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Agenda

What is Docker?

Why are we doing Docker now ? 

Ok – so how does one run Docker on Linux on Z ?
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Docker Overview

● Docker is a management tool that handles the construction of a container which 
provides for all the runtime requirements of an application

● A container is 

– a file system image that contains all the libraries needed to run an application

– the application itself, which is included in the file system image

– a union filesystem layer which contains all the writes made to the file system image

– the specification of what network connectivity the application requires

– the specification of processor and memory resources that the application requires

● An Image is

– just a file system inside a file ( sorta like an .iso ) which can be loopback mounted 
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Docker Overview
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Docker Overview
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Docker Overview
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Docker Overview
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Docker Overview
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chroot jail                                        

Docker Overview

OS Kernel

DASD

/

/var/lib

/var/lib/docker/hello

OSA

eth0

socket

/bin

Memory CPU

Hello
World

EVIL
Hello
World

/var/lib/bin

aufs file spaceaufs file space



© 2015 IBM Corporation

chroot jail                                        

Docker Overview **

OS Kernel

DASD

/

/var/lib

/var/lib/docker/hello

OSA

eth0

socket

/bin

Memory CPU

Hello
World

EVIL
Hello
World

/var/lib/bin

aufs file spaceaufs file space

/proc

/proc

Root in a container is still root!
cat /dev/urandom > /proc/kcore



© 2015 IBM Corporation

chroot jail                                        

Docker Overview

OS Kernel

DASD

/

/var/lib

/var/lib/docker/hello

OSA

eth0

/bin

Memory CPU

Hello
World

EVIL
Hello
World

/var/lib/bin

aufs file spaceaufs file space

bridge0

tap eth tap ethtap eth

bridge1

Firewall
Rules cgroup1

cgroup1



© 2015 IBM Corporation

chroot jail                                        

Docker Overview

OS Kernel

DASD

/

/var/lib

/var/lib/docker/hello

OSA

eth0

/bin

Memory CPU

Hello
World

EVIL
Hello
World

/var/lib/bin

aufs file spaceaufs file space

bridge0

tap eth tap ethtap eth

bridge1

Firewall
Rules cgroup1

cgroup1

Docker



© 2015 IBM Corporation

Docker will perform all the required setup for you

● > docker pull debian-s390x

– Downloads a debian s390x image from docker hub

● > docker run -it debian-s390x bash 

– Starts a bash shell within a new container using the debian image

● This new bash shell is contained in a chroot jail

● This new bash shell's writes go to a container specific AUFS layer

● This new bash shell can be limited to a subset of CPU or memory resources using 
cgroups

● This new bash shell is only permitted outbound NAT access to the network
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So what does Docker enable us to do now ?

● Application Development is more automate-able

– Well suited to a DevOps managed Agile process

● Placing applications is relatively straightforward. There are fewer dependancies between the 
application and the host that runs it. 

– You can deploy a container to any Docker host of the same processor and operating system 
family. An application in an image with Debian libraries will run just fine on a Suse host.

– You still need the right processor architecture though – no deploying x86_64 images on a 
s390x host. 

● Once an image is tested – there is more confidence that the application will work as expected since 
it brings all its software dependancies along with it. 

● Multiple containers can be deployed to a single host, increasing system utilization without the 
overhead of an additional OS instance to manage.

– Like Virtualization, but easier

– Plays to the mainframe's strengths
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So how do we run Docker on Linux on Z ? 

● Download the docker package

– http://www.ibm.com/developerworks/linux/linux390/docker.html

– Follow the instructions & make sure you have more than 500MB available in /var

● If you want a local registry, download and install docker on a local x86 system, then start the local 
registry container

– some_x86_machine# docker run -d -p 5000:5000 registry:2 

● Use the mkimage.sh script from a machine with a workable yum / zypper / apt config to create a 
usable image

– http://containerz.blogspot.com/2015/03/creating-base-images.html

– You can add more packages to the image by adding what you're looking for to the yum or 
zypper install command in the script

– imagedir# tar -cf - . | docker import - mynewimage

● Tag your new image and push it to your local repository for safe keeping

– # docker tag mynewimage wherever.the.registry.is.com:5000/mynewimage

– # docker push wherever.the.registry.is.com:5000/mynewimage

● Start your container adventure!

– # docker run -it wherever.the.registry.is.com:5000/mynewimage bash

http://www.ibm.com/developerworks/linux/linux390/docker.html
http://containerz.blogspot.com/2015/03/creating-base-images.html
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Test Lab Notebook

● CPU / Memory performance is more or less native

● Disk Throughput into the image is lower for equivalent CPU consumption

– ~60% of native speed for Writes: lots of additional codepath, but it is providing value

– ~85% of native speed for Reads: some additional codepath, but it is providing value

● Disk Throughput into an mapped volume is more or less native

– Use the -v switch on the docker run command to map a host directory into a 
container. For example: 
docker run -it -v /home/bobby:/home ubuntu bash 

● Most Z shops will likely want to use a local image repository so they are not publishing 
their applications to the public DockerHub portal. Docker also offers private hub cloud 
services if you want images to be available to multiple orgs or sites.

● You cannot search the local image repository, that support is missing at the moment.

● The Docker daemon will use http_proxy and https_proxy environment variables to get 
access to the outside world if required, but the squid proxy may not support all the 
RESTful calls it may make.
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Questions?
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