
Application Programming in the
IMS World

Kenny Blackman

kblackm@us.ibm.com

Suzie Wendler

wendler@us.ibm.com

zGrowth IMS Washington Systems Center

Thursday March 5,2015

#16398 - Cedar

2

IMS 13 APAR PM78158 MPP,JMP,IFP regions PARDLI capability

� Current

– For BMPs, PARDLI=1 means all DL/I processing is to be performed in the

IMS control region to prevent control region system 113 abends resulting

from system X22 abends in the BMP region

� Change

– APAR PM78158 provides the ability to specify the PARDLI
parameter for JMP, MPP, and IFP regions.

• Note using PARDLI=1 for MPP, JMP, or IFP regions can

seriously degrade performance. Use of PARDLI=1 for MPP, JMP,
or IFP regions is intended only for application debugging

purposes if needed.

3

IMS 13 APAR PM86872 IMS Timing Services and
connecting to External Subsystems.

� Current

– Application programs running in IMS dependent regions using STIMER=

may not be terminated with ABENDU240 while in a long running call to an

External Subsystem.

– ABENDU240 was delayed until after the

External Subsystem returned to IMS.

� Change

– ABENDU240 will now be enforced in IMS dependent regions that
are running in an External Subsystem (ESS) when time expires

using IMS Timing Services.

4

ICAL Enhancements

5

Support for Truncated Messages

� New “RECEIVE” subfunction code

– With an expanded response area

• Retrieves the response message after an ICAL “SENDRECV” is issued
with an inadequate response area specification and gets partial data
(AIB RC X’100’, AIB RS X’00C’)

– IMS 13 keeps a copy of the entire response message in the control
region private storage

• Until a subsequent ICAL “SENDRECV”, syncpoint, or application
termination

� Addresses

– Partial response message due to inadequate application specification

� Benefit

– Provides the ability to complete the retrieval of a reply message

• Without having to re-issue a complete ICAL “SENDRECV” and
associated network transmission costs

6

ICAL subfunction RECEIVE

� Format:

• >>-ICAL--aib--response area---><

� AIB

– AIBSFUNC value “RECEIVE”

– AIBOAUSE is used as an input and output parameter based on
AIBSFUNC

• For the “RECEIVE” call
– Contains the length of the response area

– AIBOALEN = request area length

• Used as an output parameter for “RECEIVE”
– When complete response is returned in response area, this field is 0

– If partial data is returned (AIB RC X'100', RS X'00C'), this field contains the

actual length of the response message

7

ICAL sub-function RECEIVE …

� Usage example:

� ICAL --aib—request area, response area
� AIBSFUNC (SENDRECV)
� AIBOAUSE – Response area length

� CALL is issued ���� AIBRETRN=x’100’, AIBREASN=’00C’
× Specified length of the output response area is too small
× AIBOAUSE= length of the data that was returned in the response area
× AIBOALEN = the actual length of the entire response message

� Using the value in the previous AIBOALEN and leveraging the new support which keeps
the message in IMS CTL region private, retrieve the entire response:

� ICAL --aib— response area
� Where response area has been expanded to contain the entire message
� AIBSFUNC (RECEIVE)
� AIBOAUSE – new response area length

� CALL is issued successfully
� AIBOAUSE – length of the response in the response area
� AIBOALEN – set to 0 because the call successfully returned the entire response

8

ICAL sub-function RECEIVE …

� ICAL “RECEIVE” is only valid if previous ICAL “SENDRECV” failed

� Response data is available for retrieval until:

– A new ICAL call with sub-function code SENDRECV is issued

– When the IMS application reaches a syncpoint

• Checkpoint for an BMP application

– Abnormal termination

9

AIBUTKN

� New AIB field - AIBUTKN

– Provides optional specification of a 1-8 byte map name

– Included in the OTMA state data prefix to be sent to the callout

destination

– IMS 12: PM73135/UK82636

� Benefit

– Ability to send a name to a remote ICAL destination that can be used for

message formatting or service identification purposes

10

IMS 12 Synchronous Callout SendOnly Ack SPE ...

