SHARE 9¢ =

in Orlando 2015 € SHARE

Make Your PL/l and C/C++ Code Fly
With the Right Compiler Options

Visda Vokhshoorl
visdav@ca.ibm.com

#SHAREor
£ SHARE is an independent volunteer-run information technology association

OO@ @ that provides education, professional networking and industry influence.
Copyrlght (C) 2015 by SHARE Inc. @ @ @ @ E;:::p/tlwhere_mherwise note':i',':hi§ work islli:::!::'ds:r/\g.et;l

WHAT ... Y

eeeeeeeeeeeeeeeeeeeeeeee

does good application performance mean to you?

Fast Execution Time

Short Compile Time

Can you please take this poll: http://p2.gg/itp

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €

HOW ... Y

eeeeeeeeeeeeeeeeeeeeeeee

to achieve good application performance:

Install New Hardware
Utilize Compiler Options

Code for Performance

SHARE Og

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €

Install New Hardware N

ccccccccccccccccccccccccc

Can make your code run faster

Requires NO
Recompilation
Relinking
Migration to new release

BUT, are you taking full advantage of all the new features
from the new hardware?

l.e. the full ROI on the new piece of hardware

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €

Utilize Compiler Options

eeeeeeeeeeeeeeeeeeeeeeee

Allows the compiler to exploit the hardware:
ARCH
HGPR

FLOAT(AFP)

Balance between compile-time vs. execution-time:
OPT(2)
OPT(3)
HOT [C/C++]
IPA [C/C++]

SHARE Og
in Orlando 2015 ?

Complete your sessiopDI.Ia_'tions online at www.SHARE.org/Orlando-Eval

Utilize Compiler Options (cont’d)

eeeeeeeeeeeeeeeeeeeeeeee

Provide the detalls about the source or environment:
o« C/C++:
ANSIALIAS
IGNERRNO
LIBANSI
NOTHREADED
NOSTRICT
STRICT INDUCTION
XPLINK
PL/I

SHARE Og

Complete your sessi o e at www.SHARE.org/Orlando-Eval
REBYCE in Orlando 2015 ’

Utilize Compiler Options (cont’d) = 3
controls load module size:
COMPACT [C/C++]
INLINE [C/C++]
DEFAULT(INLINE) [PL/I]
UNROLL
SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €

Code for Performance

Writing good code
Make use of built-in functions
Make use of #pragmas [C/C++]

Make use of attributes and keywords

OpenMP [C/C++]

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

eeeeeeeeeeeeeeeeeeeeeeee

SHARE Og
in Orlando 2015 ’

Code for performance)

|||||||||||||||||||||||||||

Keep it simple and concise

Good for both the programmer and the compiler to
understand the code easily

Don’t ignore the compiler informational and warning
messages, even if the program appears to work
Attempts to be clever and produce “optimal” code might
produce:
Code that is unreadable
Code that cannot be maintained
Code that performs worse than the straightforward solutions
Code that fails

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
inOrlando 2015 €

ARCHitecture Option .

|||||||||||||||||||||||||||

The ARCH option specifies the level of the hardware on
which the generated code must run

C/C++ default is ARCH(8) for V2R2 and up
» That's code customized for z10 EC and z10 BC
PL/l default is ARCH(7) for 4.5 and up
produces code that will run on z9 (or later) machines
LE 2.1 requires z9 (or later) machines

However: you must set ARCH to the lowest level
machine where your generated code will run

If you specify ARCH(n) and run the generated code on an
ARCH(n-1) machine, you will most likely get an (ﬂeration

exce tIOF] @
Complete your session evaluUations online at www.SHARE.org/Orlando-Eval "
in Orlando 2015

ARCHitecture - Timeline

G2, G3, G4:
Support for
branch
G1: relative
Support for string
operation h/w
instruction
all models
2
1
0

G5, G6:
12-Additional

Floating Point
registers

Support for
IEEE Floating
Point

Y

SHARE,

Educate - Network - Influence

z10:

