Jobs determined to be in

error (based on the JOBGROUP ERROR= keyword or the

condition in a dependency) can be resubmitted and the

error state cleared if they run successfully.

SUSPEND New jobs that have their dependencies satisfied are allowed

to execute. Jobs determined to be in error (based on the

JOBGROUP ERROR= keyword or the condition in a

dependency) are considered to have not run. These jobs

can be resubmitted and the error state cleared if they run

successfully.

FLUSH All jobs that have not executed yet will be canceled

(flushed). No new jobs are started. Once there are no

longer any jobs running, the job group is marked completed.

8/21/2015 14

Overview – JOBGROUP Statement keywords

SYSAFF= Base system affinity for all jobs associated with this job group.

Syntax is the same as SYSAFF= on the JOB card. This is

ANDed with any affinity specification for each job in the group.

SYSTEM= Base list of systems where jobs associated with this job group

can run. Syntax is the same as SYSTEM= on the job card. This

is ANDed with any affinity specification for each job in the group.

SCHENV= Default scheduling environment for all jobs associated with this

job group. Syntax is the same as SCHENV= on the job card.

The systems where this scheduling environment is available is

ANDed with the other affinity specifications for the job. Note this

implies that a job in a job group can have 2 scheduling

environments. The one for the job group and the one for the job

in the group. These are ANDed together.

8/21/2015 15

Overview – GJOB statement

//gjobname GJOB FLUSHTYP=ALLFLUSH|ANYFLUSH

• All jobs in a job group must be defined with an appropriate GJOB
or JOBSET statement. They do not need to be defined before
their first reference.

• gjobname

– The name of a job that will be included in the JOBGROUP. This
name must match the name of a job that is submitted (via
SCHEDULE) after the job group is defined. Each job name must be
unique within the scope of the job group.

• FLUSHTYP=

– This job will be flushed if ALL parent jobs are flushed (ALLFLUSH)
or if ANY parent jobs are flushed (ANYFLUSH).

• A GJOB is followed by as many dependencies (BEFORE and
AFTER) as required for the job.

8/21/2015 16

Overview – JOBSET statement

//setname JOBSET FLUSHTYP=ALLFLUSH|ANYFLUSH

• A convenient method to define jobs with the same set of dependencies

• Example :

//SET1 JOBSET

//JOBA SJOB

//JOBB SJOB

//SET1 ENDSET

– SJOB denotes a job within a set.

• Cannot be referenced outside of a job set.

– Can have as many SJOBs as needed in the set.

• BEFORE and AFTER can be added after JOBSET

– Applies to all jobs in the job set

• BEFORE and AFTER outside the set may apply to a JOBSET

– May only reference JOBSET name and not SJOB.

• Job sets must be ended with an ENDSET card

– Label (setname) on ENDSET must match JOBSET label

8/21/2015 17

Overview – JOBSET statement keywords

//setname JOBSET FLUSHTYP=ALLFLUSH|ANYFLUSH

• setname

– The name that will be associated with the job set. It must be

unique from any name on a GJOB statement and must be

unique within the job group.

• FLUSHTYP=

– For each job in the set, the job will be flushed if ALL parent

jobs are flushed (ALLFLUSH) or if ANY parent jobs are

flushed (ANYFLUSH).

8/21/2015 18

Overview – Dependencies

• There are 3 forms of supported 'dependencies':

– BEFORE

– AFTER

– CONCURRENT

• The syntax of the AFTER and BEFORE statements are the

same.

• AFTER and BEFORE can be specified for GJOB or JOBSET.

• CONCURRENT may only be specified for GJOB.

– Cannot be associated with a JOBSET

• You cannot have dependencies on jobs outside the JOBGROUP

(or on jobs in another JOBGROUP).

– Also, between any two jobs, you can only define one dependency.

8/21/2015 19

Overview – Dependencies – Before and After

statements

• The syntax of the AFTER and BEFORE statements are the

same. An example of an AFTER statement
// AFTER NAME=name|(name,name,...),

// WHEN=(condition),

// ACTION=SATISFY|FLUSH|FAIL,

// OTHERWISE=FLUSH|FAIL|SATISFY

• NAME=

– Defines jobs or job sets that the current job must run before or after.

• Up to 10 names may be specified.

– Each name can be

• a job name (defined on a GJOB statement)

• a job set name (defined on a JOBSET statement).

– Note that each name must be unique among all the name values for

the job that contains the BEFORE or AFTER statement.

