NetView for z/OS: IP Management Topics and Solutions

Session 17739

Pam McLean (pamm@us.ibm.com)

NetView for z/OS - IBM z Systems Service Management
Acknowledgements, Disclaimers and Trademarks

© Copyright IBM Corporation 2015. All rights reserved.

The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this information is based on IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.

References in this publication to IBM products, programs or services do not imply that they will be made available in all countries in which IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue growth, savings or other results. All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information concerning non-IBM products and services was obtained from a supplier of those products and services. IBM has not tested these products or services and cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM products and services. Questions on the capabilities of non-IBM products and services should be addressed to the supplier of those products and services.

All customer examples cited or described are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics may vary by customer and will vary depending on individual customer configurations and conditions. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue growth or other results.

Prices are suggested U.S. list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features. Contact your IBM representative or Business Partner for the most current pricing in your geography.

IBM, the IBM logo, ibm.com, Tivoli, the Tivoli logo, Tivoli Enterprise Console, Tivoli Storage Manager FastBack, and other IBM products and services are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at ibm.com/legal/copytrade.shtml

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015
Agenda

- IP Commands
- TCP Connection Management
- Intrusion Detection
- Sysplex Management
 - Discovery Manager
 - DVIPA
- Scenarios:
 - Packet Trace
 - DVIPA
 - Sysplex Distributor Favoring a System
 - Sysplex Distributor Performance
- Backup
 - Answers to questions from the session
- Additional scenarios

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

August 2015
IP Commands
NetView Main Menu: IP Management Option

Operator ID = NETOP1 Application = NTVF9027

Enter a command (shown highlighted or in white) and press Enter.

- IP Management Menu
- NETVIP command
- Browse Facility
- BROWSE command
- Command Facility
- NCCF command
- News
- NEWS command
- PF Key Settings
- DISPFK command
- Help Facility
- HELP command
- Index of help topics
- INDEX command
- Help Desk
- HELPDESK command
- Hardware Monitor
- NPDA command
- Session Monitor
- NLDM command

To log off or disconnect

LOGOFF command or DISC command

TO SEE YOUR KEY SETTINGS, ENTER 'DISPFK'

Action==> _

August 2015
IP Management Menu

Type the number or move the cursor to a function and press Enter

1. Ping a device (PING)
2. Trace the route to a device (TRACERTE)
3. Check TCP connection status (IPSTAT)
4. Work with IP traces (IPTRACE)
 for SP: _________
5. Manage IP Active Monitoring (IPMAN)
6. Issue SNMP commands (NVSNMP)
7. Manage Sysplex
8. Manage DVIPA
9. Check the status of an IP port (TESTPORT)
10. Show EE information for a VTAM resource (DIS PATH)

Command ===> F1=Help F3=Return F6=Roll F12=Cancel

August 2015
IP Management Menu: Sysplex Management

1. Stack configuration and status (CNMSSTAC)
2. IP stack interfaces (CNMSIFST)
3. NetView configuration and status (CNMSNVST)
4. OSA channel and ports (CNMSOSAP)
5. HiperSockets adapters (CNMSHPR)
6. Telnet servers (CNMSTNST)
7. Telnet server ports (CNMSTPSST)
IP Management Menu: DVIPA

Type the number or move the cursor to a function and press Enter

1. DVIPA definition and status (CNMSDVIP)
2. DVIPA sysplex distributors (CNMSPLEX)
3. DVIPA server health (CNMSDVPH)
4. DVIPA distributed targets (CNMSTARG)
5. DVIPA connection route status (CNMSVPRT)
6. DVIPA connection routing (CNMSDDCR)
7. DVIPA connections (CNMSDVPC)
8. DVIPA status (CNMSDVST)
IP Commands

- IPLOG
- Ping
- Remote Ping
- Tracerte
- TN3270
- REXEC
- RSH
- SOCKET
- RMTCMD over IP
- Any UNIX System Services command
- IPXLATE (REXX, PL/I, C)
- EZLEEMAIL (send email via SMTP)

- SNMP commands (including SNMPv3)
 - get
 - getnext
 - set
 - walk
 - trap
 - getbulk (SNMPv2c and SNMPv3)
 - bulkwalk (SNMPv2c and SNMPv3)
 - inform (SNMPv2c and SNMPv3)
 - the NVSNMP command enables panel-driven SNMP requests
TCP Connection Management
TCP/IP Connection Management

NetView for z/OS can help manage TCP/IP connections, especially when combined with OMEGAMON XE for Mainframe Networks.

