
©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Native z/OS JSON Parsing and

HTTP Services

Steve Warren

IBM

email: swarren@us.ibm.com

: @StevieWarr2

August 11, 2015

Session 17791

mailto:swarren@us.ibm.com

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015
2

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.
Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

BMC Mainview AutoOPERATOR is a trademark of the BMC Software Corporation

CA Ops/MVS is a trademark of the CA Technlogies corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

zCostManagement is a trademark of the zCostManagement Corporation.

zPrice Manager is a trademark of the zIT Consulting Corporation

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not

actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015
3

• Web applications (quick overview)

• What and why of JSON?

• What is REST?

• What is missing on z/OS?

• Introduction to the toolkit

• z/OS JSON Parser details

• Usage

• z/OS HTTP/HTTPS protocol enabler details

• Usage

• Problem determination

• Reference material

Agenda

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Web applications
(JSON, HTTP and REST)

4

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Moving Beyond the Browser

Web 1994 was the “get me a domain and a page” era.
Web 2000 was the “make my page(s) interactive and put people on it” era.
Web 2010 is the “get rid of pages and glue APIs and people together” era.
Robert Scoble (Author of tech blog Scobleizer)

“$7bn worth of items on eBay through APIs”
Mark Carges (Ebay CTO)

“The adoption of Amazon’s Web services is currently
driving more network activity then everything Amazon
does through their traditional web sites.”
Jeff Bar (Amazon evangelist) / Dion Hinchcliffe (Journalist)

Web APIs are the
new, fast-growing
business channel

Businesses
Are Evolving

stores (800) ###s web sites

Not having an API today is like not having a Web Site in the 90s

“$7bn worth of items on eBay through APIs”
Mark Carges (Ebay CTO)

The API which has easily 10 times more traffic then the website, has been really
very important to us.”
Biz Stone (Co-founder, Twitter)

“The adoption of Amazon’s Web services is currently driving more network
activity then everything Amazon does through their traditional web sites.”
Jeff Bar (Amazon evangelist) / Dion Hinchcliffe (Journalist)

5

©Copyright IBM Corporation 2015

Growth in Publically Published Web APIs

1 299 593 865
1546

2418

5018

8226

10302

12534

13860

0

2000

4000

6000

8000

10000

12000

14000

16000
2

0
0

5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

Public WebAPIs Available

WebAPIs

Source: Programmable Web (some intermediate numbers extrapolated)

6

©Copyright IBM Corporation 2015

JSON : The Exchange Notation For Mobile Devices

Client
JavaScript

XML /JSON
Store /
Persistence
layer

• With the increased popularity of Web APIs (literally thousands of
Web APIs) and the use of Mobile Devices

– User Interfaces usually have a JavaScript component

• JSON is the data structure for JavaScript

– JSON is integrated with JavaScript and Java and other languages
(through libraries)

– The JSON trend is developer driven and is reaching all tiers (UI, Middle
Tier, Data Tier)

Protocol
HTTP (REST)

JSON
Relational

Store

JSON
Middle Tier

Web API
JSON Sample
{"name" : “Adele",
"breed": "Poodle",
“dob": 2011-05-01}

Aspects of JSON:
No namespaces

No schemas

No mixed content support Mixed
content example: <p>hello
Adelehow are you</p>

JSON

JSON standardized as part of ECMAScript in December 1999

JSON has reached all tiers

7

©Copyright IBM Corporation 2015

JSON Penetration: Web API Trend Towards JSON

Programmable Web, Jan 2012

26 Weather APIs, 12 Support JSON

“Weather has always been a popular category with 26 Weather APIs listed in our directory. While XML is still
the leading data format used, the trend of JSON becoming the Developer’s Choice over the last few years is also
reflected in the Weather category”

Programmable Web, December 2012

1 in 5 APIs said “Bye XML” - JSON is popular, at
least when it comes to API data formats. Of the
new APIs we added to our directory, one in four
supports only JSON (Dec 2012). YouTube API, for
example, switched to JSON-only

Programmable Web, January 2012

Library of Congress, Prints and Photos API goes JSON - The
Library of Congress, with their Prints and Photographs API
has finally taken the REST API plunge. If this government
institution can do it, maybe you can convince the head of
your IT department that APIs are a good idea too.