8/21/2015 20

Overview – Dependencies – Before and After

statements
// AFTER NAME=name|(name,name,...),

// WHEN=(condition),

// ACTION=SATISFY|FLUSH|FAIL,

// OTHERWISE=FLUSH|FAIL|SATISFY

• WHEN=

– This is an optional condition that refers to the ending status of

the jobs specified on NAME=

– Keywords supported:

• RC indicates a job's return code

• ABEND indicates an ABEND condition occurred

• ¬ABEND indicates no ABEND condition occurred

• ABENDCC indicates a specific system or user ABEND code

• RUN indicates that the job was executed

• ¬RUN indicates that the job was flushed from the job group

8/21/2015 21

Overview – Dependencies – Before and After

statements
// AFTER NAME=name|(name,name,...),
// WHEN=(condition),
// ACTION=SATISFY|FLUSH|FAIL,
// OTHERWISE=FLUSH|FAIL|SATISFY

• WHEN= operators:
– NOT operator: Precedence

NOT or ¬ or ! NOT first

– Comparison operators:

GT or > Greater than second

LT or < Less than second

NG or ¬> or !> Not greater than second

NL or ¬< or !< Not less than second

EQ or = Equal to second

NE or ¬= or != Not equal to second

GE or >= Greater than or equal to second

LE or <= Less than or equal to second

– Logical operators:

AND or & AND third

OR or | OR third

8/21/2015 22

Overview – Dependencies – Before and After

statements
// AFTER NAME=name|(name,name,...),

// WHEN=(condition),

// ACTION=SATISFY|FLUSH|FAIL,

// OTHERWISE=FLUSH|FAIL|SATISFY

• WHEN= examples:

WHEN=(RC=4 | RC=8)

WHEN=(!ABEND AND RC=8)

WHEN=(ABENDCC=S0C4 OR ABENDCC=U1024)

8/21/2015 23

Overview – Dependencies – Before and After

statements
// AFTER NAME=name|(name,name,...),

// WHEN=(condition),

// ACTION=SATISFY|FLUSH|FAIL,

// OTHERWISE=FLUSH|FAIL|SATISFY

• ACTION=

– The action to take if the WHEN condition is true.

SATISFY The condition is to be considered satisfied. The default.

FLUSH The dependency is to be considered flushed. The

dependent job may or may not be flushed, depending

on the dependent job's

FLUSHTYP=ALLFLUSH/ANYFLUSH value.

FAIL The failure of this dependency will mark the job group in

error. The ONERROR= action from the JOBGROUP

statement will be taken as a result of the failure.

8/21/2015 24

Overview – Dependencies – Before and After

statements
// AFTER NAME=name|(name,name,...),

// WHEN=(condition),

// ACTION=SATISFY|FLUSH|FAIL,

// OTHERWISE=FLUSH|FAIL|SATISFY

• OTHERWISE=

– The action to take if the WHEN condition is false.

FLUSH The dependency is to be considered flushed. The

dependent job may or may not be flushed, depending

on the dependent job's

FLUSHTYP=ALLFLUSH/ANYFLUSH value. The

default.

FAIL The failure of this dependency will mark the job group in

error. The ONERROR action from the JOBGROUP

statement will be taken as a result of this failure.

SATISFY The condition is to be considered satisfied.

8/21/2015 25

Overview – Dependencies – Concurrent statement

//gjobname GJOB

// CONCURRENT NAME=name|(name,name,...)

• This states that the job specified on the GJOB statement and the

job(s)/job set(s) on the CONCURRENT NAME= must execute at the

same time (simultaneously) on the same JES2 MAS member.

• Note that jobs in a concurrent dependency can have other

dependencies associated with them. However, all dependencies for all

jobs that run concurrently must be met before any of the concurrent

jobs will start.

• WLM has extended demand batch initiator to support this behavior.

• All jobs in a concurrent dependency must use the same WLM service

class.

– Should ensure this by setting the same characteristics

– If not the same, JES2 code will pick one and force others to same

value

8/21/2015 26

JOB2 JOB3 JOB4 JOB5

Statements Overview - GJOB-JOBSET-AFTER and

CONCURRENT

8/21/2015 27

JOB1

//GRP1 JOBGROUP

//JOB1 GJOB

//JBSET1 JOBSET

// AFTER NAME=JOB1,WHEN=(RC=0),ACTION=SATISFY,OTHERWISE=FLUSH

//JOB2 SJOB

//JOB3 SJOB

//JOB4 SJOB

//JBSET1 ENDSET

//JOB6 GJOB

// AFTER NAME=JOB1,WHEN=(RC=4),ACTION=SATISFY,OTHERWISE=FLUSH

//JOB5 GJOB

// CONCURRENT NAME=(JBSET1)

//GRP1 ENDGROUP

• Note: JOB2, JOB3, JOB4, and JOB5 will run simultaneously on same MAS member

RC=4 RC=0

JOB6

Statements Overview - Concurrent Statement and Concurrent

Set

8/21/2015 28

JOB1

//GRP1 JOBGROUP

//JOB1 GJOB

//JOB2 GJOB

// AFTER NAME=JOB1

// CONCURRENT NAME=(JOB3,JOB4,JOB5)

//JOB6 GJOB

// CONCURRENT NAME=(JOB3,JOB7)

//JOB3 GJOB

//JOB4 GJOB

//JOB5 GJOB

//JOB7 GJOB

//GRP1 ENDGROUP

• Two CONCURRENT statements above have an intersecting job – JOB3. The jobs combined In
this way (JOB2, JOB3, JOB4, JOB5, JOB6, JOB7) are referred to as the concurrent set. Jobs in
the concurrent set will run simultaneously on the same JES2 member after JOB1 runs.

• Once dependencies are resolved it is possible that an affinity or a resource constraint keeps the
concurrent set from entering execution. $DJ may be used on any job within the set to determine
the reason for the delay.

