
zEDC: Huge Response Time
Improvements in Compression

Anthony Sofia (atsofia@us.ibm.com)

Senior Software Engineer at IBM

August 14th 2015

Explosive Growth in Data
Every day over 2000 petabytes of data are created

Data Compression will
become pervasive

Data needs to be shared
across different platforms

Compression solves problems
in the enterprise

� I/O throughput is struggling to
keep up with increasingly data
driven applications

� Batch workloads are
accessing more data from
disk and network connections

� Business opportunities can be
lost due to the cost prohibitive
nature of keeping data online

� Data is being exchanged
among business partners

� Compression can substantially
reduce the amount of data
transferred

� Industry standard formats need
to be used for transparent peer
to peer communication

� Improves the effective throughput of
data over storage and
communication networks

� Allows more data to remain online
for increased business value

� Reduces the amount of data for
encryption operations

� Typically improves batch
turnaround

� Make storage technology including
Flash Memory more affordable

Storage technology, including Flash, more affordable with compression

IBM z Enterprise Data Compression (zEDC)
New data compression offering that can reduce resource usage

4

What Changes?

It is time to revisit your decisions
about compression.

What is it?

� zEDC Express is an IO adapter

that does high performance

industry standard compression

� Used by z/OS® Operating

System components, IBM

Middleware and ISV products

� Applications can use zEDC via

industry standard APIs (zlib and

Java™)

� Each zEDC Express sharable

across 15 LPARs, up to 8

devices per CEC.

� Raw throughput up to 1 GB/s

per zEDC Express Hardware

Adapter vs typical 50 MB a

second in software

� QSAM/BSAM can save up to 4x
disk space and in some cases
shorten elapsed time, reducing
batch windows.

� Business Partner Data
Exchange can have higher
throughput with lower CPU cost

� Managed File Transfer saves
up to 4x link bandwidth, and up
to 80% elapsed time

� ISV Products deliver expanded
customer value

� Java for z/OS V7R1 accelerates
common compression classes
used by applications and
middleware

� Disk Savings: Many people are
already getting value from
CMPSC compression and
software compression today

� Performance: High throughput
alternative to existing IBM
System z® compression for
large or active files.

� Industry Standard: Low cost
compressed data exchange
across all platforms

� Pervasive: Standard APIs allow
quick adoption by middleware
products running on System z

What is the Value?

New sources of customer value

z Systems Compression Technology Overview
Using the right hardware compression acceleration for each of your workloads

5

On Chip

In every IBM eServer™ zSeries® today (and tomorrow)

Mature: Decades of use by Access Methods and DB2®

Work is performed jointly by CPU and Coprocessor

Propriety Compression Format

PCIe Adapter

New with IBM zEnterprise® EC12 GA2 and
IBM zEnterprise BC12

Mature: Industry Standard with decades of software support

Work is performed by the PCIe Adapter

Standards Compliant (RFC1951)

Small object compression

� Rows in a database

Large Sequential Data

� QSAM/BSAM Online Sequential Data

� Objects stored in a data base

Industry Standard Data

� Cross Platform Data Exchange

Users

� VSAM for better disk utilization

� DB2 for lower memory usage

� The majority of customers are currently
compressing their DB2 rows

Users

� QSAM/BSAM for better disk utilization and
batch elapsed time improvements

� SMF for increased availability and online
storage reduction

Users

� Java for high throughput standard
compression via java.util.zip

� Encryption Facility for z/OS for better
industry data exchange

� IBM Sterling Connect: Direct® for z/OS
for better throughput and link utilization

� ISV support for increased client value

Use Cases

Compression Coprocessor z Enterprise Data Compression

Sequential Data Compression with BSAM/QSAM and zEDC

6

Reduce the cost of keeping your sequential data online

� zEDC compresses data up to 4X, saving up to 75% of your
sequential data disk space

� Capture new business opportunities due to lower cost of keeping
data online

Better I/O elapsed time for sequential access

� Potentially run batch workloads faster than either uncompressed
or QSAM/BSAM current compression

