
zFS V5 Migration and Performance

Wednesday, August 12, 2015

01:45 PM - 02:45 PM

Dolphin, Bay

Vivian W Morabito
Insert

Custom

Session

QR if

Desired

Agenda

• V1.5 Filesystems, extended (v5) directories

• v5 performance

• v4 to v5 Migration

7/29/2015 3

Version 1.5 Fileystems

• Introduced in z/OS V2R1

• Version 1.5 filesystems can contain both v4 & new extended (v5)
directories.

• Filesystems can be large! Up 16TB
– (v1.4 filesystems max size is 4TB)

• Can only be mounted on V2R1 or later

• Optional, and are not the default in z/OS V2R1 or V2R2

• Installations should only start to use V5 filesystems when fully
migrated to z/OS V2R1 or later with no plans to go back to prior
releases.

7/29/2015 4

Extended (v5) directories

• Support large directories with improved performance

– use a tree directory format, providing much faster insert /

search / delete performance

• Store names more efficiently than older v4 directories

• Space can be reclaimed when names are removed from v5

directories

– v4 directories do not reclaim space until the directory is

removed.

• Support large number of subdirectories (4G-1)

– (v4 limit is 65535)

7/29/2015 5

V5 Filesystem Performance

• V5 filesystems provide significant performance gains due to

new tree directory structure

– Directory searches scale well as directories increase in size

– Directory searches & updates on the same directory can

generally be performed in parallel.

7/29/2015 6

Performance Workload Descriptions:

• Performance results (on subsequent slides) were obtained

using 3 workloads created by IBM:
– All workloads involved tasks processing 2000 objects in each directory, for

multiple directories, on multiple file systems (see slide notes).

– ptestDL2 – tasks did repeated lookups (name searches)

– ptestDL – tasks did repeated lookups & readdir functions

– ptestDU – tasks performed directory create/update/remove/readdir/search

• External Throughput (E): # ops / unit time

– Higher E lower average response time

• Internal Throughput (I): # ops / unit of processor time

– Higher I each CPU operation took less time

• Tests were run with various directory sizes to assess the scalability of

the performance improvement.

7/29/2015 7

Performance Runs:

• On a z9 processor showing the improvement (in V2R1)

– for V4: comparing V2R1 V4 with V1R13 V4

– for V5: comparing V2R1 V5 with V1R13 V4

• On a z196 processor showing the V2R2 improvement over

V2R1 for V5 directories.

• Comparisons are made for both monoplex & sysplex for

each of the 3 workloads.

7/29/2015 8

Performance runs made in V2R1 time frame

(showing general improvement & gain V5 over V4)

• ptestDL2 (dir search) Results on z9 / FICON connected DASD

• V5 search performance scales almost linearly with directory size

• V5 file system monoplex performance improves 20% for small directories, 10X for

directories with 50,000 names.

• V5 sysplex client performance improves 40% even for small directories, 16X for

directories with 50,000 names

7/29/2015 9

Performance runs made in V2R1 time frame

(showing general improvement & gain V5 over V4)

• ptestDL (dir search & readdir) Results on z9 / FICON Connected DASD

• Since readdir is in the mix, response time is dependent on directory size

• V5 monoplex improvement: 17% for small, 9x for large directories

• V5 sysplex client improvement: 45% for small, 277x for large directories

7/29/2015 10

Performance runs made in V2R1 time frame

(showing general improvement & gain V5 over V4)

• ptestDU (dir reading & writing) Results on z9 / FICON connected DASD

• V5 monoplex performance improves 17% for small, 6x for larger directories

• V5 sysplex client performance improves 25% for small, 65x for larger directories

– Runs in last 2 rows were hurt by small meta cache size… since these runs were made in V2R1, due to

zFS storage constraints it was not possible to run with larger caches (this has been resolved in V2R2

with 64bit zFS)

7/29/2015 11

Performance runs in V2R2 time frame (showing

improvements in V2R2 over V2R1 for V5 dirs)

• ptestDL2 (dir search) Results on z196

• All measurements made running in the USS (OMVS) Address Space

• V2R2 monoplex performance improves 54% for small directories, 2X for
directories with 50,000 names.