RYO Application

Respons

e

0

4

IMS Connect

z/OS

IMS

IMS Application

1

Server start

ICAL SENDRECV OTMDEST1

HELLO FROM IMS

HELLO FROM IMS

Request

HELLO FROM WEB SERVICE

RESUME

TPIPE

HELLO

FROM IMS

HELLO FROM

WEB SERVICE

3

Initiating Client

HWS1

2 ACK

5 ACK

• IMS Connect 12: APAR PM39569 (PTF UK74666)

• IMS OTMA 12: APAR PM39562 (PTF UK74653)

RYO Application

Respons

e

0

4

IMS Connect

z/OS

IMS

IMS Application

1

Server start

ICAL SENDRECV OTMDEST1

HELLO FROM IMS

HELLO FROM IMS

Request

HELLO FROM WEB SERVICE

RESUME

TPIPE

HELLO

FROM IMS

HELLO FROM

WEB SERVICE

3

Initiating Client

HWS1

2 ACK

5 ACK

SendOnly ACK

Sync Callout Server

11

IMS 12 Synchronous Callout SendOnly Ack SPE

� IMS 13 APAR for Callout Send-Only ACK SPE

– The ACKs were sent back with the complete response message text

• This could be very large

– IMS 13 APAR PM90943 allows the OTMA Client to request that the

request message text not be send back with the ACK

– IMS Connect 13 APAR PI10653 adds flag IRM_F1_SOARSP to allow the

IMS Connect Client to request that the request message text not be

returned with the ACK

12

Synchronous Program Switch

� New capability that enhances the DL/I ICAL support

– Allows an IMS application program to synchronously call and wait for a reply

from another IMS application program

• Within the calling program’s UOR

• Called program is a separate UOR

Database

IMS DB

services

IMS dependent

region
IMS TM

services

MPP, JMP
IFP, MD BMP

OTMA

Application

Program

ICALIMS SOAP GATEWAY

IMS

Connect

TCP/IP

user-written Client

WebSphere

IMS TM resource adapter

13

Synchronous Program Switch…

� Benefits

– Modernization of the IMS application infrastructure

• Provides an internal service flow of IMS transactions to complete a
business process

– In the same IMS or a different IMS

– Implementation of a Process Server or Broker inside IMS

• Reduces unnecessary network traffic when accessing multiple applications

in the same IMS or IMSplex

WAS
Application

WAS
IMS

Connect

IMS

MPPx

MPP4

MPP2

MPP3

ICAL
ICAL
ICAL
ICAL

WAS
Application

WAS
IMS

Connect
IMS

MPP4

MPP2

MPP3

MPP1

MPP1

14

The DL/I ICAL call

Same Format

>>-ICAL--aib--request_area--response_area----------------------><

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ICAL X X

LLZZ+Trancode+Data

LLZZ+Data

LLZZ+Data

Request Data (example of multi-segment):

LLZZ+Data

LLZZ+Data

LLZZ+Data

Response Data in multi-segment:

15

Application Examples…

� The IMS application environment supports recursive requests

– ICAL to ICAL

• Across a single or multiple IMS systems

FE IMS BE IMS or Local IMS

LTERM

LU62

OTMA

BMP

TRANA

SQ

ICAL request

SQ,
MSC,
Local

(FE=BE)

ICAL to SKS2

ISRT IOPCB

APOL12

SKS2

GU, IOPCB
ICAL to SKS1

ISRT IOPCB
SKS1

ISRT IOPCB

GU, IOPCB

ISRT, IOPCB

GU, IOPCB

GU, IOPCB
1

3

4

5

6

7
8

2

16

OTMA Transaction Expiration and Shared Queues SPE

� SPE: APAR/PTFs

– IMS 10: PM05985 (UK75413/UK75414)

– IMS 11: PM05984 (UK74312/UK74313)

– IMS 12: PM46829 (UK75415/UK75416)

� Enhancements

– Options when transaction expiration occurs at application GU time

• Option to suppress or display symptom dumps and DFS554A
messages

• Option to return input message instead of DFS3688I

– Improved routing capability of Shared Queues back-end ALTPCB output

– Improved usability of /DIS TMEMBER TPIPE command

17

OTMA Descriptors
� OTMA destination descriptor enhancements

– TYPE={MQSERIES}

• Provides asynchronous callout and messaging support (ISRT
ALTPCB)

