
Session 18822:
MQ Parallel Sysplex Exploitation,
Getting the Best Availability from MQ
on z/OS by using Shared Queues

Paul Kettley

PLM for Messaging on z

paulk@uk.ibm.com

Agenda

• Shared Queues

• Large messages with DB2

• SMDS

• Structures – Persistence and recovery

• Client Channels

Shared Queues

Shared Queues

Shared
Queue Coupling Facility (CF)

Application Application

QMGR QMGR

Same sysplex

Same QSG

Queue Sharing Groups (QSGs)

DB2 Data Sharing Group

WebSphere MQ Queue Sharing Group

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Shared
Queues

Shared

Objects

Data for

msg

> 63KB

CF Structures for shared-queues

{
Administration

structure

Application

structures
Queue Queue Queue

Information for unit-of-work recovery and so on

Coupling facility

Administration

structure

Application

structures
Queue Queue Queue

Information for unit-of-work recovery and so on

{

Structures

for QSG 1

Structures

for QSG 2

Creating CF structures and shared queues

• Define a structure to z/OS (not to WebSphere MQ) by updating the CFRM
policy (see System Setup Guide):

• Structure is known to WebSphere MQ by its 12-character str-name.

• Structure is known to z/OS by the 16-character name formed by:

• qsg-name || str-name (Application structures)

• qsg-name || CSQ_ADMIN (Administration structure)

• Define a shared queue using the DEFINE QLOCAL command on any queue
manager in the QSG:

• DEFINE QLOCAL(queue-name) QSGDISP(SHARED) CFSTRUCT(str-name)

• z/OS creates the structure when required (first use).

• WebSphere MQ creates the queue when required (first use).

Large messages with DB2

Large Shared Queue Messages (using
DB2)

Message
10K

Shared Queue
Message
100K (ptr)

Message
100M (ptr)

Message
1K

Message Data 100M

Message Data 100K

…

…

DB2 Table CSQ.ADMIN_B_MESSAGES

SMDS

Large Shared Queue Messages
(using SMDS)

QM1 Shared
Queue

Message
100K (ptr)

QM1

SMDS

QM2

SMDS

QM2

APP
MQPUT

APP
MQGET

1

2 3

4

SMDS Performance Improvement

• Tests show comparable CPU savings making SMDS a more usable feature for
managing your CF storage

• SMDS per CF structure provides better scaling than DB2 BLOB storage

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

•3 LPAR Test - DB2

64KB Non-Persistent Messages In-Syncpoint - DB2

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a

c
ti
o

n
s
 /
 S

e
c
o

n
d

1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000

7000

•3 LPAR Test - SMDS

64KB Non-Persistent Messages In-Syncpoint - SMDS

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a

c
ti
o

n
s
 /
 S

e
c
o

n
d

Selecting which messages to offload

• Messages too large for CF entry (> 63K bytes) are always offloaded.

• Other messages may be selectively offloaded using offload rules.

• Each structure has three offload rules, specified on the CFSTRUCT definition.

• Each rule specifies message size in Kbytes and structure usage threshold, using two
parameters:

• OFFLDnSZ(size) and OFFLDnTH(percentage), where n = 1, 2, 3.

• Data for new messages exceeding the specified size is offloaded (as for a large message)
when structure usage exceeds the specified threshold.

• Default rules are provided which should be useful in most cases.

• Rules can be set to dummy values if not required.

• Without offloading data, it is possible to store 1.25M messages of 63KB on a 100GB
structure

• When offloading all messages, possible to store approx 140M messages on the same
structure, irrespective of message size

Typical use of offload rules

• The three offload rules have no fixed order but are typically intended to be
used as follows:

• Rule 1 is used to save space for fairly large messages by offloading them, with
little performance impact, even when plenty of space left.

• SMDS defaults: OFFLD1SZ(32K), OFFLD1TH(70)

• Rule 2 is used as an intermediate step between rules 1 and 3, to start saving more
space as the structure usage increases, in exchange for a minor performance
impact.

• SMDS defaults: OFFLD2SZ(4K), OFFLD2TH(80)

• Rule 3 is used to maximize the remaining space when the structure is nearly full,
by offloading everything possible.

• SMDS defaults: OFFLD3SZ(0K), OFFLD3TH(90)

Storage benefits of offloading

~ 35000 msgs in CF

~
 5

0
0
0
 m

s
g

s
 in

 C
F

~
 1

4
0

0
0

0
 o

fflo
a
d

e
d

 m
s
g

s
 ~

 1
4

0
0

0
0

 o
fflo

a
d

e
d

 m
s
g

s

7
0

%

8
0

%

9
0

%

1
0

0
%

~ 320000 msgs using offloading vs ~ 50000 without offloading

> 32KB > 4KB > 0KB > 63KB

1GB structure using 20KB messages

Creating a shared message data set

• SMDS is defined as a VSAM linear data set using IDCAMS DEFINE CLUSTER.