- Uses z/OS Communications Server network management interface (NMI) to retrieve connection data for TCP/IP connections
- Active connection data kept in NetView (and Comm Server) storage
- Inactive connection data written to VSAM
- Data can be filtered using CNMSTYLE definitions
- NetView cross-domain capabilities enable the viewing of connection data at remote z/OS hosts
- Supports IPv4 and IPv6

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015
Connection Data

- **Active Connections**
 - Local IP address and port
 - Remote IP address and port
 - TCP/IP stack name
 - Start date and time
 - Last activity date/time
 - Connection ID
 - Bytes sent/received
 - Byte rate
 - Segments retransmitted
 - Percent segments retransmitted
 - And more

- **Inactive Connections**
 - Local IP address and port
 - Remote IP address and port
 - TCP/IP stack name
 - Start date and time
 - End date and time
 - Bytes sent and received
 - Send window size
 - Logical unit (LU) name
 - Target application identifier (APPLID)
 - Termination code
 - And more

Issue HELP BNH772 (inactive) or BNH775 (active) for complete details.
Displaying Connection Data

Connection data can be viewed from the following places:

- NetView 3270 console
 - TCPCONN
 - Raw data
 - Unformatted
 - Intended for programmatic use
 - CNMSTCPC
 - Formatted
 - Customizable
 - Intended for human user
 - IPSTAT
 - Panel-based connection control
- Tivoli Enterprise Portal
Intrusion Detection
TCP/IP Intrusions

Enhance network security by combining NetView automation facilities with the Intrusion Detection Service (IDS) of the z/OS Communications Server.

• What is an intrusion?
 – Information gathering (scan)
 • Network and system information
 • Data locations
 • Map target of an attack
 – Eavesdropping, impersonation, or theft
 • On the network, on the host
 • Base for further attacks on others
 – Denial of Service
 • Attack on availability

• Intrusions can occur from Internet or Intranet
 – Firewall can provide some level of protection from Internet
 – Perimeter security strategy alone may not be enough
 – Within a firewall, systems can be vulnerable to attack or misuse, whether accidental or malicious.
TCP/IP Intrusions

- z/OS Communications Server Intrusion Detection Service (IDS) detects:
 - Scans
 - Fast
 - Slow
 - ICMP, TCP, UDP
 - Attacks
 - Malformed packets
 - IP option restrictions
 - ICMP redirect restrictions
 - Outbound raw socket restrictions
 - And more …
 - Floods
Automated Actions (Intrusion Detection)

- Notify
 - NetView alert (default)
 - Message to designated NetView operators (default)
 - email to designated recipient (for example, security administrator)
 - Using INFORM policy
- Issue UNIX, z/OS, or NetView commands
 - Gather more data
 - Take action, such as close the port
- Update statistics kept on basis of probe ID
- Collect additional statistics, email to security administrators
Sysplex Management
Dynamic IP Stack Discovery (Discovery Manager)

- IP stacks are detected automatically
 - When the NetView program initializes
 - When a stack starts after the NetView program
- Supports running multiple IP stacks
- Supports IPv6
- No need to define stacks unless you need to:
 - Manage a stack on a remote system that is not part of the same sysplex
Discovery Manager – Resources Discovered

• Information collected:
 – Central processor complex (CPC)
 – Channel subsystem identifier
 – Logical partition (LPAR)
 – Sysplex
 – Coupling facility
 – z/OS image
 – TCP/IP stack
 – TCP/IP subplex
 – IP interfaces
 – NetView applications
 – Telnet servers and ports
 – Open Systems Adapter (OSA) channels and ports
 – HiperSockets adapter

• Data available in Tivoli Enterprise Portal, NMC, and 3270 commands
DVIPA Management Capabilities

• NetView provides a lot of DVIPA information for use in managing and diagnosing problems in your sysplex:
 – Sampled, real-time, and historical monitoring capabilities
 – DVIPA events
 – Distributed DVIPA statistics

• DVIPA information can be viewed at the:
 – Local NetView domain
 – Sysplex master NetView domain
 • Displays DVIPA information available from all NetView domains in the sysplex
 – DVIPA connection information is not forwarded to the sysplex master NetView for performance reasons