8

http://blog.programmableweb.com/2012/01/11/12-json-weather-apis/
http://blog.programmableweb.com/2012/01/11/12-json-weather-apis/
http://blog.programmableweb.com/2012/01/06/library-of-congress-prints-photos-goes-json/
http://blog.programmableweb.com/2012/01/06/library-of-congress-prints-photos-goes-json/

©Copyright IBM Corporation 2015

JSON example

9

{

"firstName": "Steve",

"lastName": "Jones",

"age": 46,

"address": {

 "streetAddress": "123 Anywhere Ave",

 "city": "Poughkeepsie",

 "state": "NY",

 "postalCode": "12601",

 "country": "USA"

 },

"phone": [

 {

 "type": "mobile",

 "number": "914 555 5555"

 },

 {

 "type": "home",

 "number": "845 555 1234"

 }

]

}

Name – value pairs

• Name in quotes

• Value one of the

types below

Objects – { }

Arrays – []

Object entries

• Other objects or

arrays

• String – “ ”

• Numbers

• Boolean

• Null

©Copyright IBM Corporation 2015

What are REST APIs?

• Web applications are a client/server programming model using a

request/response protocol.

• RESTful applications are web applications that follow a simple set of

architectural constraints such as:

• using standard HTTP methods

• stateless servers

• using URIs (URLs) strictly to identify the server resource being

modified or interrogated

• sending data back and forth in human-readable form

• REST APIs are defined by a server

• What URI should be interrogated

• Which HTTP service should be used against that URI

• The format of the data to be sent back and forth

10

©Copyright IBM Corporation 2015

30,000 foot view of REST / HTTP / JSON

Client

HTTP PUT

Server

/service/weather

(REST interface)

{“city”:“New York”,“units”:“F” }

{“low”:48,“high”:65 }

Request

Response

JSON

11

©Copyright IBM Corporation 2015

No Generic z/OS Client Web Services

• A few z/OS implementations here and there
• Rexx & Curl in z/OS UNIX (USS)

• Socket from COBOL

• Apache http client from Java

• DB2 REST UDF

• CICS Sockets

• WOLA & Liberty Profile

• No generic web services available to all z/OS clients

• No general usage JSON parser available in all z/OS

environments

12

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Intro to the toolkit

13

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Overview

■ Problem Statement / Need Addressed
–The need for generic JSON parsing and HTTP services on the z/OS

platform

■ Solution
–A set of APIs that allow any z/OS application in just about any

execution environment to avail themselves of these services

■ Benefit / Value
–Almost any application running on z/OS can easily play the role of a

client in a client/server web application.

14

©Copyright IBM Corporation 2015

Introducing the z/OS Client Web Enablement

Toolkit!

The z/OS client web enablement toolkit provides a set of
application programming interfaces (APIs) to enable traditional,
native z/OS programs to participate in modern web services
applications.

■ Pieces of the toolkit:

■ A z/OS HTTP/HTTPS protocol enabler to externalize HTTP and HTTPS
client functions in an easy-to-use generic fashion for user’s in almost any
z/OS environment

■ A z/OS JSON parser which parses JSON coming from any source, builds
new JSON text, or adds to existing JSON text.

■ The toolkit allows its two parts to be used independently or
combined together.

■ Payload processing is separate from communication processing.

■ The interfaces are intuitive for people familiar with other HTTP
enabling APIs or other parsers

■ Easy for newbies

15

©Copyright IBM Corporation 2015

• Runs in just about any address space
• Code runs in user’s address space

• Supports both authorized and un-authorized
callers

• Easy API suite provided

• Multi-language support
• Include files supplied for C, COBOL, PL/I, Assembler

• Multi-language samples provided

General programming toolkit environment

16

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

z/OS JSON parser
details

17

©Copyright IBM Corporation 2015

Elements of the z/OS JSON Parser

Types of services:

• Initialize / Terminate

• Create and free the memory space (parser instance) required by the parser

• Parse

• Assigns a particular JSON text stream to a parser instance

• Check input JSON text for syntax errors

• Creates an internal representation of the JSON

• Traverse

• Data format is not well known

• Program learns what data was passed using several traversal services

• Search

• Quickly locate a particular name in a name/value pair

• Create / Serialize

• Create JSON text from scratch or insert new JSON text into the existing text.