– EXIT={YES | NO}

• Specifies whether or not the OTMA exits are to be called

� Corresponding enhancement to IMS Type-2 OTMADESC commands

– [CREATE | UPDATE | DELETE |QUERY] OTMADESC

• Recovered across warm and emergency restarts

� New/changed member control cards in DFSYDTx requires an IMS COLD
start to take effect (not new to IMS 13)

� Benefits

– Simplifies asynchronous messaging to WMQ

– Removes the need to code the OTMA exits, DFSYPRX0 and DFSYDRU0

– Provides dynamic change capability with the Type-2 commands

18

IMS 12 SPE Enhancement

SSA Qualify By Position and Length

1919

SSA Enhancement - Qualify by Position

� IMS 12 APAR PM65139 / PTF UK81837 & UK81838

– New SSA command code “O”

– Enhanced database SSA processing with ability to
search for data in a segment by specifying a field
position and length instead of a field name

– Contains core IMS database code

� IMS 12 APAR PM69378 / PTF UK81917

– Enhanced IMS Universal Drivers to allow SQL
predicates containing ‘columns’ not defined in the DBD
by internally converting ‘columns’ to position and length
for SSA qualification

– Contains IMS universal driver code

2020

Segment name SSA qualification(s)

Position Operator Compare data …Length

SSA Enhancement - Qualify by Position

� New SSA using “O” command code with position/length

4 byte hex values Data length must
be equal to the
length in the SSA
qualification

CommandCodes

*O---

2121

0 1 2 3

12345678901234567901235678901

SVL DEV 555 BAILEY AVE CA

ARC RSC 650 HARRY RD CA

Database

Field Offset Len

Labname 1 5

Street 10 20

State 30 2

DBD

Field Offset Len

Labname 1 5

Type 6 3

Street 10 20

State 30 2

COBOL Copybook

GU IBMLABS *O(0000000100000005EQSVL)

GU IBMLABS *O(0000000100000005EQARC)

GU IBMLABS *O(0000001E00000002EQCA)

GU IBMLABS *O(0000000600000003EQDEV)

Position Length

SSA Enhancement - Qualify by Position

� New SSA with “O” command code, position and length

‘bb‘ Status Code: all segments returned successfully

DEV

2222

� Performance will be similar to a search on a non-key field

� IMS will scan the database looking for field match(es)

� Qualification of the root key will help reduce the impact

� If business need requires searching on a non-key field

– Consider defining the non-key field as a searchable field in the DBD

SSA Enhancement - Performance Consideration

23

Fast Path Secondary Index Enhancement

• IMS 13 enhances the DEDB secondary index that was added in IMS 12

– Add ability to use Boolean Operators to Segment Search Arguments (SSA)

• AND = * or &

• OR = + or |

– Support specific Command Codes with Secondary Index search field

• Benefits

– New and simplified programming opportunities with DEDBs

• Allows ability to refine DL/I calls to Fast Path DEDBs

• Commands supported when secondary index is accessed as a DEDB

24

Database Versioning

25

Database Versioning Overview

• Database Versioning provides the ability to assign user-

defined version identifiers to different versions of a database

structure

– Enables structural changes to a database while providing
multiple views of the physical IMS data to application programs

• Applications referencing a new physical database structure

can be brought online without affecting applications that use

previous database structures

– Applications which do not require sensitivity to the new physical
structure, do not need to be modified and can continue to
access the database

26

Database Versioning

DBJK21

DBJK22

DBJK23

Application

IMS

DBJK21 V3
DBJK22 V3
DBJK23 V3

ACBLI B

DBJK21 V0,V1,V2,V3
DBJK22 V0,V1,V2,V3
DBJK23 V0,V1,V2,V3

IMS Catalog

DBJK21 V3
DBJK22 V3
DBJK23 V3

DBDLIB

PSBJK

PSBLIB

PSBGEN

DBLEVL=CURR

PCB

DBJK21 V1

DBJK22

DBJK23 V2

PSB=PSBJK Source

DBJK21 V3

DBD Source

DBJK22 V3

DBJK23 V3

DBDGEN

PSBGEN

DBJK21 V3

DBJK22 V3

DBJK23 V3

DBJK21 V3

DBJK22 V2

DBJK23 V1

DLI

Retrieve DBJK22 & DBJK23 from Catalog

Active

ACBGEN

����
����

				