Compare and Branch,
Prefetch, Add Logical with
Signed Immediate

z9:
2990, z890: Extended immediate,
Long displacement, Extgnded trgnslathn, 1
Decimal Floating gdint 1
Load Byte ... 9
2900, z800 —
. 2900, z800 —
=oAEsa mode z/Architecture: Out-Of Order
Support for S (O0O0) pipeline
32-bit add/ LP64 support
subtract with
carry/borrow 7
c 6 => ARCH(11):
ZEC13:
2IArchitecture Vector instructions
4 => ARCH(10): DFP-Packed Conversions

=) ARCH(9) z196, z114:

Load/store on condition,
Non-destructive ops, High-
word

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

ZEC12, zBC12:

DFP-Zoned Conversions,
Transaction Execution

SHARE Og
in Orlando 2015 ?

ARCH(9): Load/store on condition s g

consider this small program:

2.0 | test: proc returns(fixed bin(31));

3.0 |
4.0| exec sglinclude sqlca;
5.0
6.0 | dclc fixed bin(31);
7.0
8.0| exec sqgl commit;
9.0 |
10.0| if sqglcode = 0 then
11.0 | c=0;
12.0| else
13.0 | c=-1;
14.0 |
15.0| return(c);
16.0 | end;

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

eeeeeeeeeeeeeeeeeeeeeeee

SHARE Og
in Orlando 2015 ’

SHARE 9

aaaaaaaaaaaaaaaaaaaaaaaa

ARCHS%QLoad/store on condition

SHARE is an independent volunteer-run information technology association

in Orlando 2015
Under OPT(3
0000CA ODEF 000008 |
0000cC 5800 DOF4 000010 |
000000 A718 FFFF 000010 |
000004 ECO6 0005 007E 000010 |
0000DA 4110 0000 000010 |
0000DE 000010 |
0000DE 58E0 2000 000015 |
0000E2 5010 EOOO 000015 |

#SHAREorg
Q00E

that provides education, professional networking and industry influence.13
Copyright (¢) 2015 by SHARE Inc. © ® @ @

@1L8

CH(8), the instructions after the call are:

BASR ri4,rls

L r0,<al:d244:14>(,r13,244)
LHI rl,H'-1'

CIINE r0,H'0'",@1L8

LA r1,0

DS OH

L r14,_addrReturns_vValue(,r2,0)
ST r1,_shadowl(,r14,0)

*YEARS *

OF SHARE

\n‘“’end"g e 29,
23

Except where otherwise noted, this work is licensed under
http:// i org/li /by-nc-sa/3.0/

inOrlando 2015 ®@~ s ARE

ARCH(9). Load/store on condition
under OPT(3) ARCH(9), the instructions after the call are:

0000CA ODEF 000008 | BASR ri4,rls

0000CC A718 FFFF 000010 | LHI ri,H'-1"

000000 BFOF DOF4 000010 | ICM™ r0,b'1111",<al:d244:14>(r13,244)

0000D4 58E0 2000 000015 | L ri14,_addrReturns_value(,r2,0)

0000D8 4100 0000 000010 | LA ro,0

0000DC B9F2 8010 000010 | LOCRE rl, r0

0000EO 5010 EOOO 000015 | ST rl,_shadowl(,r14,0)

i

pHARE SHARE is an independent volunteer-run information technology association N e D

OG@@ that provides education, professional networking and industry influence.14 '

Copyrlght (C) 2015 by SHARE Inc. @ @ @ E:;:::p/tlwhere_mherwise note':i',:hi§ work is Ili:::\:z'ds:r/-g:s‘;l

ARCH(9): Load/store on condition o

ccccccccccccccccccccccccc

So, under ARCH(8), the code sequence was:
Load SQLCODE into rO
Load -1 into r1
Compare r0 (SQLCODE) with 0 and branch if NE to @1L8
Load O into rl
- @1L8
Store rl into the return value

While under ARCH(9), the code sequence has no label and no branch:
Load -1 into rl
Load SQLCODE into r0 via ICM (so that CC is set)
Load O into rO
Load-on-condition rl1 with rO if the CC is zero (i.e. if SQLCODE = 0)

