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KVM Review

 Hopefully you attended Mark Post's 'KVM for z Systems' session ? 

 QEMU Virtualizes the Processor and Memory resources of a Server using the KVM 
resources provided by a Linux Kernel assisted by whatever hardware instructions the 
processor supports 

 QEMU Virtualizes the IO of a server using a mix of paravirtualization and good ole trap and 
translate.

 From an administrators point of view – a virtual machine is contained within the qemu 
process running on the KVM host 
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Virtualizing Networks with KVM

 KVM offers several methods to virtualize the host's network connectivity, each with their own 
plusses and minuses

– Ethernet Routing with NAT

– Ethernet Routing without NAT

– Ethernet Bridging

– MacVTap

– Open vSwitch
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KVM – Ethernet Routing with NAT

● +++

– Relatively straightforward to set up

– Does not require additional IP addresses from the network

– MAC addresses local to KVM host

● ---

– Inbound connections require additional setup for each mapped port on each guest

– KVM host is performing packet forwarding

– Otherwise, there is no inbound connectivity

● Provides a good starting point for gaining familiarity with KVM

<network>
        <name>default</name>
        <bridge name="bridge0" />
        <forward mode="nat"/>
        <ip address="192.168.1.1"
            Netmask="255.255.255.0">
            <dhcp>
                <range start="192.168.1.2"
                       end="192.168.1.254" />
            </dhcp>
        </ip>
</network>

Host definition

<interface type='network'>
      <mac address='52:54:00:c0:d5:cf'/>
      <source network='default'/>
      <model type='virtio'/>
      <address type='pci' domain='0x0000'
               bus='0x00' slot='0x06'           
                function='0x0'/>
</interface>

Guest definition
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KVM – Ethernet Routing without NAT

● +++

– Relatively straightforward to set up

– Does not require additional IP addresses from the network

– MAC addresses local to KVM host

● ---

– Inbound connections require a route for the private network in the external network

– KVM host is performing packet forwarding

● Provides a good starting point for gaining familiarity with KVM

<network>
        <name>default</name>
        <bridge name="bridge0" />
        <forward mode="route" dev=”eth0”/>
        <ip address="192.168.1.1"
            Netmask="255.255.255.0">
            <dhcp>
                <range start="192.168.1.2"
                       end="192.168.1.254" />
            </dhcp>
        </ip>
</network>

Host definition

<interface type='network'>
      <mac address='52:54:00:c0:d5:cf'/>
      <source network='default'/>
      <model type='virtio'/>
      <address type='pci' domain='0x0000'
               bus='0x00' slot='0x06'           
                function='0x0'/>
</interface>

Guest definition
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KVM – Ethernet Bridging

● +++

– Relatively straightforward to set up

– Very common KVM networking for production environments

– No external routing changes required

● ---

– KVM host is performing packet forwarding

– MAC address management required since MACs travel to the external network

● More or less the defacto network standard for KVM until recently

<network>
        <name>host-bridge</name>
        <bridge name="bridge0" />
        <forward mode="bridge"/>
</network>

Host definition

<interface type='network'>
      <mac address='52:54:00:c0:d5:cf'/>
      <source network='host-bridge'/>
      <model type='virtio'/>
      <address type='pci' domain='0x0000'
               bus='0x00' slot='0x06'           
                function='0x0'/>
</interface>

Guest definition
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KVM – MacVTap

● +++

– Higher performance than Bridging or Routing or NAT

– Compatible with the Network teams management tools and processes

● Supports VEPA, 802.1Qbg

– No external routing changes required

● ---

– MAC address management required since MACs travel to the external network

– New Technology is new

● Fast, but requires kernels 2.6.34 or newer ( not in RHEL 6 ) 

<network>
        <name>macvtap-passthru</name>
        <forward mode="bridge">
             <interface dev=”eth1”/>
             <interface dev=”eth2”/>
             <interface dev=”eth3”/>
        </forward>
</network>

Host definition

<interface type='network'>
      <mac address='52:54:00:c0:d5:cf'/>
      <source network='macvtap-passthru'/>
      <model type='virtio'/>
      <address type='pci' domain='0x0000'
               bus='0x00' slot='0x06'           
                function='0x0'/>
</interface>

Guest definition
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KVM – Open vSwitch

● +++

– Relatively straightforward to set up

– Compatible with the Network teams management tools and processes

● Supports VEPA, 802.1Qbg, VLAN, and more!