• DVIPA information is displayed in the:
 – Tivoli Enterprise Portal (TEP) using the NetView for z/OS Enterprise Management Agent
 – NetView 3270 console
DVIPA Monitoring

• NetView provides the following DVIPA information:
 – DVIPA Definition and Status
 – Sysplex Distributors
 – Distributed DVIPA (DDVIPA) Targets
 – DDVIPA Server Health, including a view for:
 – DVIPA Connections
 – VIPA Routing
 – DDVIPA Connection Routing

• TEP displays sampled (updated by events) and historical data
 – Historical data collection must be enabled
 – Long term history requires Tivoli Data Warehouse.

• NetView 3270 commands and samples display real-time DVIPA information
DVIPA Events

- DVIPA Events can be used to provide a better “real time” view of DVIPA information. NetView has automation for three types of DVIPA Events:
 - Real-time DVIPA changes
 - DVIPA status change and DVIPA removed
 - DVIPA target added and removed
 - DVIPA target server started and ended
 - DVIPA Configuration Changes
 - Sysplex Autonomics messages

- When a DVIPA event is received:
 - NetView will bundle the events using configurable delays
 - Notify the master that this system needs rediscovering
 - The master NetView also has a delay to bundle the event messages
 - Send rediscovery commands to all systems in the sysplex impacted by the event
Packet Trace with NetView v6.1

- Start / stop a single (“global”) trace
- Display unformatted packets
- View formatted packets and analysis of trace records
- Save traces into NetView data sets
- Control multiple systems from a single point
New in NetView for z/OS v6.2

• Support for multiple, concurrent packet traces (“instance” traces)
 – Multiple users can trace multiple problems from a given stack at the same time, each using different trace criteria.
 – Operators can define filters for specific issues
 – Avoids creation of unneeded trace records
 – Requires z/OS Communications Server V2.1

• Save traces in IPCS format
 – Traces can be analyzed in IPCS using the IPCS formatter tool
 – Traces can be converted to Sniffer format for use in other tools
 – Traces from different systems can be merged into a single trace
 – Traces can be sent to Comm Server Support for diagnosis

• Navigation / Filter enhancements
Scenario: Packet Trace Connectivity

• Scenario:
 – Users report an intermittent problem where it takes “a long time” to connect to an application. Occasionally, the connection attempt fails. They have noticed the problem occurs almost every day, at somewhat predictable times.

• Resolution Steps:
 – Use packet trace to help determine if there is a network problem.
 – Tracing the entire network should encompass the problem, but would result in a lot of packets to review.
 – By determining individual users' IP addresses, we can limit the data that has to be reviewed.
 – Multiple traces can help to compare a working connection attempt to a failing one.
 – Further analysis may be desired. The traces are saved in IPCS format, allowing them to be read by IPCS, where they can be merged or analyzed in more depth.
Scenario 1: Packet Trace

Select PKTTRACE and press Enter.
Scenario 1: Packet Trace

The Packet Trace Control Panel is displayed. In this example, traces are already running for other problems. NetView for z/OS and z/OS Communications Server for z/OS support up to 32 traces running simultaneously.

Press F9 to start a new trace.
Scenario 1: Packet Trace

Enter a description of the problem to be traced.

Enter the IP address of a working client, which is used as a filter to limit the data collected.

To start the trace, type “1”, and press Enter.
Scenario 1: Packet Trace

The DSI633I message indicates that the trace started successfully. Next, start a trace for the failing attempt. Press F9.

The DSI633I message indicates that the trace started successfully. Next, start a trace for the failing attempt. Press F9.
Scenario 1: Packet Trace

Enter a different description for this trace. Descriptions are optional.

Enter the IP address of the user experiencing the failing connection attempt.

To start the trace, type “1”, and press Enter.
Scenario 1: Packet Trace

The trace for the failing scenario was started successfully. With the traces running, wait for the problem to reoccur. After it reoccurs, start by examining the working scenario. Tab to the line with the working trace and press Enter.
Scenario 1: Packet Trace

To display the trace, type “3” and press Enter.
Scenario 1: Packet Trace

Increase the MaxRecs value to 1000 to ensure seeing all of the records that are needed.