JOB2 JOB3 JOB4 JOB5 JOB6 JOB7

Overview – SCHEDULE JCL Statement

//label SCHEDULE JOBGROUP=grpname

• JOBGROUP= The name of a job group that this job will be

associated with.

• Association with the groups occurs after successfully

completing converter phase

– Errors prior to this results in the job not being associated

– A job that is successfully associated is considered

“registered” to the job group.

– Job must pass authority check to register with the group

• $DJ,JOBGROUP will show the name of the job group the

job is registered to.

8/21/2015 29

Overview – Registration Authority Check

• Access to group is checked when job registers

– If owner of batch job is same as that of job group, access OK

– If different owners, JESJOBS class AUTH check is done
GROUPREG.nodename.groupname.userid

nodename – local NJE node name

groupname – name of group being registered to

userid – Userid associated with the job group

– READ access is required to profile

– Converting jobs security environment is used

– If JESJOBS class is not active, access is allowed

• Job fails conversion if check does not pass

8/21/2015 30

Overview – SCHEDULE JCL Statement Example

• Associating a job with a job group.

//RUN00001 JOBGROUP OWNER=IBMUSER,PASSWORD=IBMUSER

//*

//JOBA GJOB

// AFTER NAME=JOBB,WHEN=(RC=0)

//*

//JOBD GJOB

// AFTER NAME=JOBB,WHEN=(RC=4)

//*

//JOBB GJOB

//RUN00001 ENDGROUP

//*

//JOBA JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=A

// SCHEDULE JOBGROUP=RUN00001

//STEP1 EXEC PGM=IEFBR14

//*

//JOBB JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=A

// SCHEDULE JOBGROUP=RUN00001

//STEP1 EXEC PGM=IEFBR14

//*

//JOBD JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=A

// SCHEDULE JOBGROUP=RUN00001

//STEP1 EXEC PGM=IEFBR14

8/21/2015 31

Overview – Job Group Logging Job

• A job group logging job is created for each job group.

• The logging job has the same name and identifier as a job
group.

• The logging job has two data sets:
– JCL statements used to define the job group (JESJCLIN)

– Job log data set (JESMSGLG)

• The logging job is a central place to collect messages related to
important events in the life of the job group and its constituent
jobs.
– Jobs – executed/skipped, return codes, etc

• This job group log can be browsed from SDSF as any other job
log.
– Example of a job group log can be found later in this presentation.

• Life span of a job group logging job and data structures:
– Remains in JES2 until all jobs in the group are purged

– For TYPE=SCAN until the logging job itself is purged

8/21/2015 32

Overview – Commands

• JES2 provides commands to manage job groups
– Logging job is used by the commands to identify the job group

• The logging job shares the same “namespace” as regular batch
jobs
– Job identifier is prefixed by “G” (eg. “G0001234”)

– Commands supported for job groups are similar to batch jobs

– Specify names/identifiers like batch jobs

• Specific name, such as 'MYGROUP'

• Wildcards, such as 'MYGROUP*'

• Job group range, such as (1-123), or job list such as (23, 29)

– Job groups are not supported in JOBQ or ALL commands

• A job group is never considered to be on the “job queue”

• Various views of job groups are provided … however
– Job group definitions can be quite large and complex

– Other products can be used to provide a more complete view

8/21/2015 33

Overview – Commands

• Provided job group commands:

$AG Release the job group. Jobs defined to the job group are

eligible to run.

$CG Cancel all the jobs in a job group and the job group

$DG Display job group. Various views are provided. More

later

$HG Hold the job groups. Prevents any jobs defined to the

job group from starting execution.

$PG Purge all the jobs in the job group. When the last job is

purged the job group will be scheduled to be purged.

$TG Modify some of the key attributes defined on the

JOBGROUP statement

8/21/2015 34

Overview – Commands

• Keyword additions and updates to the $DJ command

AFTER list jobs in the job group that are dependent on

this job

– The job in the $DJ command is the “parent” of the

dependent jobs listed in the display

BEFORE list of jobs in the job group that are a parent to this

job

– The job in the $DJ command is a “child” or

“dependent job” of the parent job(s) listed in the

display

JOBGROUP name of the job group this job is registered to

DELAY updates made to reflect delays due to job group

settings (HOLD, SYSAFF), concurrent sets, etc.

8/21/2015 35

Overview – Additional Properties of Job Groups

• Job structure of a job group logging job will be placed on

the SETUP queue after input phase (assuming no errors):

– Normal phases are:

– INPUT → SETUP → OUTPUT → HARDCOPY → PURGE

• Jobs in a job group will be placed on the SETUP queue

until eligible to run (i.e. - unsatisfied dependencies exist).

• Failed jobs in a suspended job group can be rerun after a

problem is fixed.

– Based on ONERROR= not being FLUSH

– Re-submit failed job to restart job group that is suspended.

• Must be at 2.2 checkpoint level to utilize job groups.

– Cannot retro-activate until all logging jobs purge.

8/21/2015 36

Overview – How are Job Groups Stored?