 ����

����

Version “V3” of
DBDs put into
ACBLIB & Catalog

Database Versioning
enabled -> data
returned to app at V1,
V2 & V3 levels

����

DBJK21

DBJK22

DBJK23

INIT

VERSION(DBJK21=3,DBJK22=2,DBJK23=1)

27

IMS Native SQL Support for COBOL

28

• Native SQL COBOL

• Provides standard SQL keywords to easily access IMS data

� SELECT, INSERT, UPDATE, DELETE

� Uses Dynamic SQL programming model

� Converts SQL statements to DL/I calls

� Supports a subset of SQL keywords that are currently supported by IMS

Universal JDBC driver

• Uses database metadata in IMS Catalog

� No need to generate metadata for use in applications

z/OS

IMS DB

DLI

Native
SQL

Catalog

Metadata
SQL

MPP BMP IFP
COBOL

L
a
n
g
u
a
g
e

In
te

rf
a
c
e

IMS

IMS 13 SQL Support

29

IMS 13 SQL support for COBOL Solution Highlights

� SQL support for COBOL

– Use Dynamic SQL as a query language for COBOL programs to access IMS

database

– EXEC SQLIMS is the interface to execute IMS SQL calls

� Native SQL in IMS

– Process SQL calls natively by the IMS subsystem

– Still perform DL/I database call processing to IMS DB

– Provide a consolidated way for SQL processing

– Uses database metadata in IMS Catalog

� Support IMS TM/DB (MPP, IFP, BMP) and DBCTL BMP

30

Hierarchical to Relational Terminology Mapping

UU45 | Dodge | Viper

PR27 | Dodge | Durango

53SJ9 | Mary | 111 Penny Lane

53SJ8 | Bob | 240 Elm St.

Dealer

Segment

Model

Segment

FF13 | Toyota | Camry

53SJ7 | George | 555 Bailey Ave.

Hierarchical Design Relational Design

DealerID DealerName DealerAddress

Dealer Table

ID Make Model Dealer

Model Table

UU45 Dodge Viper 53SJ7 0

PR27 Dodge Durango 53SJ7 0

FF13 Toyota Camry 53SJ7 0

JR27 Dodge Durango 53SJ8 1

WJ45 Mercury Cougar 53SJ8 1

...

0 53SJ7 George 555 Bailey Ave.

1 53SJ8 Bob 240 Elm St.

2 53SJ9 Mary 111 Penny Ln.

...

JPR27 | Dodge | Durango

WJ45 | Mercury | Cougar

Row 1 -

Row N -

Row 1 -

Row N -
Segment 1

(Row 1) -

Note: Segment Names ~ Table Names

Segment Instances ~ Table Rows

Segment Field Names ~ Column Names

Segment unique key ~ Table primary key

IMS foreign key field ~ Table foreign key

PCB ~ Schema

31

Solution highlights - IMS foreign keys Referential
constraint

� IMS cannot insert a dependent segment unless the parent segment exists

– IMS has built-in foreign keys in each segment which are comprised of keys of
each parent segment

• Exist in the key feedback area not physically stored in the IMS database

– For INSERT operations the Foreign Keys s are used to establish the
correct position in the hierarchy

• Values aren’t actually inserted as they already exist in the database

A

Root Segment

(Table)

Fields

(Columns)

A11|A2|A3
B

A11

B1

IMS Foreign Key - maintain referential integrity.

(Segment Parent Key

Table Foreign Key)

Segment Key

(Table Primary Key)

32

DBD NAME=AUTODBD, ACCESS=DEDB,

SEGM NAME=DEALER,PARENT=0,EXTERLNAME=DealerTable

SEGM NAME=MODEL,PARENT=DEALER

SEGM NAME=ORDER,PARENT=MODEL

SEGM NAME=SALES,PARENT=MODEL

SEGM NAME=STOCK,PARENT=MODEL

SEGM NAME=BACKLOT,PARENT=STOCK

. . .