Store rl into the return value

SHARE@

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

ARCH(10): DFP Zoned Conversion Facility

eeeeeeeeeeeeeeeeeeeeeeee

This code converts a PICTURE array to FIXED BIN

pic2int: proc(ein, aus) options(nodescriptor);

dc1 ein(0:100_000) pic'(9)9' connected;
dc1 aus(0:hbound(ein)) fixed bin(31) connected;
dcl jx fixed bin(31);

do jx = Tbound(ein) to hbound(ein); aus(jx) =
ein(jx);
end; end;

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

ARCH(10): DFP Zoned Conversion Facility s 3

ccccccccccccccccccccccccc

Under ARCH(9), the heart of the loop consists of these 8 instructions

0058

005E

0064

006A

006E

0074

007A

Com ZEFG you?? ession e\gggtg)ns online at www. SHAR% org/Orlando- Eva?

F248

c020

D204

4110

D100

F874

4F20

D098

0000

DOAO

1009

D0A4

DOAS8

DOAS8

1000

0021

D098

200C

DOAO

PACK

LARL

MVC

LA

MVN

ZAP

CVB

#pd580_1(5,r13,152),_shadow2(9,r1,0)
r2,F'33"
#pd581_1(5,r13,160),#pd580_1(rl13,152)
rl,#AMNESIA(,rl,9)

#pd581_1(1,r13,164) ,+CONSTANT_AREA(r2,12)
#pd582_1(8,r13,168),#pd581_1(5,r13,160)

r2,#pd582_1(,r13,168)

,—Shadowl(rl4,rl5, (SHARE
in Orlando 2015 ’

ARCH(10): DFP Zoned Conversion Facility s 3

ccccccccccccccccccccccccc

While under ARCH(10), it consists of 9 instructions and uses DFP in
several of them — but since only the ST and the new CDZT refer to
storage, the loop runs more than 66% faster

0060

0066

006A

006E

0072

0078

C0616lfte your se |o evaBbBbs online at www.SHARE.org/0

EB2F

BOFA

A7FA

BOFA

EDO8

B914

0003 OODF

202F

0001

2023

2000 00AA

0000

rlando-

SLLK

ALRK

AHI

r2,rl5,3
r2,rl5,r2
ri5,H'1"’
r2,r3,r2

f0,#Addressshadow(9,r2,0),b"'0000'

0,r0
all SHAREO
f0,f0,r0 in Orlando 2015 '

ARCH(11): Vector Instruction Facility o

ccccccccccccccccccccccccc

With ARCH(11), the vector instruction facility is used to inline it as

E700
E740

A74E
4150
BOF2
BIFA
E725
E722

EO00 0006
E010 0006

0010
0010
4054
FOE2
EO00 0037
0180 408A

@lL2

VL
VL

DS

CHI

LA

LOCRL

ALRK

VLL

VSTRC

ComEplZa&%our se(s)sQoq %vagjg)t%}s online at www.SHARE.org/Orl‘a(r1Ld§¥val

ECS5E

000D 2076

CRJH

V0,+CONSTANT_AREAE ri4,0)
v4,+CONSTANT_AREA(, r14,16)

OH

r4,H'16"

r5,16

r5,r4

rl4,r2,rl15
v2,r5,_shadowl(rl4,0)
v2,v2,v0,v4,b'0001',b"1000"

r14,v2,1,2 SHARE©
in Orlando 2015 ’

rs5,rl4,@lL3

ARCH(11): Vector Instruction Facility

eeeeeeeeeeeeeeeeeeeeeeee

foo (double * restrict p,
double * restrict g,
double * restrict r,
int n) {

for (int i=0; i<n; i++) {
\ plil=p[i+aliJ*rli];

return O;

}
XIC -c report.C -qglist=./ -qHOT -gARCH=11 -gVECTOR -gphaseid -gfloat=ieee

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

ARCH(11): Vector Instruction Facility

000160

000160
000166

E70E
E72E

3000
2000

0006
0006

15650Z0S V2.2 z/0S XL C++

doub. .