• Information about job groups are stored in the JES2 checkpoint

– New section (CTENT) dedicated to job group information

– Created when $ACTIVATE to LEVEL=Z22

• New data area called Zone Job Container (ZJC)

– New CTENT implies new limit to manage

• Initialization statement and command (GRPDEF)

– New HASP050 message to report shortages

• Multiple ZJCs needed to represent a group

– One per group (ZOD)

– One per job in the group (ZJI)

– One per dependency (ZDB)

• Created when job group submitted

• Freed when job group logging job is purged (after group
completes)

8/21/2015 37

Usage & Invocation – Concurrent Example

8/21/2015 38

A

C D

//G JOBGROUP

//A GJOB

//B GJOB

//C GJOB

// AFTER NAME=A

// CONCURRENT NAME=B

//G ENDGROUP

//* Schedule statements below

//*

//A JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=B

// SCHEDULE JOBGROUP=G

//STEP1 EXEC PGM=IEFBR14

//*

//B JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=A

// SCHEDULE JOBGROUP=G

//STEP1 EXEC PGM=IEFBR14

//*

//C JOB TIME=NOLIMIT,REGION=0K,MSGCLASS=A,CLASS=A

// SCHEDULE JOBGROUP=G

//STEP1 EXEC PGM=IEFBR14

//G JOBGROUP

//A GJOB

//B GJOB

//C GJOB

// AFTER NAME=A

// CONCURRENT NAME=B

//G ENDGROUP

HASP1111 JOBGROUP has been activated

Usage & Invocation – Concurrent Example –

JESJCLIN

8/21/2015 39

Usage & Invocation – Concurrent Example - Job

Group Log
J E S 2 J O B L O G -- S Y S T E M N 1 M 1 -- N O D E P O K

15.11.28 G0000096 ---- WEDNESDAY, 25 FEB 2015 ----

15.11.28 G0000096 IRR010I USERID IBMUSER IS ASSIGNED TO THIS JOB.

SY1 15.11.28 JOB00097 $HASP1300 A registered to job group G

SY1 15.11.28 JOB00097 $HASP1301 A in job group G queued for execution

SY1 15.11.28 JOB00097 $HASP373 A STARTED - INIT 2 - CLASS B - SYS N1M2

SY1 15.11.28 JOB00097 $HASP395 A ENDED - RC=0000

SY1 15.11.28 JOB00098 $HASP1300 B registered to job group G

SY1 15.11.29 JOB00099 $HASP1300 C registered to job group G

SY1 15.11.29 JOB00099 $HASP1301 Concurrent set containing job C in job group G queued for execution

SY1 15.11.29 JOB00099 $HASP1201 Concurrent set containing job C in job group G entering execution

SY1 15.11.29 JOB00098 $HASP373 B STARTED - WLM INIT - SRVCLASS DISCRETN - SYS N1M1

SY1 15.11.29 JOB00099 $HASP373 C STARTED - WLM INIT - SRVCLASS DISCRETN - SYS N1M1

SY1 15.11.29 JOB00098 $HASP395 B ENDED - RC=0000

SY1 15.11.29 JOB00099 $HASP395 C ENDED - RC=0000

SY1 15.11.29 G0000096 $HASP1304 job group G is complete

Notes:
– Job A is using job class B which has mode=JES. Job A may run on

any member within MAS – in this scenario N1M2.

– Jobs B and C use job class A which has mode=WLM. Due to
CONCURRENT keyword – B and C will run on same MAS member
– in scenario case N1M1.

– A WLM initiator is started for each job within the concurrent-set.

8/21/2015 40

Usage & Invocation – Type=SCAN Example with

errors
//STEVE JOBGROUP OWNER=IBMUSER,PASSWORD=IBMUSER,TYPE=SCAN

//JOBS1 JOBSET

//JOB! SJOB

//JOB2 GJOB

//JOBS1 ENDSET

//JOB3 GJOB

// AFTER NAME=JOBS1

//STEVE ENDGROUP

• Errors above are:

– Bad name on SJOB → JOB!

– GJOB not allowed within a JOBSET

• TYPE=SCAN allows you to test your JCL without actually

activating or creating a job group

8/21/2015 41

//STEVE JOBGROUP OWNER=IBMUSER,PASSWORD=,TYPE=SCAN

//JOBS1 JOBSET

//JOB! SJOB

HASP1115 SJOB JOB! name is not valid

//JOB2 GJOB

HASP1116 JOB2 not valid within JOBSET context

//JOBS1 ENDSET

HASP1118 JOBS1 not within valid JOBSET context

//JOB3 GJOB

// AFTER NAME=JOBS1

//STEVE ENDGROUP

HASP1111 JOBGROUP contains errors

Usage & Invocation – Type=SCAN Errors -

JESJCLIN

8/21/2015 42

IBM Presentation Template Full Version

Usage & Invocation – Type=SCAN - Errors

corrected

• Now, with previous errors corrected, JESJCLIN will look

like this:

JESJCLIN
//STEVE JOBGROUP OWNER=IBMUSER,PASSWORD=,TYPE=SCAN

//JOBS1 JOBSET

//JOB1 SJOB

//JOBS1 ENDSET

//JOB3 GJOB

// AFTER NAME=JOBS1

//STEVE ENDGROUP

HASP1111 JOBGROUP indicates group is valid but not activated due

to TYPE=SCAN

8/21/2015 43

Usage & Invocation – GRPDEF Init Statement and

Commands

• Use GRPDEF to define and monitor key aspects of job groups.