SalesInfo

Dealer

Model

Order Sales Stock

Backlot

Salesperson

IMS Catalog Metadata and SQL

PCB TYPE=DB,DBDNAME=AUTODBD,PROCOPT=G,KEYLEN=4,PCBNAME=AUTOGPCB

EXTERNALNAME=DealerDBRead

PCB TYPE=DB,DBDNAME=AUTODBD,PROCOPT=A,KEYLEN=4,PCBNAME=AUTOAPCB

EXTERNALNAME=DealerDBUpdate

PSBGEN PSBNAME=AUTOPSB

PSB

DBD

01 Dealer_Segment

02 Dealer_ID PIC 9(6) COMP.

02 Dealer_Name PIC X(20).

02 Dealer_Address PIC X(30).

COBOL

COPYBOOK

IMS

Catalog

Metadata

PSB AUTOPSB

PCB AUTOGPCB EXTERNALNAME DealerDBRead

PCB AUTOAPCB EXTERNALNAME DealerDBUpdate

DBD AUTODBD

SEGM DEALER EXTERNALNAME DealerTable

SELECT * FROM AUTOGPCB.DEALER

SELECT * FROM DealerDBUdate.DealerTable

UPDATE DealerDBUdate.DealerTable SET

DELETE FROM DealerDBUdate.DealerTable

INSERT INTO DealerDBUdate.DealerTable

33

Solution Details – Key application elements

� Delimit SQL statement using EXEC SQLIMS ... END-EXEC

� Dynamic SQL programming model

– Must call PREPARE to process SQL statement

� Host variables

– Use for both send and receive data processed by IMS

� SQL communication area (SQLIMSCA)

– Structure used by IMS to provide status feedback

– SQLIMSCODE (error code), SQLIMSSTATE (state), SQLIMSERRM (error message)

� SQL description area (SQLIMSDA)

– DESCRIBE statement IMS provides information to an application program about a

prepared statement

– FETCH statement application program describes a host variable or buffer that is to be

used to contain an output value from a row of the result.

34

Handling errors

� SQL communication area (SQLIMSCA)

– Structure used by IMS to provide status feedback

– The SQL INCLUDE statement is used in the COBOL application to provide

the declaration of the SQLIMSCA

EXEC SQLIMS INCLUDE SQLIMSCA

� The main elements in the SQLIMSCA are:

– SQLIMSCODE – A return code represents a successful or failed SQL operation

– Example -8004

– SQLIMSSTATE – Common codes for error conditions which conform to the SQL standard

– Example 58030

– SQLIMSERRM – Error message text

– Example IMS returned the PCB status code

35

SQL descriptor area (SQLIMSDA)

� SQLIMSDA stores information about prepared SQL statements or host
variables.

– SQLIMSDA header

– SQLIMSVAR entry

• each column or host variable is described

� Can be read by IMS or the application program

– Read by application program after a DESCRIBE statement

– Read by IMS for the host variables set by the application program

EXEC SQLIMS INCLUDE SQLIMSDA

36

IMS Native SQL Support for COBOL solution

� Compile IMS program using COBOL compiler with the SQL(IMS) option

– Create an executable program to be run in IMS.

– IMS co-processor knows when a particular SQL statement begins and ends
by the following delimits for SQL statements:

– EXEC SQLIMS

SQL-STATEMENT

– END-EXEC.

– Translate SQL statement to a COBOL CALL statement

*EXEC SQLIMS FETCH . . .