• V2R2 sysplex client performance improves 35% even for small directories,
88% for directories with 50,000 names

7/29/2015 12

Performance runs in V2R2 time frame (showing

improvements in V2R2 over V2R1 for V5 dirs)

• ptestDL (dir search & readdir) Results on z196

• All measurements made running in the USS (OMVS) Address Space

• V2R2 monoplex performance improves 14% for small directories, 12%
for directories with 50,000 names.

• V2R2 sysplex client performance improves 3% even for small
directories, 13% for directories with 50,000 names

7/29/2015 13

Performance runs in V2R2 time frame (showing

improvements in V2R2 over V2R1 for V5 dirs)

• ptestDU (dir reading & writing) Results on z196

• All measurements made running in the USS (OMVS) Address Space

• V2R2 monoplex performance improves 54% for small directories, 2x for

directories with 50,000 names.

• V2R2 sysplex client performance improves 35% even for small directories,

88% for directories with 50,000 names

7/29/2015 14

So what about V5 performance at your installation?

 Typical Customer Usage Pattern:

1. Directory search (lookup) most common operation, or at least one

of the most frequent. Similar to ptestDL2 workload

2. File Open/Read/Write/Close the next most common operations.

ptestDL workload combines reads with lookup

3. Directory update operations generally a much lower percentage of

calls to zFS.

F ZFS,QUERY,KNPFS will show you your workload

characteristics in terms of what operations are most

common for you.

7/29/2015 15

Identifying which filesystems to convert to V1.5

 Filesystems with large directories will benefit most
– As shown in the prior slides, directory performance is improved

even for smaller directories (2000 names) but directories over
10,000 names will likely see non-trivial reduction in directory
operation time inside zFS.

– ls –slk will show your directory size on disk in kilobytes.

Any directory over 160K will benefit with v5

• Convert the largest most active filesystems to V1.5
first.

The F ZFS,QUERY,FILESETS can be used to
identify your most active file systems.

7/29/2015 16

v4 to v5 migration

• Creating new V1.5 filesystems

– IOEFSUTL, IOEAGFMT, zfsadm format or API

• Changing existing V1.4 filesystems to V1.5
– Explicitly for a mounted filesystem,

– automatically on mount, or

– Offline

• Converting existing v4 directories to extended v5
– Explicitly one at a time,

– automatically as they are accessed, or

– Offline

7/29/2015 17

Creating new V1.5 Filesystems

• New directories created in a V1.5 filesystem are extended

v5 directories.

• IOEFSPRM parameter: format_aggrversion = 4 | 5

– Specifies the default version to when formatting an aggregate

– Can be overridden by options used in format invocation

– Default is 4 (creates a v1.4 aggregate)

7/29/2015 18

Creating new V1.5 Filesystems…

• IOEFSUTL and IOEAGFMT batch utilities take an optional

parameter to specify the version of the filesystem to format:

–version4 or –version5

7/29/2015 19

Creating new V1.5 Filesystems…

• zfsadm format has an optional parameter

–version4 or –version5

7/29/2015 20

Creating new V1.5 Filesystems…

• format aggregate API:

aggptr->af_aggrversion

– 0: default version specified by format_aggrversion

– 4: version 1.4

– 5: version 1.5

7/29/2015 21

Changing existing V1.4 filesystems to V1.5

• zfsadm convert –aggrversion

– Will change the aggregate version from V1.4 to V1.5

– Filesystem must be mounted or attached.

7/29/2015 22

Changing existing V1.4 filesystems to V1.5…

• To automatically change the version from V1.4 to V1.5 on

mount:

– IOEFSPRM parameter change_aggrversion_on_mount

• Changes only the filesystem version, no directories are

converted from v4 to extended v5.

– IOEFSPRM parameter converttov5=on

– Mount parm CONVERTTOV5

• Changes the filesystem version to V1.5 and converts v4

directories to extended v5 as they are accessed.