– Available as an initialization statement

– Available in $D and $T commands

• $D GRPDEF provides information on job group object usage

– ZJCNUM – total number of ZJC objects defined

– ZJCFREE – number of ZJC objects available for use

– ZJCWARN – % of ZJC objects used before warning message

issued

• Set through the initialization statement

• $HASP050 issued when the number of in-use ZJCs becomes

greater than the ZJCWARN percentage

– $HASP050 JES2 RESOURCE SHORTAGE OF ZJC - 80%

UTILIZATION REACHED

8/21/2015 44

Usage & Invocation – GRPDEF Init Statement and

Command
• $D GRPDEF,ZJCUSE provides job group object type usage

information

FREE number of ZJC objects available for use

JOBGROUP number of ZJC objects used for job group info

DEP JOB number of ZJC objects used for information about a
dependent job in a job group

DEPENDNT number of ZJC objects used for information about a
dependency relationship between two jobs

8/21/2015 45

Usage & Invocation – GRPDEF Init Statement and

Command

• Use $T GRPDEF to manage job group definition parameters

– ZJCNUM – Defines the number of ZJC objects allocated in

checkpoint for defining parts of a job group

• Job group information

• Dependent job information

• Information on dependencies between jobs

• Range is 1 – 500000, default is 1000

– CONCURRENT_MAX – defines the maximum number of

dependent jobs that can be defined in a single concurrent job set

• Range is 0 – 200, default is 0

– MAX_JOBGROUP_JOB – defines the maximum number of

dependent jobs that can be defined in a single job group

• Range is 10 – 65,535, default is 2000

8/21/2015 46

Usage & Invocation – Job Group Commands

• The default response for a job group command other than $TG

shows:

– JOB_GROUP_STATUS - indicating status of the job group

PENDING no jobs have been registered with the job group

ACTIVE,INIT at least one registered job exists

– Not all jobs are registered

– Some jobs may be active

ACTIVE all jobs registered, jobs may be active.

– Normal state

FLUSHING non-recoverable error causes job group termination

– All jobs that have not executed are being canceled

(flushed)

– Job group status moves to COMPLETE when last

executing job completes

8/21/2015 47

Usage & Invocation – Job Group Commands

• The default response for a job group command other than

$TG will show:

– JOB_GROUP_STATUS (continued)

SUSPENDING at least one job INERROR

– A subset of jobs cannot run

– Jobs that can run will run

SUSPENDED at least one job INERROR

– A subset of jobs cannot run

– Jobs that could run have run

8/21/2015 48

IBM Presentation Template Full Version

Usage & Invocation – Job Group Commands

• The default command response for a job group command

other than $TG will show:

– JOB_GROUP_STATUS (continued)

COMPLETE all jobs have completed and

– All jobs that have not executed are being canceled

(flushed)

– Job group status moves to COMPLETE when last

executing job completes

HELD operator set or the initial state of the job group

– No new jobs in the zone are started.

– There may be jobs running that were started before

the job group was held.

8/21/2015 49

Usage & Invocation – Job Group Commands

• The default command response for a job group command

other than $TG will show:

ONERROR default is STOP. Other values are SUSPEND and

FLUSH

ERROR any specified error condition is displayed

SYSAFF system affinity for the job group

HOLD indicates if the job group is held (YES) or not (NO)

OWNER userid that owns this job group

8/21/2015 50

Usage & Invocation – Job Group Commands

• The default command response for a $TG JOBGROUP

command will show all fields associated with a job group.

– These fields can be used as selection criteria

– Fields that can be modified are:

• SYSAFF – system affinity for the job group

• SCHENV – scheduling environment for the job group

8/21/2015 51

Usage & Invocation – Job Group Commands

• Once the JCL for a job group has been submitted the job

group can be displayed using the $DG command

– Sample output:

8/21/2015 52

Usage & Invocation – Job Group Commands

• The jobs defined in a job group can be displayed with the
$DG,JOBS command

• The JOBID column will be blank if the job has not been
submitted. The JOB STAT column will indicate a job status
of “NOT REG” showing the job is not registered.

8/21/2015 53

Usage & Invocation – Job Group Commands

• Other values in the $DG,JOBs JOB STAT column:

PEND DEP pending dependencies keep this job from executing

HELD the job is held (HOLD=(JOB))

ACTIVE the job is active in execution

DELAYED the job is eligible for execution. Has a resource delay.

• Use $DJ,DELAY for further details on the delay affecting the job

NOT ELIG deemed ineligible to execute (due to group error stat)

• COMP STAT column is the Completion Status of the job in terms of job

group processing. Values are:

PENDING job has unresolved/pending dependencies

ACTIVE job is eligible for execution

COMPLETE job's job group processing is complete

FLUSHED job was canceled/flushed and is no longer eligible to execute

IN ERROR job is in error and job group is awaiting its resubmission

8/21/2015 54

Usage & Invocation – Job Group Commands

• The $DG,JOBFull version of the display job group command can be used

to display additional values associated with the job definition in the job

group.