OFFSET

00016C
000172
000178
00017E
000184
000188

OBJECT

ET74E
E702
E704
E70E
41E0
AT746

o) 08/10/15

CODE

1000
0000
0000
1000
EQO10
FFEC

10:40:

0006
30E7
30E3
000E

000005
000006
000006
000006

42

LINE#

000006
000006
000006
000006
000000
000005

@1L41 DS

* pli]l=p[i
VL
VL

PSEUDDO

VL
VEM
VEFA
VST
LA
BRCT

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

s

Educate - Network - Influence

OH

I+qlil*x[1];

A

S

v0,@V. (r{double})0(rl4,xr3,0)
v2,@V. (g{double})1(rl4,r2,0)
report.C: foo(bfp

SEMBLY LISTTING

v4,@V. (p{double})2(rl4,rl1,0)
v0,v2,v0,b'0011"',b"'0000"
vO,v4,v0,b'0011",b"'0000"
v0,@V. (p{double})2 (rl4d, rl,0)
rl4, #AMNESIA(,r14,106)
rd,@1L41

SHARE Og
in Orlando 2015 &

ARCHitecture Option N

eeeeeeeeeeeeeeeeeeeeeeee

The wonderful feature of the ARCH option is that no code
changes are required by you

In all of the above examples, the compller
figured out where it could exploit the option
and then did all the work

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

HGPR Option Y

|||||||||||||||||||||||||||

Stands for High half of 64-bit General Purpose Register

Permitted to exploit 64-bit GPRs in 32-bit programs
Compiler can now make use of
« The 64-bit version of the z/Architecture instructions

Improves run-time performance for source programs
that utilize 64-bit types in 32-bit amode, e.g. long
long

PRESERVE sub-option
Save/re-store In prolog/epilog the high halves of used GPRs

Only necessary if the caller is not known to be compiler-
generated code

Default is NOHGPR(NOPRESERVE)
comptete your sef}@t@kils defauitstoRR(PRESERVE) ?&!ﬁ%ﬁ

FLOAT(AFP) Option B

llllllllllllllllllllllll

Additional Floating-Point (AFP) registers were added to
ESA/390 models

AFP sub-option enable use of the full set (16) of FPRs

VOLATILE sub-option

FPR8 — FPR15 is considered volatile

i.e. compiler will not expect they're preserved by any called
program

No longer required for CICS TS V4.1 or newer
Default is AFP(NOVOLATILE)

SHAREO
in Orlando 2015 &

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

OPTIMIZE Option N

The OPT option controls how much, or even if at all, the
compiler tries to optimize your code

A trade-off between compile-time vs. execution-time

NOOPT/OPT(0):
The compiler simply translates your code into machine code
Generated code could be large and slow
Good choice for:

Matching code generated with written source code
for the purpose of debugging a problem
Reducing compile time

Terrible choice If you care about run-time pef@imange = ©

Complete your session evaluations online at www.SHARE.org/Orlando-Eval " @
in Orlando 2015 €

OPTIMIZE Option (cont’d) = B

ccccccccccccccccccccccccc

When optimizing, the compiler will improve, often vastly,
the code it generates by, for example

Keeping intermediate values in registers

Moving code out of loops

Merging statements

Reordering instructions to improve the instruction pipeline
Inlining functions

Require more CPU and REGION during compilation

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

OPTIMIZE Option (cont’d) = B

cccccccccccccccccccccccc

« OPT(2):
Start enabling the optimizer
A balance between compile speed and code quality
« OPT(3):
Optimizer much more aggressive
Tips balance towards code quality over compile speed
C/C++ compiler will alter other options defaults:
ANSIALIAS, IGNERRNO, STRICT, etc
The C/C++ and PL/I compilers use the same optimizing
backend
But there are differences in what the OPT sub-options does

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

OPTIMIZE Option (cont’d)