18

©Copyright IBM Corporation 2015

• z/OS Client Toolkit execution environment:
• Supports both authorized and un-authorized callers

• Allow supervisor or problem state callers running in any PKM

• Supports task and SRB mode invokers

• Supports cross-memory mode invokers

• Recovery needed by caller

z/OS JSON parser environment

19

©Copyright IBM Corporation 2015

Usage of the z/OS JSON parsing services

• How to use the services:

• Initialize a parse instance

• Returns a parser handle

• Parse some JSON Text

• Use traversal or search methods

• Quick access to various constructs in the JSON text

or to find a particular name

• Re-use the parse instance or terminate it

20

©Copyright IBM Corporation 2015

z/OS JSON parsing services - Traverse

• Traversal services include:

• Get JSON Type (HWTJGJST)

• Get Value (for string or numeric) (HWTGVAL)

• Get Numeric Value (HWTJGNUV)

• Get Boolean Value (HWTJBOV)

• Get Number of Entries (HWTJGNUE)

• Get Object Entry (HWTJGOEN)

• Get Array Entry (HWTJGAEN)

21

©Copyright IBM Corporation 2015

z/OS JSON parsing services - Traverse

• Traversal methods return an object or element
handle

• These handles are used to address a particular
object or object entry

• An object handle is returned when the data value
type of an name value pair is an object. This
object handle can then be used to find out the
number of entries in the object and to traverse all
the elements in the object.

• An entry handle is returned when addressing a
particular entry. It is used to drill down into the
contents of the entry.

22

©Copyright IBM Corporation 2015

 z/OS JSON parsing services

• JSON search (HWTJSRCH):

• Allows a particular “name” to be quickly consulted

within the entire JSON text or within a particular

object.

• The value handle returned references the value

associated with the found “name”

• Two search types:

• HWTJ_SEARCHTYPE_GLOBAL

• HWTJ_SEARCHTYPE_OBJECT

23

©Copyright IBM Corporation 2015

 z/OS JSON parsing services - Create

• JSON creation services:

• Create JSON Entry (HWTJCREN)

• Serialize JSON Text (HWTJSERI)

• Allows the creation of new JSON text or the addition of

entries to existing JSON text.

• Provides option to merge multiple JSON text streams

easily and to validate that the insertion point is

syntactically valid

• Allows JSON text to be traversed even after new text

added

24

©Copyright IBM Corporation 2015

z/OS Client Toolkit JSON Parser Syntax (Initialize

Parser Instance)

■ Call HWTJINIT (returnCode, maxParserWorkAreaSize, parserHandle, diagArea)

• returnCode (output)

• maxParserWorkAreaSize (input) represents the maximum size of storage the

parser can consume during parser functions. This maximum size is not

necessarily obtained when the JSON instance is initialized, but allows the

parser to consume UP to this value. Defaults to unlimited if the value is

specified as zero.

• parserHandle (output) is a 12-byte character value generated by the parser

which contains a handle to be used on all subsequent JSON parser services

for this parser instance. This instance contains all of the data structures and

storage areas required for the parser to run and to run efficiently.

• diagArea (output) 4-byte address pointing to a 132-byte storage area mapped

in the provided include files. It is comprised of a 4-byte reason code field and

a 128-byte error text field.

25

©Copyright IBM Corporation 2015

z/OS Client Toolkit JSON Parser Syntax (Parse

existing JSON text)

■ Call HWTJPARS (returnCode, parserHandle, JSONTextAddr, JSONTextLen,

objectHandle, diagArea);

• returnCode (output)

• parserHandle (input) 12-byte character value representing the JSON parser

instance to be used for the new JSON text to be parsed.

• JSONTextAddr (input) 4-byte address representing the actual storage location

of the JSONText to be parsed.

• JSONTextLen (input) 4-byte value representing the length of the JSONText

storage area supplied in the above JSONTextAddr input parameter.

• diagArea (output) 4-byte address pointing to a 132-byte storage area mapped

in the provided include files. It is comprised of a 4-byte reason code field and a

128-byte error text field.

26

©Copyright IBM Corporation 2015

z/OS Client Toolkit JSON Parser Syntax (Traversal

example)

■ Call HWTJGJST (returnCode, parserHandle, objOrEntryValueHandle, JSONType,

diagArea)

• objOrEntryValueHandle (input) 4-byte value representing a previously

returned object or entry handle.