• JOB_NAME, JOBID, JOB_STAT and COMP_STAT are the same as the

columns on the $DG,JOBS

8/21/2015 55

Usage & Invocation – Job Group Commands

• Other job values displayed by $DG,JOBFull are:

JOBSET_NAME Name of the JOBSET this job belongs to

within the job group. Used during input

processing to simplify job group definition.

FLUSH_ACTION indicates the condition which would cause

this job to be flushed.

Values are:

– ALLFLUSH – if all dependencies indicate a completion

status of FLUSH then this job will be flushed.

– ANYFLUSH – if any dependency indicates a completion

status of FLUSH then this job will be flushed.

8/21/2015 56

Usage & Invocation – Job Group Commands

• Job group dependencies can be viewed multiple ways

– $DG,DEPlist will list all the dependencies defined in the job

group

• PARENT – column indicating the parent job that must

complete before the dependency of the job in the DEP JOB

column can be evaluated.

8/21/2015 57

Usage & Invocation – Job Group Commands

• DEP JOB – the dependent job whose evaluation depends

on the completion of the parent job.

• DEP STAT – status of the dependency between the parent

and dependent job. Values are:

– PENDING – the evaluation of the dependency is pending.

The parent job has not run, nor has it been flushed

– COMPLETE – the evaluation of the dependency is complete.

The parent job ran or was flushed and the completion action

of the dependency has been assigned.

8/21/2015 58

Usage & Invocation – Job Group Commands

• COMP ACT – Completion action. Assigned to the
dependency. Used to determine how to process the
dependent job when all its dependencies are complete and
all dependency completion actions can be evaluated.

• Values are:

– SATISFY – this dependency was satisfied by the parent job
execution. If this completion action alone was evaluated the
dependent job would be eligible for execution.

– FLUSH – parent job results indicate the dependent job should
be canceled/flushed and not executed.

– FAIL – parent job results cause the dependency to be marked
as failed and the dependent job will not run. The entire job
group is marked in error and the ONERROR setting of the job
group will determine the subsequent processing.

8/21/2015 59

Usage & Invocation – Job Group Commands

• The $DG,DEPFull command can be used to display

additional fields that do not display in the tabular output of

the $DG,DEPlist command

• PARENT_JOB, DEP_JOB, DEP_STAT and COMP_STAT

match the columns in the $DG,DEPlist output

8/21/2015 60

Usage & Invocation – Job Group Commands

WHEN like IF/THEN/ELSE in JCL , it is a conditional
expression that, if supplied, is evaluated using
the parent job's return or ABEND code once
this dependency is marked COMPLETE. If the
evaluation is TRUE the ENDACTION is taken,
else the OTHERWISE action will be performed.

ENDACTION value to set dependency completion status if a
supplied WHEN expression is evaluated to
TRUE. Values are SATISFY, FLUSH or FAIL as
in the Completion status.

OTHERWISE value to set dependency completion status if a
supplied WHEN expression is evaluated to
FALSE. Values are SATISFY, FLUSH or FAIL
as in the Completion status.

8/21/2015 61

Usage & Invocation – JOB List Commands

• Dependencies for a given job can be viewed using the $DJ

command.

• $DJ,AFTER will show the dependencies where the supplied job is

the parent of the dependency

• $DJ,BEFORE will show the parent jobs of the supplied dependent

job

8/21/2015 62

Usage & Invocation – Job Group Commands

• Concurrent jobs in the job group can be viewed using

$DG,CONjobs

• For this job group

• The concurrent set is

8/21/2015 63

Usage & Invocation – Job Group Commands

• Jobs in error in the job group can be viewed using

$DG,INERROR

• The job's entry in the $DG,JOBS display will show the

same information

8/21/2015 64

Usage & Invocation – Job Group Commands

• A more complete picture of the job group status can be obtained using

the $DG,SUMMARY command. Viewing from SYSLOG is helpful:

8/21/2015 65

$DG23,SUMMARY

$HASP890 JOB(MYGROUP) 890

$HASP890 JOB(MYGROUP) JOB_GROUP_STATUS=SUSPENDED,ONERROR=STOP,

$HASP890 ERROR=RC>0004

$HASP890 ***************************************

$HASP890 JOB GROUP JOB IN ERROR LIST

$HASP890 LIST OF JOBS TO RESUBMIT

$HASP890 JOB NAME JOBID JOB STAT COMP STAT

$HASP890 -------- -------- -------- ---------

$HASP890 JOBA JOB00024 Q=HARDCPY IN ERROR

$HASP890 ***************************************

$HASP890 JOB GROUP JOB LIST

$HASP890 JOB NAME JOBID JOB STAT COMP STAT

$HASP890 -------- -------- -------- ---------

$HASP890 JOBA JOB00024 Q=HARDCPY IN ERROR

$HASP890 JOBC JOB00026 PEND DEP PENDING

$HASP890 JOBB JOB00025 PEND DEP PENDING

$HASP890 JOBD JOB00027 PEND DEP PENDING

$HASP890 ***************************************

$HASP890 JOB GROUP CONCURRENT JOB LIST

$HASP890 JOB NAME CONC JOB

$HASP890 -------- --------

$HASP890 ***************************************

$HASP890 JOB GROUP DEPENDENCY LIST

$HASP890 PARENT DEP JOB DEP STAT COMP ACT

$HASP890 -------- -------- -------- ---------

$HASP890 JOBA JOBB PENDING SATISFY

$HASP890 JOBA JOBC PENDING SATISFY

$HASP890 JOBC JOBD PENDING SATISFY

$HASP890 JOBB JOBD PENDING SATISFY

$HASP890 ***************************************

Usage & Invocation – Job Group Commands

• Use $CG to cancel all the jobs in a job group and the job group

logging job. $CG,P will cancel and then purge the jobs and job

group.