Base optimization level - |Base optimization level - f:ldilllzgn;l ﬂp?j;rllsmtlnn Additonal recommended
xlc utlity option z/0S batch option]E‘h’E‘] yop options
-00 OPTI0) or NOOPT None ARCHin)
-2 OPTI2) MAXMEM(*) ARCH (n)
INLINE (to tune inlining)
TUNEi(n)
-03 OPTI(3) NOSTRICT ARCHin)
MAXMEM(*) TUNEi(n)
-4 OPTI3) All of OPT(3) plus: ARCHIin)
HOT HOT TUNEi(n)
IPA(LEVEL(1)) IPA PDF
-05 OPTI3) All of -04 plus: ARCHin)
HOT IPA(LEVELI2)) TUNEi(n)
IPA(LEVEL(2)) PDF

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

s

Educate - Network - Influence

SHARE Og
in Orlando 2015 8

Other C/C++ Options Related to OPT o

HOT option
High-Order loop analysis and Transformations
More aggressive optimization on the loops
Requires OPT(2) or higher
IPA option
Inter-Procedural Analysis
Optimization decisions made based on the entire program
3 sub-levels to control aggressiveness
Requires OPT(2) or higher
PDF sub-option

Profile Directed Feedback

Sample program execution to help direct optimization s HARE @

Complete your session evaluations online at www.SHARE.org/Orlando-Eval 0 l d 2015
Requires a training run with representative data in Orlando

IPA Option [C/C++] (cont’d) s

nnnnnnnnnnnnnnnnnnnnnnnn

IPA compile

IPA(LINK)

executable

SHARE©O

Complete your session evaluations online at www.SHARE.org/Orlando-Eval . @
in Orlando 201563

IPA PDF Sub-Option [C/C++] s

PDF1;
file.c -] file.o executable
> with
> Instrumentation
IPA compile PDF1 IPA link PDF1 i
Training run:
executable
typlcal IanIt > Wlth profiling information
instrumentation

PDF2:

file.o PDF optimized

executable

(w/o instrumentation)

e or SHARE 9

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

ANSIALIAS Option [C/C++]

eeeeeeeeeeeeeeeeeeeeee

Optimizer presumes pointers can point only to objects of the same
type

The simplified rule is that you cannot safely dereference a pointer
that has been cast to a type that is not closely related to the type of
what it points at

The ISO C and C++ standards define the closely related types
If this assumption is false, wrong code could be generated

The INFO(ALS) option might able to help you find potential violation
of the ANSI type-based aliasing rule

OPT(3) defaults to ANSIALIAS

SHARE Og

om @PF{P) slefautts 18 NOANSIKEPAS in Orlando 2015 Q

IGNERRNO Option [C/C++] =

llllllllllllllllllllllll

Informs the compiler that the program is not using errno
Allows the compiler more freedom to explore optimization

opportunities for certain library functions
For example: sqrt

Need to include the system header files to get the full
benefit

OPT(3) defaults to IGNERRNO
NOOPT and OPT(2) defaults are NOIGNERRNO

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

LIBANSI Options [C/C++] N

|||||||||||||||||||||||||||

Indicates the name of an ANSI C library function are in
fact ANSI C library functions and behave as described in

the ANSI standard
The optimizer can generate better code based on existing

behavior of a given function
E.g. whether or not a particular library function has any side
effects
Provides additional benefits when used in conjunction
with IGNERRNO

Defaults is NOLIBANSI
SHARE O

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

NOTHREADED Option [C/C++]

eeeeeeeeeeeeeeeeeeeeeeee

For user to assert their application is single-threaded
Allows for non-thread-safe transformations be performed

Defaults is THREADED

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

NOSTRICT Option [C/C++] =

llllllllllllllllllllllll

Allows the optimizer to alter the semantics of a program

Performing code motion and scheduling on computations
such as loads and floating-point computations that may
trigger an exception