Sharply lower CPU cost over existing compression

� Enables more pervasive use of compression

� Up to 80% reduced CPU cost compared to tailored and generic
compression options

Simple Enablement

� Use a policy to enable the zEDC

Example Use Cases

SMF Archived Data can be
stored compressed to increase
the amount of data kept online
up to 4X

zSecure output size of Access
Monitor and UNLOAD files
reduced up to 10X and
CKFREEZE files reduced by
up to 4X

Up to 5X more XML data can
be stored in sequential files

The IBM Employee Directory
was stored in up to 3X less
space

z/OS SVC and Stand Alone
DUMPs can be stored in up to
5X less space

Disclaimer: Based on projections and/or measurements completed in a controlled environment. Results
may vary by customer based on individual workload, configuration and software levels.

Sequential Data Compression with zEDC – Value!

7

Large Format Extended Format Generic Tailored zEDC

0

5

10

15

20

25

30

Size (GB)

Elapsed (10 s)

CPU (10 s)

Data Set Type

G
ig

a
b

yt
e

s
 o

r
S

e
c
o

n
d

s

Disclaimer: Based on projections and/or measurements completed in a controlled environment.
Results may vary by customer based on individual workload, configuration and software levels.

Extended Format Compressed

zEDC

Uncompressed

Current
Compression

Data Replication

8

� Replication technologies which move data in physical format can take advantage of the

reduced storage requirements of data compressed with zEDC.
– Significant amounts of zEDC compressed data can reduce the amount of data transferred as well

as the elapsed time to complete the transfer.

A B

A B

A B

Data transmission

Data transmission

With zEDC Compression

DFSMShsm and DFSMSdss Usage of zEDC

9

Disclaimer: Based on projections and/or measurements completed in a controlled environment. Results
may vary by customer based on individual workload, configuration and software levels.

� DFSMSdss DUMP command

� In addition to existing COMPRESS and HWCOMPRESS options on DUMP command,

new ZCOMPRESS (REQUIRED | PREFERRED | NONE) option will take advantage of

zEDC compression.

� Accepted for all FULL, TRACKS, physical and logical DATASET backups to DASD

and tape

� The use of zEDC for backups can be restricted using a new facility class profile:

STGADMIN.ADR.DUMP.ZCOMPRESS

� DFSMShsm will use the DFSMSdss zEDC support (via ZCOMPRESS(PREFERRED)) in

� Migrate/Recall

� Backup/Recover

� Full Volume DUMP

� Recover and FRRECOV from DUMP

Exception: zEDC will not be used during migration or backup functions when DFSMShsm

is the data mover. Partitioned Data Sets will utilize the standard DFSMShsm compaction

methodology in place.

zEDC with WebSphere MQ for z/OS V8

10

WebSphere MQSeries® has always provided compression options for message data passed

over MQ channels via the COMPMSG attribute.

The existing zlib options are the following:

� ZLIBFAST - Message data compression is performed using the zlib compression technique. A fast
compression time is preferred.

� ZLIBHIGH - Message data compression is performed using the zlib compression technique. A high
level of compression is preferred.

Starting with WebSphere MQ for z/OS V8 the COMPMSG(ZLIBFAST) attribute will now use

zEDC when available to perform compression and decompression of message data.

This support is ideal for channels that handle large, 32KB requests.

zEDC with SMF Logstream Recording

11

Alleviate SMF constraints across the entire life cycle of a record using compression technology

Record Creation Records created by z/OS, DB2, CICS® and
applications are all written to SMF

Record Buffering zEDC Express can be used to compress SMF data
resident in the z/OS System Logger cutting down on
logger storage requirements.

Record Extraction SMF can extract compressed data from logger faster
than uncompressed data.

Targeting a compressed QSAM/BSAM data set for
long-term archival can also optimize disk space.
zEDC, tailored or generic compression can be used
depending on the requirements

Record Archival
Reading SMF data from a compressed data sets can
increase the performance of applications that access
that data.