• The command issues messages indicating what jobs have been

scheduled to cancel/cancel and purge

8/21/2015 66

$CG46,P

$HASP1304 job group CANGRP is complete

$HASP890 JOB(CANGRP) 121

$HASP890 JOB(CANGRP)

$HASP890 JOBGROUP cancel - cancel issued for job JOBA

$HASP890 JOBGROUP cancel - cancel issued for job JOBG

$HASP890 JOBGROUP cancel - cancel issued for job JOBF

$HASP890 JOBGROUP cancel - cancel issued for job JOBC

$HASP890 JOBGROUP cancel - cancel issued for job JOBB

$HASP890 JOBGROUP cancel - cancel issued for job JOBD

$HASP890 JOBGROUP cancel - cancel issued for job JOBE

$HASP890 JOBGROUP cancel - cancel issued for jobgroup CANGRP

$HASP890 JOB(CANGRP) 122

$HASP890 JOB(CANGRP) JOB_GROUP_STATUS=COMPLETE,ONERROR=STOP,

$HASP890 ERROR=RC>0004,SYSAFF=(ANY),HOLD=(NO),

$HASP890 PURGE=YES,CANCEL=YES,OWNER=IBMUSER

$HASP250 JOBA PURGED -- (JOB KEY WAS CE9525C6)

$HASP250 JOBG PURGED -- (JOB KEY WAS CE9525CC)

$HASP250 JOBF PURGED -- (JOB KEY WAS CE9525CB)

$HASP250 JOBC PURGED -- (JOB KEY WAS CE9525C8)

$HASP250 JOBB PURGED -- (JOB KEY WAS CE9525C7)

$HASP250 JOBD PURGED -- (JOB KEY WAS CE9525C9)

$HASP250 JOBE PURGED -- (JOB KEY WAS CE9525CA)

$HASP250 CANGRP PURGED -- (JOB KEY WAS CE9525C5)

Usage & Invocation – Job Group Commands

• Use $PG to purge all the jobs in a job group. When the last job

purges out the purge will be scheduled for the job group logging

job.

• The command issues messages indicating what jobs have been

scheduled to purge

8/21/2015 67

$PG37

$HASP890 JOB(CANGRP)

$HASP890 JOB(CANGRP)

$HASP890 JOBGROUP purge - purge issued for job JOBA

$HASP890 JOBGROUP purge - purge issued for job JOBG

$HASP890 JOBGROUP purge - purge issued for job JOBF

$HASP890 JOBGROUP purge - purge issued for job JOBC

$HASP890 JOBGROUP purge - purge issued for job JOBB

$HASP890 JOBGROUP purge - purge issued for job JOBD

$HASP890 JOBGROUP purge - purge issued for job JOBE

.

.

.

$HASP250 JOBG PURGED -- (JOB KEY WAS CE95250D)

$HASP250 JOBF PURGED -- (JOB KEY WAS CE95250C)

$HASP250 JOBA PURGED -- (JOB KEY WAS CE952507)

$HASP250 JOBC PURGED -- (JOB KEY WAS CE952509)

$HASP250 JOBB PURGED -- (JOB KEY WAS CE952508)

$HASP250 JOBD PURGED -- (JOB KEY WAS CE95250A)

$HASP250 JOBE PURGED -- (JOB KEY WAS CE95250B)

$HASP250 CANGRP PURGED -- (JOB KEY WAS CE952506

Usage & Invocation – Job Group Commands

• Use $AG to release the hold on a job group. A held job

group will keep its jobs from being selected for execution,

regardless of the individual job hold values. Releasing the

job group hold does not release any individual job hold

values.

• Use $HG to hold a job group and keep any of new jobs

from being selected for execution. The job group hold does

not cause a hold to be set on the individual jobs in the job

group.

8/21/2015 68

Usage & Invocation – Job List Commands

• $CJ command execution differences for Dependent Jobs

– A pre-execution/executing dependent job will be marked

INERROR. Dependent jobs of this “parent” will be

suspended. A corrected version of the canceled job can be

resubmitted and processing will continue.

– Canceling the last dependent job that is not complete can

cause a job group state change

• SUSPENDING → SUSPENDED if there are INERROR

jobs

• ACTIVE → COMPLETE if all jobs are completed

– Canceling any job in an active concurrent set will cause all

jobs in the concurrent set to be canceled.

8/21/2015 69

Usage & Invocation – Job List Commands

• $CJ,P or $PJ command execution differences for

Dependent Jobs

– Purging the last dependent job will cause the job group to be

scheduled for purge.

– Purging any job in an active concurrent set will cause all jobs

in the concurrent set to be canceled.