• JSONType (output) 4-byte returned value specifying the JSON type.

–Example: JSONType returned is HWTJ_OBJECT_TYPE

■ Call HWTJGNUE (returnCode, parserHandle, objectHandle, numOfEntries,

diagArea)

• objectHandle (input) 4-byte value representing a previously returned handle.

• numofEntries (output) 4-byte returned value with the number of entries in the

referenced object.

■ Now loop thru all the entries, invoking HWTJGOEN (Get Object Entry) for each

entry in the object.

27

©Copyright IBM Corporation 2015

z/OS Client Toolkit JSON Language Support

• Include files and sample programs provided in:

•C/C++

•COBOL

•PL/I

•Assembler (Include file only)

28

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Installation – z/OS JSON Parsing Services

■ V2R2 – None (in the base)

■ V2R1 – Install APAR OA46575 and re-IPL

■ External message to know the toolkit is installed and ready to go:

–HWT001I message will appear in the syslog stating the toolkit is

enabled

29

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

z/OS HTTP/HTTPS
protocol enabler

details

30

©Copyright IBM Corporation 2015

• Provides similar functionality to existing

open-source libcurl HTTP/HTTPS interface

• Interface is very similar

• Underlying code is z/OS-specific and not

ported in any way

Usage & Invocation – z/OS HTTP Services

31

©Copyright IBM Corporation 2015

HTTP features supported by toolkit

• HTTPS connections

• HTTP cookies management

• Proxies

• URI redirection

• Basic client authentication

• Chunked encoding

32

©Copyright IBM Corporation 2015

• Same as the JSON part of the toolkit except:

• Task mode callers only

• Key zero callers not allowed

• OMVS segment required for address space using HTTP

enabler

• Recovery recommended by caller

HTTP Services execution environment

33

©Copyright IBM Corporation 2015

Two aspects of HTTP toolkit app

• Connection

• The socket created between the client and server for

the purpose of exchanging information

• Can be established as SSL/TLS, thru a particular

local IP addresses, thru a proxy, using a particular IP

stack

• Request

• An HTTP request sent over a previously

established connection

• Requests not tightly coupled to a particular

connection

34

©Copyright IBM Corporation 2015

Elements of the z/OS HTTP enabler

Types of services:
• Initialize / Reset / Terminate

• Create, reset or free the memory space (connection or request instance)

required by the HTTP enabler

• Set options
• Prepare the connection or request instance with the desired configuration

options

• Options set one at a time

• Connect / Disconnect
• Establish or disconnect a connection instance with a server using sockets
• If SSL/TLS has been selected, the connect will handle all SSL interactions

• Send request
• Couple a request with previously connected connection instance.

• Set Linked List service
• Utility service that creates a linked list of data objects of the same type. For

example: create a list of HTTP headers and set the

HWTH_OPT_HTTPHEADERS option to the list created by this service.

35

©Copyright IBM Corporation 2015

■Simple services allow the user to easily build an
HTTP/HTTPS request, step-by-step.

–Init a connection.

–Set the desired HTTP connect options.

–Issue the HTTP connect.

–Init a request.

–Set the desired HTTP request options.

–Issue the HTTP request.

–Process the response.

–Term the request or re-use.

–Term the connection

Usage of the z/OS HTTP enabler services

36

©Copyright IBM Corporation 2015

■ Various settable options for preparing an HTTP connect for the set command

include:
• HWTH_OPT_HTTP_VERSION – values are 4-byte integers representing the HTTP

version desired. The following constants are provided:

• HTTP_VERSION_NONE

• HTTP_VERSION_1_0

• HTTP_VERSION_1_1

• HWTH_OPT_URI – valid values are either a v4 or v6 IP address, or hostname

• Example http://192.168.0.1 or http://[2001:1890:1112:1::20]/ or

http://www.example.com

• HWTH_OPT_PORT – Value specifying which remote port number to connect to,

instead of the one specified in the URL or the default HTTP or HTTPS port.