Disclaimer: Based on projections and/or measurements completed in a controlled environment. Results may vary by
customer based on individual workload, configuration and software levels. (BSAM)
Disclaimer: These results are based on projections and measurements completed in a controlled environment.
Results may vary by customer based on individual workload, configuration and software levels (Logger)

� Store up to 4x less data in

System Logger

� Logger CPU usage reduced

by up to 30%

� Up to 15% reduction in

elapsed time for SMF
extraction from Logger

� SMF data stored in zEDC
compress BSAM can save up

to 4x in archived SMF data

size

� Programs reading SMF data
from a zEDC compressed
data set can see an elapsed
time reduction

zEDC with Java

12

Transparent enablement of the java.util.zip package enables high throughput compression and
decompression

� zEDC java.util.zip.Deflater in memory test improved
elapsed time up to 55x and CPU time up to 240x
when compared to zlib software compression.

Java with zEDC can be used for

�Application Business Partner Data Exchange

�HTTP Responses for Web Services

– Servlet Filters

– WebSphere® Web Services component

� Large objects that are serialized and stored

�Processing gzip or zip files

�Exploited through standard Java APIs java.util.zip* in the latest releases of Java 7.0.0, and Java V7R1

– Java application to compress files using java.util.zip.GZIPOutputStream class

� Up to 90% reduction in CPU time using zEDC hardware versus zlib software

� Up to 74% reduction in Elapsed time using zEDC hardware versus zlib software

CPU Time for Software versus zEDC Hardware Compression

Using - java.util.zip.GZIPOutputStream Class

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Public Domain Books SVC Dump SMF Data

Compressed Data Files

C
P

U
 T

im
e

zlib Software

zEDC Hardware

* Not all java.util.zip classes exploit zEDC

Disclaimer: Results are based on internal controlled measurements using java.util.zip.Deflater on data already in memory.
Results may vary based on the application's use of java.util.zip classes and other work done by the application

zEDC with Java Application – Encryption Facility for z/OS

13

Increased throughput and functionality for standard compliant business partner data exchange. The
Encryption Facility (EF) for z/OS can now use zEDC to compress and decompress data

1. Before performing an encryption and after performing a decryption
2. As a stand-alone operation

Compressing data with zEDC enables higher throughput than no compression or software compression

zEDC can provide IBM EF users
reductions of up to 60% in elapsed
time and up to 70% in CPU time for
environments where compression is
already in use

For IBM EF users not already using
compression, compression with
zEDC can provide IBM EF users a
reduction of up to 44% in elapsed
time and up to 46% in CPU times

Results based on files containing
public domain books. Results may
vary by customer based on
individual workload, data,
configuration, and software levels.

Disclaimer: Results based on internal controlled measurements using IBM Encryption Facility for files containing public domain books.
Results may vary by customer based on individual workload, data, configuration and software levels.

What is DEFLATE and GZIP?

14

The DEFLATE file format is defined by the IETF RFC1951 document. The generation of the DEFLATE data is up to

each implementer.

There is a combination of two processes:

LZ77 (Lempel-Ziv 1977) – Provide pattern matching via a 32k rolling window in the data. As matches are

found they are replaced with a back reference to the match.

Huffman Coding – Encodes the symbols in the file into a set of bit patterns where the most used symbols get

the smallest bit patterns.

There are two types of approaches for Huffman Coding

Static or Fixed Huffman – A predefined alphabet is used to encode the symbols. This alphabet is defined in

RFC1951.

Dynamic Huffman – The Huffman Tree is defined based on the symbols in the stream. The Huffman Tree

alphabet is embedded in the DEFLATE block.

The file format is a BIT aligned file; meaning that symbols do not fall on byte boundaries.

Application Programming with zEDC

15

• Several application programming interfaces exist

• Authorized APIs – Requires supervisor state, key0 execution.
Provides direct access to zEDC – Not covered in this

presentation!