8/21/2015 70

Usage & Invocation – SSI updates – Extended

Status (SSI 80)

• The Extended Status SSI (SSI 80) was enhanced to return
additional job group information :

– New data will be returned in a job's standard output
(STATJQ) :

• The job group the job is in (if any)

• The status of the job within the job group (if any)

• The HOLDUNTL= and STARTBY= values (if any)

• The WITH= job name (if any)

– The ability to add a list of dependency objects (STATDBs) to
a job's standard output (STATJQ).

• Describes jobs where the given job is the dependent job in
a parent/dependent relationship.

– The ability to filter on a job's associated JOBGROUP name.

8/21/2015 71

Usage & Invocation – SSI updates – Extended

Status (SSI 80)

• The Extended Status SSI (SSI 80) was enhanced to return

additional job group information (continued) :

– The ability to differentiate 'JOBGROUP logging jobs' from regular

jobs.

• Accomplished via a new job type (batch,STC,TSU and now

'JOBGROUP logging job'), and associated SSI 'job type' filter.

• Allows STATJQs for all job groups to be returned, etc...

– When returning a 'JOBGROUP logging job', the ability to return a

representation of it's entire dependency group.

• If requested, an additional section is added to the STATJQ:

– A list of all jobs (STATJQs) in the group (STATJQs)

– A list of all dependencies (STATDBs) in the group

– Status of the group, etc...

8/21/2015 72

Usage & Invocation – SSI updates – Job Modify

(SSI 85)

• The Job Modify SSI (SSI 85) was enhanced to handle job

groups and jobs associated with a job group :

– The ability to differentiate 'JOBGROUP logging jobs' from

regular jobs.

• Accomplished via a new job type (batch,STC,TSU and

now 'JOBGROUP logging job'), and associated SSI 'job

type' filter.

• Allows job groups to be acted upon.

– The ability to filter on a job's associated JOBGROUP name.

8/21/2015 73

Usage & Invocation – SSI updates – Job Modify

(SSI 85)

• The Job Modify SSI (SSI 85) was enhanced to handle job
groups:

– A job modify on a 'JOBGROUP logging job' will act similar to the job
group ($xG) commands ($PG, $CG, etc...).

– Note that the following behavior related to job groups :

• Canceling/purging a job group cancels/purges all the jobs in the
group.

• Cannot purge a job group that is not COMPLETE.

• Cannot start job ($SJ) a job group.

• Cannot restart ($EJ) a job group.

• Cannot spin a job group.

• Cannot change the execution node of a job in a job group or a
job group.

• Can only change the SYSAFF and SCHENV for a job group.

8/21/2015 74

Migration & Coexistence Considerations

• Migrating from JES2 z/OS 1.11 and 1.12 is via an all member
warm start

– No coexistence support

– No fallback (other than spool offload and cold start)

– Must $ACTIVATE to z11 mode prior to warm start

• Migrating from JES2 z/OS 1.13 or z/OS 2.1

– Must $ACTIVATE to z11 mode prior to starting JES2 z/OS 2.2

– APAR OA41740 needed on z/OS 1.13, or z/OS 2.1 member to
coexist in MAS with z/OS 2.2

• UA76769 – HJE7780

• UA76770 – HJE7790

– APAR is required for fall back as well

• Some new data structures created by z/OS 2.2 JES2 will result
in problems for prior releases if OA41740 is not installed.

8/21/2015 75

Session Summary

• In this session we introduced the new Job Execution Controls

• New feature in JES2 similar in function to JES3 dependent job

control

– New JOBGROUP and related JCL statement

• Simultaneous execution using CONCURRENT statement

• SCHEDULE statement for associated jobs with a group

– Job group logging job

– Commands changes

• Updated commands that deal with job groups

• New commands for job groups

– SSI updates

• Extended status changed to report on job groups

• Job modify interactions with job groups

8/21/2015 76

Session Summary

• In this session we discussed new JCL that supports JES2 Job Execution Controls:
– JOBGROUP

– ENDGROUP

– GJOB

– JOBSET

– SJOB

– ENDSET

– BEFORE

– AFTER

– CONCURRENT

– SCHEDULE

• Also discussed the following commands
– $AG

– $CG

– $DG

– $HG

– $PG

– $TG

– $CJ

– $DJ

8/21/2015 77

Questions?

Questions?

8/21/2015 78

Appendix

• Publications

– z/OS V2R2.0 JES Application Programming – SA32-0987-01

– z/OS V2R2.0 JES2 Commands – SA32-0990-01

– z/OS V2R2.0 JES2 Initialization and Tuning Guide – SA32-0991-01

– z/OS V2R2.0 JES2 Initialization and Tuning Reference – SA32-0992-01

– z/OS V2R2.0 JES2 Installation Exits – SA32-0995-01

– z/OS V2R2.0 JES2 Macros – SA32-0996-01

– z/OS V2R2.0 JES2 Messages – SA32-0989-02

– z/OS V2R2.0 MVS JCL Reference - SA23-1385-02

– z/OS V2R2.0 MVS Using the Subsystem Interface – SA38-0679-02

IBM Presentation Template Full Version

8/21/2015 79