• Requires LINEAR option.

• Control interval size must be 4096, which is the default for linear.

• Requires SHAREOPTIONS(2 3), allowing one queue manager to write and other
queue managers to read at the same time.

• If maximum size may need to exceed 4GB, requires SMS data class which has
VSAM extended addressability attribute.

• If automatic expansion is to be supported, requires an appropriate secondary
space allocation (although a default of 20% will be used if an expansion attempt
fails because of no secondary allocation).

• Can optionally be pre-formatted, for example using CSQJUFMT.

• Otherwise formatted automatically when first opened.

Creating a shared message data set

• The DSGROUP parameter on the CFSTRUCT definition specifies the group of
data sets associated with the application structure.

• It is specified as a generic data set name with a single asterisk as the point where
the owning queue manager name is to be inserted.

• It is required when the option OFFLOAD(SMDS) is specified.

• CSQ4SMDS in SCSQPROC provides JCL to define and format a single dataset

DEFINE CLUSTER -
 (NAME(++HLQ++.++QMGR++.++CFSTRUCT++.SMDS) -
 MEGABYTES(++PRI++ ++SEC++) -
 LINEAR -
 DATACLAS(EXTENDED) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(++HLQ++.++QMGR++.++CFSTRUCT++.SMDS.DATA))

Access to shared message data sets

• Shared message data sets must be on shared direct access storage accessible
to all queue managers within the QSG.

• Normal running:

• Queue manager opens own data set read/write.

• Requires UPDATE access to own data set.

• Queue manager opens other data sets read-only.

• Requires READ access to all other data sets.

• Media recovery processing:

• Queue manager performing recovery opens own data set and all other data sets
for read/write access.

• Requires UPDATE access to all data sets.

Shared message data set capacity
considerations

• Each shared message data set only contains data for large messages written
via its owning queue manager.

• Message size calculation:

• Each stored message includes standard headers (usually 352 bytes).

• Each message is stored as one or more message blocks.

• Each message block is stored in a range of consecutive 4K pages on the data set,
with a very small header (32 bytes).

• Approximate data set space required per large message, in bytes, is given by size
of message plus header rounded up to next 4K.

• Multiply by maximum anticipated backlog of messages written via that
queue manager (plus some safety margin) to estimate size needed for data
set.

SMDS capacity considerations –
expansion

• Data set can be automatically expanded when necessary.

• Normally set by DSEXPAND(YES|NO) option on CFSTRUCT, which specifies default
option for data set group.

• Can also be overridden for individual data sets using DSEXPAND option on ALTER
SMDS.

• Expansion attempt is automatically triggered when 90% full.

• If no secondary allocation was specified, VSAM error message will appear, but
queue manager will retry using a default secondary allocation of 20% of the
existing size.

• If expansion fails (not enough space available), queue manager sets
DSEXPAND(NO) to prevent further attempts. Operator can use ALTER SMDS to
set DSEXPAND(YES) again after problem is fixed.

• If maximum extents are reached, data set cannot be expanded any further. (It
could however be marked unavailable then copied to a larger data set which is
then renamed back to the original name).

Structures – Persistence and Recovery

Failure and persistence

Queue

manager

Private

queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Shared

queues

Coupling facility failure

Messages on

shared queues

OK (kept)

Nonpersistent
messages on

shared queues

lost (deleted)

Queue

manager

Private

queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Shared

queues

Nonpersistent

messages on

private queues

OK (kept)

Messages on

shared queues

OK (kept)
Nonpersistent

messages on

private queues

lost (deleted)

Queue manager failure

Persistent
messages on

shared queues

restored from
log

Admin Structure Recovery

• Prior to V7.0.1 each queue manager would rebuild own admin structure
entries

• Particularly an issue in a DR situation.

• Need to start all queue managers to rebuild admin structure

• Once recovered, application structures could be recovered

• At V7.Ϭ.ϭ aĐtiǀe Ƌueue ŵaŶageƌs ŶotiĐe if otheƌ Ƌueue ŵaŶageƌs doŶ’t haǀe
entries, and initiate rebuild on their behalf

CF Loss of Connectivity Tolerance

CF

QM2

QM1

QM3

Pre V7.1 Queue Managers

A failure of the Coupling

Facility is most likely

going to be presented

to connectors as a Loss

of Connectivity

Prior to V7.1, if a queue

manager receives a

loss of connectivity, it

will terminate.

In the case of a

Coupling Facility failure,

this would mean a QSG

wide outage (unless
protected by CF

Duplexing)

CF2

CF Loss of Connectivity Tolerance

CF1

QM2

QM1

QM3

V7.1+ Queue Managers

With V7.1 the queue

managers will not

terminate. They will

automatically attempt to

re-establish access to
the structures affected.