• zlib - Problem State, requires LE runtime

• Java – Provided by the java.util.zip package

zlib

16

zlib is a widely used open source C library that provides compression and decompression. It

supports RFC1950 (ZLIB), RFC1951 (DEFLATE), and RFC1952 (GZIP).

zlib supports a streaming model such that files can be compressed/decompressed in chunks.

Things to know about using zlib with zEDC

•The address space using zEDC needs READ access to the

FPZ.ACCELERATORS.COMPRESSION SAF resource

•The FIRST deflate() or inflate() request must be at least as large as the minimum

threshold setup in IQPPRMxx

•The window size for deflate must be 32k

•The _HZC_COMPRESSION_METHOD environmental variable can be used to force

software even when zEDC is available

zlib Configuration Options

17

The IQPPRMxx member in SYS1.PARMLIB can be used to adjust internal settings for zlib

behavior. For example

D IQP

IQP066I 10.12.37 DISPLAY IQP 364

zEDC Information

MAXSEGMENTS: 7 (112M)

Previous MAXSEGMENTS: 4 (64M)

Allocated segments: 1 (16M)

Used segments: 0 (0M)

DEFMINREQSIZE: 5K

INFMINREQSIZE: 16K

Feature Enablement: Enabled

ZEDC,DEFMINREQSIZE=5,MAXSEGMENTS=7

This member will set the minimum input size of a deflate request via zlib to 5Kb and will set the
maximum internal buffer size to 7 16Mb segments. The current settings and buffer usage can be
displayed with the D IQP command:

Updated values from IQPPRMxx

zlib internal structure

18

Standard
S/W Zlib

• If zEDC
devices and
request eligible

• Else use S/W
algorithm

z/OS zlib library

C Program
Java Program using
Java.util.zip package

Pre-pinned z/OS Memory

zEDC
Device

Caller
Input
Buffer

Caller
Output
Buffer

zlib
State
Buffer

4K to 512K 4K to 512K

If the request can not be performed using zEDC then the software zlib code will be used for the request.

The zEDC requests are not done directly from user storage; the input data is copied into pre-allocated buffers and the output

data is copied from these buffers back to user storage.

~64KB

Using zlib with CEEPIPI

19

• The CEEPIPI interface can be used to create an LE runtime to
execute zlib functions in

• This allows the IBM provided zlib to be used in many environments
that may not have an LE runtime

• The _HZC_COMPRESSION_METHOD environmental variable can be
set with the ENVAR keyword in the runtime options

Using zlib with CEEPIPI (cont)

20

• The pre-linker can be used to define custom short names for the
zlib routines

//PLKED EXEC PGM=EDCPRLK,PARM='NOER,OMVS,MAP,NODYNAM,OE’

…

//ZLIB DD PATH='/usr/lpp/hzc/lib/libzz.a‘

…

//SYSIN DD *

RENAME 'inflate',INFLATE

RENAME 'inflateEnd',INEND

RENAME 'inflateReset',INRES

RENAME 'inflateInit',ININ

RENAME 'inflateHwAvail',HWAVAIL

LIBRARY ZLIB

Using zlib with CEEPIPI (cont)

21

• The short names can be defined as external entry points and setup
for CEEPIPI via the PIT

EXTRN ININ2

EXTRN HWAVAIL

EXTRN INFLATE

EXTRN INRES

EXTRN INEND

PPTBL CEEXPIT ,

CEEXPITY ,ININ2+X'80000000'

CEEXPITY ,HWAVAIL+X'80000000'

CEEXPITY ,INFLATE+X'80000000'

CEEXPITY ,INRES+X'80000000'

CEEXPITY ,INEND+X'80000000'

CEEXPITS ,

Using zlib with CEEPIPI (cont)

22

• The init_sub function can be used to create an LE runtime for calling zlib

routines

• This provides a calling environment with minimal overhead and that keeps
the memory between calls to preserve the zlib state

• The same environment created with init_sub can be used for multiple

streams.