• HWTH_OPT_IPSTACK – Optional value 1 to 8 character z/OS TCP/IP stack to be

used by the connection

• HWTH_OPT_LOCALIPADDR – Optional outgoing local IP address

• HWTH_OPT_LOCALPORT – Optional outgoing local port

• HWTH_OPT_SNDTIMEOUTVAL – Sending timeout value

• HWTH_OPT_RCVTIMEOUTVAL – Receiving timeout value

HTTP Services – Connection Options

37

http://192.168.0.1/
http://[2001:1890:1112:1::20]/
http://www.example.com/

©Copyright IBM Corporation 2015

• SSL support options include:
• HWTH_OPT_SSLVERSION – sets the SSL versions to be supported by this HTTP

request. More than one version may be selected. (e.g. TLS1.2, TLS1.1, TLS1.0,

SSLv3)

• HWTH_OPT_SSLKEYTYPE – Specifies the manner the key will be supplied to this

HTTPS request. The following constants are provided:
• SSLKEYTYPE_KEYDBFILE

• SSLKEYTYPE_KEYRINGLABEL

• SSLKEYTYPE_KEYRINGNAME

• HWTH_OPT_SSLKEY – Specifies the value of the key. The value specified depends on

the value set by SSLKEYTYPE.

• For SSLKEYTYPE_KEYDBFILE - represents path and name of the key database

file name

• For SSLKEYTYPE_KEYRINGNAME – represents the RACF key ring name

• HWTH_OPT_SSLKEYSTASHFILE – specifies the stash file of the key database

file. Only valid if SSLKEYTYPE_KEYDBFILE is specified. Ignored in all other

cases.

• HWTH_OPT_SSLCLIENTAUTHLABEL – optional label that represents a client

certificate if SSL client authentication is requested by the server.

HTTP Services – SSL Options

38

©Copyright IBM Corporation 2015

HTTP Services – Proxy Options

• Proxy support options include:

• HWTH_OPT_PROXY – set the HTTP proxy to user.

Specified the exact same as HWTH_OPT_URI above.

• HWTH_OPT_PROXYPORT – specify the proxy port to

connect to. Specified the exact same as HWTH_OPT_PORT

above

39

©Copyright IBM Corporation 2015

HTTP Services – Redirect Options

• Redirect options include:

• HWTH_OPT_MAX_REDIRECTS – maximum number of

redirects to follow for a given request.

• HWTH_OPT_XDOMAIN_REDIRECTS – are cross-domain

redirects allowed?

• HWT_OPT_REDIRECT_PROTOCOLS – do you allow the

HTTP/HTTPS protocol to be upgraded and/or downgraded on

a redirect?

40

©Copyright IBM Corporation 2015

• Cookie support options include:

• HWTH_OPT_COOKIETYPE – sets cookie handling type

• COOKIETYPE_NONE – cookie engine not activated

• COOKIETYPE_SESSION – cookie engine enabled – cookies

automatically sent, but end when connection ends

• COOKIETYPE_PERSIST - cookie engine enabled – cookies

automatically sent, cookies saved to output buffer when connection

endsin

• HWTH_OPT_COOKIE_INPUT_BUFFER – specifies input

cookie data store

• HWTH_OPT_COOKIE_OUTPUT_BUFFER – specifies output

cookie location for a cookietype of COOKIETYPE_PERSIST

HTTP Services – Cookie Options

41

©Copyright IBM Corporation 2015

• Connect to HTTP Server

• Attempts to connect using all of the attributes set by previous set

functions using this connection handle.

• If successful, this connection is eligible to be used for

HTTP/HTTPS requests.

• Disconnect from HTTP Server

• Attempts to disconnect the connection created by the Connect

service.

• If successful, the connection element will be disconnected but all

attributes associated with the connection still be intact. If a

subsequent Connect is issued, the attributes specified on the prior

Connect will be used.

HTTP Services – Connect/Disconnect

42

©Copyright IBM Corporation 2015

• Setting Request Options

–Use same Set service as for HTTP connect options

• Various settable options for preparing an HTTP request

include:
– HWTH_OPT_REQUEST – values are 4-byte integers representing the

desired HTTP CRUD request methods:

» HTTP_REQUEST_GET

» HTTP_REQUEST_PUT

» HTTP_REQUEST_POST

» HTTP_REQUEST_DELETE

 HTTP Services – Request Options

43

©Copyright IBM Corporation 2015

HTTP Services – Request Options

■ Various settable options for preparing an HTTP request (continued):
– HWTH_OPT_HTTPHEADERS – 4-byte pointer to a linked list of HTTP request

headers. These request headers were chained via the HWTHSLST link list append

service.