Press F10 to analyze the trace and to determine if there are any issues to be concerned about.
Scenario 1: Packet Trace

There are several duplicate and delayed acknowledgements that could be investigated. This is the working trace, so keep this in mind when comparing the failing trace. Press F3 to return to the previous screen.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015
Scenario 1: Packet Trace

To learn more about the successful scenario, press F4 to view the packets.
Scenario 1: Packet Trace

When the application completes a connection, it returns the text **“This is a successful connection.”** Note the **“This is *”** above. You can scroll down to view more packets.

To save the trace, specify a trace data set name and press F2. Press F3 to return to the Packet Trace Control panel.
Scenario 1: Packet Trace

Now, we'll investigate the failing attempt to see what the differences are between it and the working trace. Tab to the AUTTRA4 row and press Enter.
Scenario 1: Packet Trace

To display the trace, type “3” and press Enter.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015
Scenario 1: Packet Trace

Increase the MaxRecs value to 1000 to ensure seeing all of the records that are needed.

Press F10 for a summary analysis of the trace and to determine if there are any issues to be concerned about.
Scenario 1: Packet Trace

This summary analysis shows Unacknowledged Syns for connections that were attempted. Analysis of each session could be viewed from this panel (F4), or the entire trace can be viewed at one time. Press F3 to return to the Display Packet Control panel.
Scenario 1: Packet Trace

Press F4 to view the packets.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015
Scenario 1: Packet Trace

As the summary analysis indicated, traces of the individual connection attempts show unacknowledged SYNs. You can scroll down to view more packets.

To save the trace, specify a trace data set name and press F2. Press F3 twice to return to the Packet Trace Details panel. Or from here we can take any of several actions: F9
Scenario 1: Packet Trace

To stop the trace, type “2” and press Enter. Specifying “4” ends the trace and frees the trace records – be sure you’re done.
Scenario 1: Packet Trace

For the connection we’ve selected, several actions are available.
Scenario 1: Packet Trace

Use the LISTTRC command to see what traces you’ve saved.
Monitoring Sysplex Distributor – Sample Scenarios

– Sysplex Distributor seems to be favoring one z/OS System significantly more than others for new TCP connections? Why is that?

– Help desk is receiving calls indicating performance issues using an application that is distributed via Sysplex Distributor. You want to understand how TCP connections have been distributed for given Distributed DVIPA over the past 30 minutes.
DVIPA and DDVIPA

VIPADefine
- MOVE IMMED 255.255.255.192 201.2.10.10
- MOVE IMMED 255.255.255.192 201.2.10.11

VIPADistribute
- DEFINE 201.2.10.10 PORT 23 DESTIP ALL
- DEFINE 201.2.10.11 PORT 23 623 DESTIP ALL

TCPA
- IP Addr = 9.67.50.52
- XCF Addr = 193.1.1.10

TCPB
- IP Addr = 9.67.50.41
- XCF Addr = 193.1.1.27

TCPC
- IP Addr = 9.67.50.67
- XCF Addr = 193.1.1.17

User requests a session with IP address of **201.2.10.10**.

The request will come into stack TCPA as the active owner of the DVIPA based on the **VIPADefine** statement. The session will be distributed (routed) to any of TCPA, TCPC or TCPC, based on the **VIPADistribute** statement.
Scenario 2: Sysplex Distributor Favoring a System

- The NetView DDVIPA Server Health workspace displays the WLM weight for DDVIPA targets. WLM weight is a key metric for DDVIPA connection distribution.
- Scenario information:
 - DVIPA 9.42.46.85 on port 2023
Scenario 2: WLM Weight and DDVIPA Server Health

![Graph showing WLM Weight and DDVIPA Server Health](image)

<table>
<thead>
<tr>
<th>Update Time</th>
<th>Application Name</th>
<th>Application Type</th>
<th>WLM Weight</th>
<th>Abnormal Transactions (%)</th>
<th>Target Server Acceptability (%)</th>
<th>Target Connectivity (%)</th>
<th>General Acceptability (%)</th>
<th>Proportional WLM Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/08/2013 13:45:52</td>
<td>THW1</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>08/08/2013 13:45:52</td>
<td>THW2</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>08/08/2013 13:45:52</td>
<td>THW3</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

August 2015
Scenario 2: WLM Weight Bar Chart

First 3 bars show WLM weight for DVIPA 9.42.45.84 and Port 2023.
Scenario 2: WLM Weight and DDVIPA Server Health