• Either deflateReset or inflateReset can be used between streams rather than

performing a delfateEnd/inflateEnd and deflateInit/inflateInit

• If the LE runtime is terminated then any active zstrm is invalid

• zlib mallocs areas and links them from the zstrm which would no longer be

valid

Using zlib with CEEPIPI (cont)

23

• The call_sub function can be used to execute the individual zlib routines

• Remember, this is C so not everything is pass by reference!

• Lets look at a parameter list for calling inflate, defined as

• Lets use a flush mode of Z_FINISH in this example

Parameter List @

zstrm@

zstrm

z_streamp int

0x00000004

ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));

The zstrm area is
storage obtained by you!

Java and zEDC with java.util.zip

24

Java 7.1 provides zEDC access via the java.util.zip Inflater and Deflater classes. The same conditions that
apply to zlib also apply to Java.

This example (try/catch blocks removed) shows the critical buffer sizes

byte buffer[] = new byte[64 * 1024];

byte outputFile[];

input = new FileInputStream(argv[0]);

output = new ByteArrayOutputStream();

gzStream = new GZIPOutputStream(output, 4096);

for(;;) {

readBytes = input.read(buffer);

if(readBytes < 0) {

break;

}

else {

gzStream.write(buffer, 0, readBytes);

}

}

64Kb input buffer for deflate(). This must
reach the threshold

4Kb output buffer for deflate()

Data is read from an uncompressed file
and written to a compressed file

zlib – Buffer Size Matters!

25

Disclaimer: Based on projections and/or measurements completed in a controlled environment.
Results may vary by customer based on individual workload, configuration and software levels.

Setting Buffer Sizes with Java

26

For the Inflater and Deflater classes the input buffer size is the size
of the parameter passed via the setInput method.

For the GZIPInputStream, DeflaterInputStream and
InflaterInputStream classes a constructor is provided which allows the

input buffer size for the deflate or inflate operation to be specified. The buffer
passed to the read method determines the size of the output buffer.

For the GZIPOutputStream and DeflaterOutputStream classes a

constructor is provided which allows the output buffer size for deflate and
inflate operations to be specified. For these classes the size of the buffer
passed to the write method sets the input buffer size.

New zEDC HealthCheck

27

• Checks for a specific number of zEDC Express devices

• Different thresholds exist for different severities

• Triggered as devices are brought online and offline to the system

• This check is not triggered on a time interval

• Shipping with OA48434

New zEDC HealthCheck – Example Reports

28

• Sample report that reports a medium severity when less than 2
devices are available and a high severity when no devices are
available

• In this example there are greater than 2 zEDC Express devices

available

New zEDC HealthCheck – Example Message

29

• Messages are issued when the exception is triggered

• FPGH0001E for low severity exception

• FPGH0002I for successful execution

• In this example there 20 devices available however the installation-
specified threshold is 60

zEDC RMF Reporting

30

New RMF™ report shows the utilization of each device.

Average request queue time in
Microseconds for this device.Compression ratio of

all requests serviced
by zEDC. This will
span all usage of the
zEDC Express devices

The percent of this
interval where this
specific zEDC
Express device was
executing
requests

zEDC SMF30 Section

31

New zEDC section in the SMF30 record provides per-job zEDC usage statistics

– Shipped with OA45767

• Also track OA48268 (currently open) to address an issue with the Queue and
Request time fields

– The following statistics are provided in the new section

• Number of requests
• Number of Problem State (zlib) requests
• Total Queue Time
• Total Execute Time
• Uncompressed Input Bytes
• Compressed Output Bytes
• Compressed Input Bytes
• Uncompressed Output Bytes

zEDC Redbook

32

� Provides overview of the technology

� Covers configuration of SMF,
QSAM/BSAM and DFHSM/DFDSS

� Examples using zBNA

� Available Now on
www.redbooks.ibm.com:

http://www.redbooks.ibm.com/Redbooks.nsf/Red
pieceAbstracts/sg248259.html?Open

33

• zEnterprise Data Compression – What is it and how do I use it?
Share in Anaheim -- Session 15081

References

Thank You!

7/29/2015 34