– HWTH_OPT_COOKIE – specific cookies to send apart from normal cookie handling

– HWTH_OPT_REQUESTBODY – 4-byte pointer to a request body data (useful on an

HTTP POST operation only).

– HWTH_OPT_RESPONSEHEADER_EXIT – 4-byte address of the program to receive

control once for each response header received by the application.

– HWTH_OPT_RESPONSEHEADER_USERDATA – 4-byte address of the optional

user data buffer to be passed into the response header exit when it receives control.

– HWTH_OPT_RESPONSEBODY_EXIT – 4-byte address of the program to receive

control when the response body is received.

– HWTH_OPT_RESPONSEBODY_USERDATA – 4-byte address of the optional user

data buffer to be passed into the response body exit when it receives control.

44

©Copyright IBM Corporation 2015

HTTP Services – Request Options

■ HTTP authorization options:

■ HWTH_OPT_HTTPAUTH – Do I want HTTP basic client authentication?

■ HWTH_OPT_USERNAME and HWTH_OPT_PASSWORD must be set if basic

client authentication is selected.

■ HTTP request body and response body translate functions

■ HWTH_OPT_TRANSLATE_REQBODY – translate request body from EBCDIC to

ASCII automatically.

■ HWTH_OPT_TRANSLATE_RESPBODY – translate response body from ASCII to

EBCDIC automatically.

45

©Copyright IBM Corporation 2015

•Send Request to HTTP server
–Attempts to send the request represented by the request

handle using the connection represented by the connection

handle.

–Receives the appropriate response.

HTTP Services – Send Request

46

©Copyright IBM Corporation 2015

■ Response Header and Response Body exits
– Callback exits receive control for each response header received and once for

the response body.

– The response header exit is called in series (meaning serially) so that only one

response header is presented to the application at any one time. If the user’s

exit does not return control to the toolkit, the next response header will not be

delivered.

– Response header can reject the rest of the request at any time by setting the

return code back to the toolkit to “abort”

HTTP Services – Processing responses

47

©Copyright IBM Corporation 2015

■ Responses with chunked encoding present
• Toolkit supports the chunked encoding data transfer method

(Transfer-encoding: chunked).

• Automatically de-chunks data sent from the server using the

chunked encoding method.

• The response body exit does not need to handle the various chunks;

rather, the data is delivered to the exit already decoded.

• If the chunked data contains trailer headers, the header exit will be

invoked (once for each trailer header) prior to this routine receiving

control.

• Note: The toolkit ignores chunk extensions

HTTP Services – Chunked encoding

48

©Copyright IBM Corporation 2015

z/OS Client Toolkit HTTP Language Support

• Include files and sample programs provided in:

•C

•COBOL – sample delivered soon after GA via

APAR

•PL/I – sample delivered soon after GA via APAR

•Assembler (Include file only)

49

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Installation – z/OS HTTP Enabler Services

■ V2R2 – None (in the base)

■ V2R1 – Install APAR OA46622 after GA of V2R2 and re-IPL

■ External message to know the toolkit is installed and ready to go:

–HWT001I message will appear in the syslog stating the toolkit is

enabled

50

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Problem determination – HTTP Enabler

• Return Code from service

• Specific return code can give explanation

• DiagArea

• Many times provides detailed explanation.

• Status values returned in callback routines

• Provides HTTP status values from server

• HWTH_VERBOSE set option

• Toolkit directs many trace-like messages to the standard output of the

application. Useful during debugging.

• SOCKAPI CTRACE option

• System SSL tracing

51

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Toolkit Reference Materials

• z/OS 2.2 MVS Programming: Callable Services for High-

Level Languages

• Complete toolkit documentation

• z/OS 2.2 MVS System Messages, Volume 6 (GOS
• Toolkit message documentation

• z/OS 2.2 MVS System Codes
• Toolkit abend ’04D’x documentation

52

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015
53

• z/OS Hot Topics

magazine (August

2015)

• REST easy on

z/OS –

Introducing the

z/OS Client Web

Enablement

Toolkit (pg. 26-27)

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Questions?

54

©Copyright IBM Corporation 2015 ©Copyright IBM Corporation 2015

Please fill out your session
evaluations!

Enjoy the rest of your week!

55