Relax conformance to IEEE rules
Reassociating floating-point expressions

OPT(3) defaults is NOSTRICT
NOOPT and OPT(2) defaults are STRICT

SHAREO
in Orlando 2015

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

NOSTRICT INDUCTION Option [C/C++] s g

llllllllllllllllllllllll

Asserts to the compiler the induction (loop counter)
variables do not overflow or wrap-around

Use STRICT _INDUCTION only if your program logic has
such intent

Only affects loops which have an induction variable
declared with a different size than a register

Default is NOSTRICT _INDUCTION
Except with the c99 invocation command on USS

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

XPLINK Option [C/C++] "3

|||||||||||||||||||||||||||

XPLINK stands for eXtra Performance LINKage

A modern linkage convention that is 2.5 times more efficient
than the conventional linkage conventions

We have seen some programs improved by 30%

XPLINK and non-XPLINK parts can work across DLL and
fectch() boundaries

Must tell compiler about this, so the (expensive)
switching code get executed

If your application contains few switches, then mixing will
still be beneficial

Defaults:

ILP32: NOXPLINK
LP64: XPLINK

SHAREO
in Orlando 2015

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

REDUCE and RESEXP Options [PL/I] N

cccccccccccccccccccccccc

REDUCE option

Specifies that the compiler is permitted to reduce an
assignment of a null string to a structure into a simpler
operation

Even if that means padding bytes might be overwritten
or zerored out

RESEXP option

Specifies that the compiler is permitted to evaluate all
restricted expressions at compile time even if this would
cause a condition to be raised and the compilation to end
with S-level messages

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

RULES(NOLAXCTL) Option [PL/I] I

Specifies that the compiler disallows a CONTROLLED
variable to be declared with a constant extent and yet to
be allocated with a differing extent

To allocate a CONTROLLED variable with a variable
extent, that extents must be declared either with an
asterisk or with a non-constant expression.

When the compiler sees a reference to a structure, or to
any member of that structure, it knows the lengths,
dimensions or offsets of the fields In it

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

CONNECTED REORDER NOOVERLAP

CONNECTED sub-option

Compiler presumes application never passes nonconnected
parameters

REORDER sub-option

Indicates that the ORDER option is not applied to every
block, meaning the compiler doesn’t have to insure that
variables referenced in ON-units (or blocks dynamically
descendant from ON-units) have their latest values

NOOVERLAP sub-option

Compiler presumes the source and target in an assignment
do not overlap

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

COMPACT Option [C/C++] =

ccccccccccccccccccccccccc

Compiler favors optimizations that tend to limit the growth
of the code

Depending on your specific program, the object size may
Increase or decrease and the execution time may
Increase or decrease

Default is NOCOMPACT

PL/I effectively always has NOCOMPACT on

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

DEFAULT(INLINE) Option [PL/I]

Inlining eliminates the overhead of the function call and
linkage, and also exposes the function's code to the
optimizer

Too much inlining can increase the size of the program

AUTO sub-option [C/C++]
Inliner runs in automatic mode
Threshold sub-option
Maximum relative size of a subprogram to inline

LIMIT sub-option
Maximum relative size a subprogram can grow before

auto-inlining stops SHARE©O

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

UNROLL Option Y

ccccccccccccccccccccccccc

Instructs the compiler to perform loop unrolling

It replicates a loop body multiple times, and adjusts the
loop control code accordingly

It increases code size in the new loop body

Auto sub-option
Compiler decides via heuristics the appropriate candidate

and amount of unrolling

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

Make Use Of Built-in Functions Y

ccccccccccccccccccccccccc

Library function example:

Less efficient comparison on a loop
int i, a[1000], b[1000];

for (i = 0; i < 1000; ++i) if (a[i] '= b[i])
break;
if (i == 1000)
/* arrays are equal */

More efficient comparison with a memcmp() library function
int a[1000], b[1000];

if ('memcmp (a, b, sizeof(a)))
/* arrays are equal */

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €&

Make Use Of Built-in Functions (cont’d)

Hardware built-in function example
A naive implementation of population count

unsigned long popcount (unsigned long op) {

unsigned long count = 0;
unsigned long bit = 1;
for (int i = 0; i < 64; i++) {

if (op & bit)

count++;

bit = bit << 1;