<table>
<thead>
<tr>
<th>Application Server Name</th>
<th>DVIPA</th>
<th>DVIPA Port</th>
<th>Dynamic XCF IP Address</th>
<th>zOS Image Name</th>
<th>Port Health Percent</th>
<th>WLM Weight</th>
<th>Abnormal Transaction Percent</th>
<th>Target Server Responsiveness Rate</th>
<th>Target Connectivity Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN3270</td>
<td>9.42.46.85</td>
<td>2023</td>
<td>192.9.235.1</td>
<td>TIVLP35</td>
<td>100</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TN3270</td>
<td>9.42.46.85</td>
<td>2023</td>
<td>192.9.234.1</td>
<td>TIVLP34</td>
<td>100</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TN3270</td>
<td>9.42.46.85</td>
<td>2023</td>
<td>192.9.207.1</td>
<td>TIVMVS7</td>
<td>100</td>
<td>16</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Accept Efficiency Fraction</th>
<th>Connection Establishment Rate</th>
<th>Raw Composite Weight</th>
<th>Raw CP Weight</th>
<th>Raw zAAP Weight</th>
<th>Raw zIIP Weight</th>
<th>Proportional CP Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>95</td>
<td>64</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>64</td>
</tr>
</tbody>
</table>

WLM Weight for TIVMVS7 (z13) is > double that of TIVLP34 (z10) and TIVLP35 (z10).
Monitoring Sysplex Distributor – Sample Scenarios

- Sysplex Distributor seems to be favoring one z/OS System significantly more than others for new TCP connections? Why is that?

- Help desk is receiving calls indicating performance issues using an application that is distributed via Sysplex Distributor. You want to understand how TCP connections have been distributed for given Distributed DVIPA over the past 30 minutes.
Scenario 3: Application Performance Issues

• Distributed DVIPA Statistics will show you how your DDVIPA connections have been distributed for the application with performance issues for DDVIPA 197.11.211.1 on port 52002.

• Scenario information
 – Your DDVIPA sampling interval is 5 minutes (DVIPA.DVTAD tower)
 – DDVIPA Statistics is enabled and started across all systems in your sysplex
 • If not started, start it dynamically with the DVIPALOG command and filters, as desired
 – Once the next sampling interval passes, issue NetView sample command:
 CNMSDVST
 or
 wait for 30 minutes and issue:
 CNMSDVST DVIPA=197.11.211.1 PORT=52002 and scroll through the output.
Scenario 3: CNMSDVST output

There are approximately 20,000 rows of data! Use filters with CNMSDVST.

First interval data for DDVIPA 197.11.211.1 and port 52002.
Scenario 3: DDVIPA Sysplex Distribution Percentage

Using the data from DDVIPA Statistics, you can track DDVIPA connection distribution. The graph below maps the Sysplex Distributor Connection Information provided by DDVIPA Statistics over 30 minutes.

- NetView for z/OS does not provide this function.

For our scenario, the connections are being distributed consistently across all target stacks. However, there is a wide disparity in the number of connections per stack.
Summary

- NetView for z/OS provides:
 - An extensive set of tools for managing complex networks and systems from a single point of control
 - Advanced automation facilities for network events
 - A set of user interfaces to meet your needs and management functions that work with other products to provide a complete picture of your networks and systems
Backup
Questions and Answers
Questions and Answers

- TCP Connections
 - Q: What needs to be enabled for this function?
 - A: TCPIPCOLLECT tower and TOWER.TCPIPCOLLECT = TCPCONN subtower
 - Enabled by default
Questions and Answers cont.

• Intrusion Detection (IDS)
 – Q: What does NetView do differently than z/OS MF related to this function?
 – A: Confirmed with z/OS Communications Server team that their IDS policy can be configured using the z/OS MF Configuration Assistant. There is no monitoring/automation done by z/OS MF. NetView provides automation support.

• To enable NetView Intrusion Detection Automation Services, configure the following CNMSTYLE user statements:

 TOWER = AON
 TOWER.AON = TCP
 TOWER.AON.TCP = IDS
Questions and Answers cont.