CALL SQLTDLI USING SQL-PARMLIST

� SQLTDLI

– non-language-specific interface added to DFSLI000

37

IMS coprocessor

� Compile IMS SQL COBOL application with IMS coprocessor

� Pre-process EXEC SQLIMS statements in COBOL source

� Integrated with Enterprise COBOL V5.1

� Specify ‘SQLIMS’ compiler option to compile COBOL program with IMS
SQL calls

38

IMS COBOL SQL application compiled and linked

IMS COBOL application
source files with SQL

statements

Libraries Object files

COBOL Link

Executable Program

COBOL Compiler with
IMS coprocessor Translate

EXEC SQLIMS

INCLUDE
DFSLI000

39

IMS SQL Call Request Handler

IMS Native SQL

DFSLI000

IMS DB

SQLTDLI

DLI

SQL
IMSSQLCA

EXEC SQLIMS
(CALL SQLTDLI

USING SQL-

PARMLIST)

:
:

Retrieve IMS database PCB
Schema metadata on first SQL
call

Parse and validate SQL

Build and make DLI call to
access IMS data

Perform aggregation on results
data (if needed)

Map results data back to the
application

IMS
Catalog

Metadata

COBOL Application

IMSSQLCA + Data

IMS MPP,IFP,BMP

64-Bit Storage

40

SQL considerations and restrictions for COBOL

� A subset of SQL keywords is supported.

– Aggregate functions and XML are not supported by COBOL SQL in SELECT statements.

– SQL COMMIT and ROLLBACK keywords are not supported.

• use IMS DB system services call to commit or roll back your database changes

� Batch and DB Batch are not supported.

� IBM® CICS® Transaction Server for z/OS® and DB2® for z/OS stored procedures to IMS
are not supported..

� The IMS catalog must be enabled to use SQL support for COBOL..

� Specify at least 12M for your IMS dependent region size for running a COBOL SQL
application.

� Only one cursor and SQL statement can be active at a time in the application.

� For IMS database services, GSAM, IMS TM, and message processing services, continue
to use DL/I API.

� Dynamic SQL statement is supported. Static SQL is not supported

� Only EBCDIC CCSID 37 and 1140 codepages for the COBOL CODEPAGE option are
supported.

� Note The IMS Universal Database resource adapter and IMS Universal JDBC driver
internally manage the LL field on behalf of the application

– For SQL support for COBOL, COBOL applications are responsible for managing the LL field

41

Performance

� Recommendations

– Fully qualify all tables (segments) and columns (fields) in SQL statements

• Specify the schema (PCB) name

– Always use PREPARE call for SQL statement that is going to be executed

multiple times

– Consider using FETCH or cursors to select a set of rows and then process
the set either one row at a time or one rowset at a time

42

IMS Enterprise Suite V3.1
IBM IMS Data Provider for Microsoft .NET

43

DataSetIMS Data Provider for Microsoft .NET

DataRelationCollection

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

IMSDataAdapter

IMS Connect

IMSCommand

SQL statement

IMSDataReader

DataRowCollection

DataColumnCollection

ConstraintCollection

DataTable

z/OS

ODBM

DRDA Target Server

IMSConnection

DRDA Client

IMS 13

Native SQL

Catalog

Metadata

ADO.NET Applications

IMS DB

IBM IMS Data Provider for Microsoft .NET Architecture

OM SCI

44

IMS Universal Driver Enhancements

45

ESAF support in Java Dependent Regions (JDR)

� With IMS 13, the ESAF interface can be used in JMP/JBP regions to
access any ESAF defined to the IMS control region

• WebSphere MQ, DB2, WOLA (WebSphere Optimized Local Adapter)

� Support for the SSM= parameter on the JMP/JBP dependent region
startup JCL

� Only one ESS connection method allowed per JMP/JBP

– Default ESS connection method is DB2 RRSAF

• No impact to existing users

– Need to specify ESAF as the connection method by specifying SSM= in the
JMP/JBP dependent region JCL

� Provides support for all types of ESAF interfaces

� WebSphere MQ and WOLA can now be accessed via JMP/JBP regions

46

IMS 12 APAR PI30300 : All users of the IMS Universal
Drivers and CSL ODBM Input user exit

� service allows users of the CSL ODBM Input user exit the capability to
alter the PSB and/or alias names before an APSB call

– The IMS Universal Drivers code has been modified to support
a new DRDA codepoint, sent via the ACCRDBRM response, that

allows ODBM to change the PSB and/or alias name via the

ODBM Input user exit.

– The IMS Universal Drivers will receive any altered PSB and/or
alias names via the ACCRDBRM response from ODBM.