7/29/2015 23

Changing existing V1.4 filesystems to V1.5…

• There is also a NOCONVERTTOV5 mount parameter

• Both CONVERTTOV5 and NOCONVERTTOV5 will

override IOEFSPRM settings for

change_aggrversion_on_mount and converttov5

– Useful if there are a few exceptional filesystems that you do

or don’t want to convert.

7/29/2015 24

Changing existing V1.4 filesystems to V1.5…

• Offline using the IOEFSUTL converttov5 batch utility using

the –aggrversion_only option

– Changes from V1.4 to V1.5 only, no directories are converted

from v4 to v5 with this option!

7/29/2015 25

Changing existing V1.4 filesystems to V1.5…

An aggregate is not explicitly or automatically changed

from V1.4 to V1.5 if there are releases in the sysplex

prior to z/OS V2R1

7/29/2015 26

Converting existing v4 directories to extended v5

• zfsadm convert -path will explicitly convert the specified

directory.

• v4 directories can be subdirectories of v5, and

• v5 directories can be subdirectories of v4

7/29/2015 27

Converting existing v4 directories to extended v5…

• If the fileystem has the CONVERTTOV5 attribute set

directories are automatically converted as they are

accessed

– CONVERTTOV5 can be set either by IOEFSPRM (default) or

via an explicit mount parameter.

7/29/2015 28

Converting existing v4 directories to extended v5…

• IOEFSUTL converttov5

– Batch utility which will convert all directories contained in the

filesystem.

• IOEFSUTL converttov4

– Will allow you to convert back to v4 if needed

• assuming not exceeding v4 subdir limit 65535 or size limit 4TB

7/29/2015 29

Converting existing v4 directories to extended v5…

• If the filesystem is not already V1.5, conversion of the first

directory it contains will change its version to V1.5

• Converting a directory from v4 to v5 requires that both

versions of the directory exist temporarily on disk.

– If the aggregate becomes full during allocation of a new

directory, a dynamic grow will be attempted.

– The size of the new v5 directory will vary based on the

directory contents.

– If a system outage occurs during a directory conversion, the

directory will be made consistent during log recovery

processing (either the old or new directory will exist, but not

both)

7/29/2015 30

Version 1.5 filesystem disk space usage

• Version 1.5 filesystem pages use a prefix/postfix scheme to pack

more names in a directory page

– If the names fit a common pattern at the beginning or end, up to 4X

more names can fit in a page over a V1.4 filesystem.

• v5 directories are tree structured, and a new name is placed in

the tree according to the hashing algorithm.

• v4 directories can place a new name in any directory page that it

fits.

• Therefore, there are some cases a v5 directory could use less

space than a v4, and some cases where it could use more.

• IBM expects that the disk space used by v5 directories will

be roughly equivalent to v4 directories on average.

7/29/2015 31

IBM recommended v5 exploitation strategy
1. Delay converting remaining HFS to zFS file systems until z/OS 2.1:

– Unless you have an immediate need to convert an HFS to zFS (typically due to file IO
performance issues with HFS):
• Wait until your site is at z/OS 2.1 and later before migrating the file system to zFS

• So you can use v5 format for improved directory performance and avoid a conversion from v4 to
v5 format.

2. Do not use v5 until fully ready to commit to z/OS 2.1 for all systems.
– Going back to v4 via IOEFSUTL could be painful, wait until it’s safe before using v5.

3. Set format_aggrversion=5:
– Future file systems get created as version 5

• And avoids having to change JCL and other programs.

4. Set change_aggrversion_on_mount=ON
– Safe since it is a fast operation and ensures future directories are v5 format.

5. Determine if CONVERTTOV5 can be globally enabled
– This depends on how many directories are accessed at IPL time, the number of names in

each and the known zFS conversion performance results and the expected amount of
delay to the system IPL.
• User has to decide if they can tolerate the expected one-time IPL delay

• And if they can, simply specify CONVERTTOV5=ON in IOEFSPRM.

6. And if cannot globally enable, then:
– Determine highest usage file systems via RMF, or F ZFS,QUERY,FILESETS and commands shown on

slide 9.
– Also look at file systems with large directories, especially if they are high usage and then use the

CONVERTTOV5 MOUNT parameter selectively.

7/29/2015 32