- **Packet Trace (including scenario)**
 - **Q1**: What was the root cause of the problem with the “unacknowledged SYNs”?
 - **A1**: The application at the specified IP address had a limited number of connections it could accept, and that limit had been reached.
 - **Q2**: What’s the maximum size of a concurrent trace instance (used in the scenario)? Where is the trace information stored? Does the stored trace data wrap?
 - **A2**: Each concurrent trace instance is backed by a data space.
 - The default size is 50M – min is 16M - max is 2047M
 - The default is to wrap (specify a negative amount to not wrap, such as: -50M)
 - To change the size and wrap specification, see the STORAGE keyword with the PKTS command or the CNMSTYLE statement:
        ```plaintext
        PKTS.STORAGE.&CNMTCPN = 50M
        ```  
 - Note: If you plan to save one or more traces, ensure that you have adequate space to do this. NetView dynamically allocates a data set to save the trace data.
 - **Q3**: Is an “external writer” required?
 - **A3**: No.
 - **Q4**: What needs to be enabled for this function?
 - **A4**: `TCPIPCOLLECT` tower and `TOWER.TCPICOLLECT = PKTS` subtower (both enabled by default) in CNMSTYLE user member
Questions and Answers cont.

• Discovery Manager
 – **Q1**: What needs to be enabled for this function?
 – **A1**: DISCOVERY tower and any subtowers in CNMSTYLE user member:
 \[
 \text{TOWER.DISCOVERY = INTERFACES TELNET} \\
 \text{TOWER.DISCOVERY.INTERFACES = OSA HIPERSOCKETS}
 \]
 – **Q2**: How can I get this data programmatically without issuing commands that write lots of information to the TCPIP job log?
 – **A2**: Use the following NetView commands (samples are in parentheses) and issue **OVERRIDE SLOGCMDR=NO** command for pertinent autotasks to not log MVS command output to SYSLOG:
 • **STACSTAT (CNMSTAC)**: Configuration and status information about TCP/IP stacks
 • **IFSTAT (CNMSIFST)**: TCP/IP stack interfaces
 • **TELNSTAT (CNMSTNST)**: Configuration and status information about Telnet servers
 • **TNPTSTAT (CNMSTPST)**: Configuration and status information about Telnet server ports
 • **NVSTAT (CNMSNVST)**: Configuration and status information about the NetView domains
 • **OSAPORT (CNMSOSAP)**: OSA channel and port information
 • **HIPERSOC (CNMSHIPR)**: View HiperSockets adapter information
Questions and Answers cont.

• DVIPA
 – Q1: What needs to be enabled for this function?
 – A1: DVIPA tower and any subtowers in CNMSTYLE user member:
 TOWER.DVIPA = DVTAD DVCONN DVROUT
 – Q2: How can I get this data programmatically without issuing commands that write lots of information to the TCPIP job log?
 – A2: Use the following NetView commands (samples are in parentheses) and issue OVERRIDE SLOGCMDR=NO command for pertinent autotasks to not log MVS command output to SYSLOG:
 • DVIPSTAT (CNMSDVIP): Definition and status information about DVIPAs
 • DVIPPLEX (CNMSPLEX): Information about DVIPA sysplex distributors
 • DVIPCONN (CNMSDVPC): DVIPA connections
 • DVIPTARG (CNMSTARG): DVIPA distributed targets
 • DVIPHLTH (CNMSDVPH): Distributed DVIPA server health information
 • DVIPDDCR (CNMSDDCR): Distributed DVIPA connection routing information
 • VIPAROUT (CNMSVPRT): Status information about VIPA routes
Questions and Answers cont.

• DVIPA Q&A cont.
 – **Q3**: Are there additional metrics to help with DDVIPA problems?
 – **A3**: Yes.
 • See the NetView DDVIPA Servers workspace (TEP) or the output of the DVIPHLTH (sample CNMSDVPH) command (message BNH814I)
 • Also see Scenario 6 in this section.
 – The root cause for this scenario is that the server’s ability to accept connections is very low.
Additional Scenarios
Scenario 4: Diagnosing Telnet Server Outage

- A user reports that they can no longer establish Telnet connections to Telnet server TN3270B
- The operator looks at the Telnet Server Configuration and Status workspace and notices that TN3270B is inactive
- The operator restarts the server and monitors that connections are once again being established
Scenario 4: Telnet Server Inactive

TN3270B inactive

TN3270B not present when inactive

August 2015
Scenario 4: Telnet server now active

Note that TN3270B now has active connections.
Scenario 5: DDVIPA Configuration Changes

• Scenario:
 – All 3 systems in PLEX1 need to add a Sysplex Distributor. The changes are all scheduled to occur at the same time, but 2 of the new Sysplex Distributor IP addresses are not working.