– No external routing changes required

● ---

– KVM host is performing packet forwarding

– MAC address management required since MACs travel to the external network

● Requires Open vSwitch package compatible with running Kernel

<network>
        <name>ovs-bridge</name>
        <bridge name="ovsbr0" />
        <forward mode="bridge"/>
        <virtualport type=”openvswitch”/>
</network>

Host definition

<interface type='network'>
      <mac address='52:54:00:c0:d5:cf'/>
      <source network='ovs-bridge'/>
      <model type='virtio'/>
      <address type='pci' domain='0x0000'
               bus='0x00' slot='0x06'           
                function='0x0'/>
</interface>

Guest definition
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Virtualizing Disk with KVM

 KVM offers several methods to virtualize the host's disk, each with their own plusses and 
minuses

– Files

● Raw

● QCOW2

– Block Devices

● Entire devices

● Partitions

● Logical Volumes

– Directories & Network services 
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KVM – Virtualizing Disk with Raw Files
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KVM – Virtualizing Disk with Raw Files

● +++

– Relatively straightforward to set up and work with

– No need to ask the storage group to clone disks for you

– Less overhead than QCOW2

● ---

– Thick provisioning ( lots of 0x0000 on disk ) 

– Not as fast as block devices

● Provides a good starting point for gaining familiarity with KVM

<disk type='file' device='disk'>
      <driver name='qemu' type='raw'/>
      <source file='/var/lib/libvirt/images/sl12sp0.img'/>
      <backingStore/>
      <target dev='vda' bus='virtio'/>
</disk>

Guest definition



KVM – Virtualizing Disk with QCOW2 Files
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KVM – Virtualizing Disk with QCOW2 Files

● +++

– Thin Provisioning

– Snapshots and Base Images

– No need to ask the storage group to clone disks for you

● ---

– Overhead

– Base Images introduce the possibility for data loss if the base is written to

– Not nearly as fast as block devices

● Provides extensive possibilities for cloning and extending OS images and moving them to 
production
<disk type='file' device='disk'>
      <driver name='qemu' type='qcow2'/>
      <source file='/var/lib/libvirt/images/sl12sp0.qcow2'/>
      <target dev='vda' bus='virtio'/>
</disk>

Guest definition



KVM – Virtualizing Disk with entire Block Devices
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KVM – Virtualizing Disk with entire Block Devices

● +++

– Fast

– Flashcopy et all do exactly what we want them to do

– Compatible with existing DR processes

● ---

– Thick provisioning ( lots of 0x0000 on disk ) 

– Requires interaction with Storage admins

● Put Databases here

<disk type='block' device='disk'>
      <driver name='qemu' type='raw'/>
      <source dev='/dev/sdb'/>
      <target dev='vda' bus='virtio'/>
</disk>

Guest definition



KVM – Virtualizing Disk with Partitions
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KVM – Virtualizing Disk with Partitions

● +++

– Fast

– Flashcopy et all do mostly what we want them to do

– Compatible with existing DR processes

● ---

– Thick provisioning ( lots of 0x0000 on disk ) 

– Requires interaction with Storage admins

– Partition table maintenance can be tricky and require a boot to refresh

● Make efficient use of very large storage volumes

<disk type='block' device='disk'>
      <driver name='qemu' type='raw'/>
      <source dev='/dev/sdb1'/>
      <target dev='vda' bus='virtio'/>
</disk>

Guest definition
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KVM – Virtualizing Disk with Logical Volumes
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KVM – Virtualizing Disk with Logical Volumes

● +++

– Fast

– Linux LVM has its own snapshot function

– Very Flexible and Dynamic, managable from within libvirt

● ---

– Thick provisioning ( lots of 0x0000 on disk ) 

– LVM snapshots are kinda slow and drive lots of host IO

● Most flexible and performant disk management approach

<disk type='block' device='disk'>
      <driver name='qemu' type='raw'/>
      <source dev='/dev/VolGroup00/LogVol00'/>
      <target dev='vda' bus='virtio'/>
</disk>

Guest definition



KVM – Virtualizing Disk with Directories and Services
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KVM – Virtualizing Disk with Directories and Services

● +++

– Flexible

– Diskless Guests

● ---

– ??

<disk type='network' device='lun'>
      <driver name='qemu' type='raw'/>
      <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/1'>
        <host name='example.com' port='3260'/>
      </source>
      <auth username='myuser'>
        <secret type='iscsi' usage='libvirtiscsi'/>
      </auth>
      <target dev='sdb' bus='scsi'/>
</disk>

<filesystem type='mount' accessmode='passthrough'>
      <driver type='path' wrpolicy='immediate'/>
      <source dir='/export/to/guest'/>
      <target dir='/import/from/host'/>
      <readonly/>
</filesystem>

Guest definition
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