In the case of a total

loss of connectivity the

queue managers can

automatically recover

(RECOVER
CFSTRUCT)

the structures that were

on the failed CF into an

alternative CF

(if available)

Total loss of connectivity -
CFCONLOS(TOLERATE)

• Administration structure

• The queue manager will not terminate and try and reconnect and rebuild its
admin structure data

• If the structure remains unavailable, some shared queue operations will be
unavailable

• Failure to connect to the admin structure during start up is not tolerated

• Application structures

• Connection loss is partial if at least one system in the QSG still has connectivity to
the CF the structure is allocated in

• If total loss of connectivity, the structure is rebuild on an alternative CF if available

• The structure is likely to be in a failed state and requires recovery

CF Loss of Connectivity Tolerance

CF1

QM2

QM1

QM3

V7.1+ Queue Managers

In the case of a partial loss

of connectivity, a System

Managed Rebuild will be

automatically initiated by

the QMGRs to rebuild the
structures into a more

available CF. This will

mean that both persistent

and non-persistent

messages will be retained.

CF2

CF Loss of Connectivity Tolerance

• QMGR CFCONLOS(TERMINATE|TOLERATE)

• Specifies whether loss of connectivity to the admin structure should be tolerated

• Default is TERMINATE

• Can only be altered to TOLERATE when all QSG members are at 7.1

• CFSTRUCT CFCONLOS(TERMINATE|TOLERATE|ASQMGR)

• Specifies whether loss of connectivity to application structures should be tolerated

• Only available at CFLEVEL(5)

• Default is ASQMGR for new CFLEVEL(5) structures, and TERMINATE for structures altered to
CFLEVEL(5)

• CFSTRUCT RECAUTO(YES|NO)

• Specifies whether application structures should be automatically recovered

• Only available at CFLEVEL(5)

• Default is YES for new CFLEVEL(5) structure, and NO for structures altered to CFLEVEL(5)

CFRM Policy Considerations

•CFSTRUCT(TEST1) STRUCTURE NAME(SQ27TEST1)
 CFLEVEL(5) SIZE(50000)
 CFCONLOS(TOLERATE) INITSIZE(20000)
 RECAUTO(YES) DUPLEX(ALLOWED)
 OFFLOAD(SMDS)
ALLOWAUTOALT(YES)
PREFLIST(P5CF01,P5CF02)

•If using CFCONLOS(TOLERATE) also need to consider multiple CFs in PREFLIST

•ALLOWAUTOALT(YES) enables CF to adjust entry/element ratio, and also
automatically resize structure up to SIZE value (can also adjust down to
MINSIZE!!)

•MQ stƌuĐtuƌes ĐaŶ ďe dupleǆed… this ǁill ŵake ŵost tǇpes of failuƌes
transparent to MQ

Client Channels

Client Channels

• Regulaƌ ĐlieŶt ĐhaŶŶels aƌe stateless, so doŶ’t use sǇŶĐhƌoŶizatioŶ Ƌueues

• Only benefit of using a shared channel is the shared status

• Can cause performance issues if using shared channel

• Needs to update DB2 status for each connect/disconnect

• Can configure a generic port to point at INDISP(QMGR) listener on each
queue manager

• Can still benefit from failover and balancing of client connections without using a
shared channel, and can still use QSG name on the MQCONN

• Will not work for Extended Transactional Client (including WAS 2-Phase
Commit over client conn) until at V7.0.1

2-Phase Commit Client Connections

• When setting up the connection, specify the QSG name rather than QMGR
name

• In MQConnectionFactory if using JMS under WAS, you must ensure that you are
only using shared resources

• This causes a UR with GROUP disposition to be created, rather than QMGR

• A GROUP UR can be inquired and resolved via any member of the QSG

• If there is a failure, the transaction manager will reconnect to the QSG and request a list
of in-doubt transactions. GROUP URs will be reported back no matter what QMGR they
were started on

GROUPUR – The Problem (Pre V7.0.1)‏

QM2 QM1

Client
APP

Generic

Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects
to QM2 it only be
told what is in-
doubt on QM2,
meaning that it
will throw away
any information
about in-doubts

on QM1

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

GROUPUR – The Solution (V7.0.1)

QM2 QM1

Client

APP

Generic

Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects
to QM2, QM2 will
inquire all the in-
doubts that have

a GROUP
disposition,

whatever QMGR
that were running

on.

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

xa_open string needs to
be specified with the

QSG name rather than
QMGR name, this means
a GROUPUR is created

More Information

• WebSphere MQ for z/OS Concepts and Planning Guide

• SupportPacs MP16, MP1E, MP1F, MQ1G

• www.ibm.com/software/integration/support/supportpacs/perfreppacs.html

• RedPaper 3636 – WebSphere MQ Queue Sharing Group in a Parallel
Sysplex environment

• www.redbooks.ibm.com/redpieces/pdfs/redp3636.pdf

Any questions?

Session 17822:
MQ Parallel Sysplex Exploitation,
Getting the Best Availability from MQ
on z/OS by using Shared Queues

Paul Kettley

PLM for Messaging on z

paulk@uk.ibm.com