• Resolution steps:
 – Using the Canzlog remote browse GROUP function from an enterprise master NetView, see why the DDVIPA configuration changes did not work on all 3 systems in the sysplex.
 – Also, take advantage of the CZFORMAT option (ORIGIN) and the new relative time filter.
Consolidated Log Browse with NetView V6.2

CANZLOG = Consolidated Audit, NetView and z/OS LOG
Canzlog GROUP browse

- The Canzlog BR command can be used to browse a Canzlog from multiple domains
 - The messages from all the domains are consolidated into one log
 - The messages in the log are sorted by time
 - Use the new DEFAULTS/OVERRIDE CZFORMAT command to specify ORIGIN in front of each message
 - Additional filter options can be specified
 - A filter name, if used, is resolved on the local side before making the remote request

Complete your session evaluations online at wwwSHARE.org/Orlando-Eval
August 2015
Scenario 5: GROUP information

NetView stylesheet:

```
RMTCID.IP.NTV7A = NMPIPL12.TIVLAB.RALEIGH.IBM.COM/4022 ON USIBMNT
RMTCID.IP.NTV7ATST = IP.NTV7A
RMTCID.IP.NTV74 = NMPIPL10.TIVLAB.RALEIGH.IBM.COM/4022 ON USIBMNT
RMTCID.IP.NTV74TST = IP.NTV74
RMTCID.IP.NTV70 = NMPIPL10.TIVLAB.RALEIGH.IBM.COM/4022 ON USIBMNT
RMTCID.IP.NTV70TST = IP.NTV70
RMTCID.IP.NTV66 = NMPIPL30.TIVLAB.RALEIGH.IBM.COM/4022 ON USIBMNT
RMTCID.IP.NTV66TST = IP.NTV66
ENT.GROUP.PLEX1 = NTV7ATST NTV74TST NTV70TST
```

QRYGROUP Output

```
NetView V6R2 - NM  Tivoli NetView  NTVAF  NETOP1
* NTVAF  QRYGROUP
C NTVAF
CHM100I The list of groups stored in COMMON
PLEX1
* NTVAF  QRYGROUP PLEX1
C NTVAF
CHM100I The list of members stored in PLEX1
NTV7ATST
NTV70TST
NTV74TST
```

Issue RESTYLE ENT to dynamically add a GROUP.

ENT.GROUP.groupname defines a group of local or remote NetView instances. You can use a group to define a logical cluster of NetView instances; you can then use the group with the BROWSE command to see data from all NetView instances in the cluster. A group can include specific NetView domains, sysplexes, and other groups.
Scenario 5: Relative Time

Timer for OBEYFILES to add new Sysplex distributors was set to run at 23:15:00 on 03/11/14. Immediate results are the desired display, so only 1 minute from 23:15:00 is specified.

For on this panel specifies the duration of the timespan to be included. Use the For field if you want to specify the timespan in terms of duration, rather than specifying the start and end times.

The group we just defined
Scenario 5: Filtered Results

Indicates the DVIPA address is already defined on the current stacks.
Scenario 6: Sysplex Distributor Health Notifications

- NetView provides situations with the NetView Agent.
 - Disabled by default
 - “Shipped” situations can be customized
 - New situations can be created
- Scenario information:
 - Operator has 3 open situations on the TEP for Distributed DVIPAs for domain CNMZO related to DDVIPA Server Health
 - Server Accept Efficiency Fraction (SEF) < 70%
 - Created for this scenario
 - Target Server Responsiveness Rate (TSR) < 80%
 - WLM Weight = 0
 - Looking at the Navigator Tree, LPAR ZOR, shows the situation icon, so we’ll start there.
 - We also have a DDVIPA Unhealthy Servers workspace
- Let’s look at that
Sysplex Distributor built-in awareness of abnormal conditions

- TSR – Target Server Responsiveness
 - How healthy is the target system and application from an SD perspective? A percentage, 0-100%
 - Comprised of several individual health metrics:
 - TCSR – Target Connectivity Success Rate
 - Are connections being sent to the Target System making it there?
 - A Percentage: 100 is good, 0 is bad

- CER – Connectivity Establishment Rate
 - Is connectivity between the target system and the client ok?
 - By monitoring TCP Connection Establishment state (requires 3 way handshake between client and server) we can detect whether a connectivity issue exists
 - A percentage: 100 is good, 0 is bad
 - Note: CER no longer part of TSR directly but is included in SEF and continues to be calculated and reported separately

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Sysplex Distributor built-in awareness of abnormal conditions

- TSR – Target Server Responsiveness (cont)
 - SEF – Server Efficiency Fraction
 - Is the target server application server keeping up with new connections in its backlog queue?
 » Is the new connection arrival rate higher than the application accept rate? (i.e. is backlog growing over time)
 » How many connections in the TCP backlog queue? How close to maximum backlog queue depth? Did we have to drop any new connections because the backlog queue max was exceeded?
 » Is the server application hung? (i.e. not accepting any connections)
 » Are the number of half-open connections on the backlog queue growing? (Similar to CER – One such scenario is when the target system does not have network connectivity to the client)
 - A Percentage: 100 is good, 0 is bad

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Scenario 6: Enterprise Status View

- LPAR ZOR has a situation icon.
- Open Events. If event resolves itself, it disappears from this view.
- Workspace Name.
- Open Situations over last 24 hours.
Scenario 6: Situation Event Console

Open Events. If event resolves itself, it disappears from this view.

Workspace Name.
Scenario 6: Enterprise Status View

LPAR ZOR has a situation icon.
Scenario 6: WLM Weight = 0 Suggested Actions

NAS_DVIPA_WLM_Weight

Situation Description

The Workload Manager (WLM) weight indicates the value for either the z/OS image on which the target TCP/IP stack is located or the specific server on the target stack based on the BASEWLM or SERVERWLM group flag.

This value is in the range 0 to 64. The WLM weight is the composite weight; it is the sum of the displayed proportional CP, zAAP, and zIIIP weights for this member.

Suggested Actions

The WLM weight value indicates the available processor capacity of the target system. When the weight value is lower, the capacity is also lower. This value is normalized so that the lowest value is 1.

If SERVERWLM is being used as the distribution method and a server has a WLM weight of 0, verify that the server is using the appropriate WLM Policy and that the system is not too overloaded to enable the server to meet its policy goals.
Scenario 6: Open Situation Counts Last 24 Hours

Open Situations over last 24 hours.

In the chart, the open situations over the last 24 hours are shown for various categories such as NAS_DVIPA_WLM_Weight, NAS_DVIPA_Target_Serv_Resp_Rate, NAS_DVIPA_SrvAccept_Efncy_Frac, MS_Offline, KSY_TEPS_Connectivity_Fail, KSY_DB_Connectivity_Fail, KM5_No_SYSplex_DASD_Filter_Warn, and KHD_DB_Connectivity.
Scenario 6: DDVIPA Server Health Navigation
Scenario 6: Select DDVIPA Unhealthy Servers
Scenario 6: DDVIPA Unhealthy Servers

1. Proportional CP Weight indicates that GERMANY is healthy.

2. SEF of 4 indicates that the server’s ability to accept connections is very poor.

3. TSR (4) is low due to the SEF.

4. Adjusted WLM weight is 0 due to SEF and TSR values.
Scenario 6: DDVIPA Unhealthy Servers

<table>
<thead>
<tr>
<th>z/OS Image Name</th>
<th>Proportional CP Weight</th>
<th>WLM Weight</th>
<th>Abnormal Transaction Percent</th>
<th>Target Server Responsiveness Rate</th>
<th>Target Connectivity Success Rate</th>
<th>Server Accept Efficiency Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>GERMANY</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Proportional CP Weight indicates that GERMANY is healthy.
2. SEF of 4 indicates that the server’s ability to accept connections is very poor.
3. TSR (4) is low due to the SEF.
4. Adjusted WLM weight is 0 due to SEF and TSR values.
More Information

• NetView website

• Service Management Suite for z/OS

• IP management with NetView for z/OS

• NetView customer forum
 http://tech.groups.yahoo.com/group/NetView/

• NetView documentation
Please fill out your session evaluation

• NetView for z/OS: New Directions
• Session # 17886
• QR Code:

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

August 2015
Complete your session evaluations online at www.SHARE.org/Orlando-Eval
August 2015