}

return count;

}
with popcnt() hardware built-in
function

unsigned long popcnt (unsigned long op)

Available from ARCH(9)

ccccccccccccccccccccccccc

A single POPCNT instruction s HAR E @

Complete your session e@paigs REORP@NIEE ferfetion in PL/I in Orlando 2015 3

Make Use Of #pragmas [C/C++] g

cccccccccccccccccccccccc

Provides more details about your code to help the optimizer

#pragma execution_frequency (C++only)

Marks program source code that you expect will be either very
frequently or very infrequently executed

#pragma isolated_call

Lists functions that have no side effects (that do not modify global
storage)

For fine-grained control
#pragma inline
Hint to the compiler to inline this frequently used function
#pragma noinline
Prevents a function from being inlined

#pragma unroll
Informs the compiler how to perform loop unrolling on the

loop body that immediately follows it
SHARE Og

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 €

Make Use of Attributes & Keywords [C/C++] &

cccccccccccccccccccccccc

Provides more details about your code to help the optimizer
restrict keyword

Use with ASSERT(RESTRICT) to indicate disjointed pointers
Defaults is ASSERT(RESTRICT)

Two restrict qualified pointers, declared in the same scope, designate
distinct objects and thus shouldn'’t alias each other

RESTRICT option (C only) can also be used to indicates to the
compiler that pointer parameters in all functions or in specified
functions are disjoint

Defaults is NORESTRICT
For fine-grained control
iInline keyword
Hint to the compiler to inline this frequently used function

always _inline function attribute
Instructs the compiler to inline a function

SHARE Og
in Orlando 2015 g

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

Make Use of Attributes & Keywords [PL/I] s 3

ccccccccccccccccccccccccc

Use RETURNS(BYVALUE) for items that can be returned in
registers (such as FIXED BIN and FLOAT)

Use the BYVALUE attribute on parameters that are input-only and
which can be passed in registers

Use the INONLY, OUTONLY, and NONASSIGNABLE attributes on
parameters and in ENTRY declares

Routines with OPTIONS(LINKAGE(OPTLINK)) will outperform those
with OPTIONS(LINKAGE(SYSTEM))

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015 &

Make Use of Attributes & Keywords [PL/I] s 3

ccccccccccccccccccccccccc

You should always fully prototype all ENTRY declarations

Specify BYADDR/BYVALUE and (NON)ASGN for each parameter
And specify (NON)CONNECTED for each array parameter

Also specify BYADDR/BYVALUE for the RETURNS

Also include an OPTIONS attribute and specify therein the LINKAGE as
well as NODESCRIPTOR options (as appropriate)

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Qrlando 2015

OpenMP API 3.1 [C/C++] -

|||||||||||||||||||||||||||

Industry-standard API designed to create portable C/C++
applications to exploit shared-memory parallelism

Users can create or migrate parallel applications to take
advantage of the multi-core design of modern processors

Consists of a collection of compiler directives and library
routines
New SMP option to allow OpenMP parallelization
directives to be recognized

Only supported in 64-bit

Executable must be run under USS

Thread-safe version of standard library must be used inside
the parallel regions

Not supported with Metal C

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
. in Orlando 2015 &

Declare your variables

eeeeeeeeeeeeeeeeeeeeeeee

A common sign in Texas:

— Trespassers will be prosecuted or shot

Those who don’t declare their variables deserve the same
fate

Use the RULES(NOLAXDCL) compiler option to enforce
this in PL/I

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Qrlando 2015 &

Declare your variables with good names s 3
Generally, you should not name a variable after its type,
l.e. do not code the following
DCL BASED FB15 FIXED BIN(15) BASED; DCL
1 ELEMENT_ REC BASED,

2 NEXT_PTR PTR,

2 PREV_PTR PTR,

2 DATA,
Because this name becomes meaningless if PTR becomes
OFFSET

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Qrlando 2015

Declare your variables with attributes o

ccccccccccccccccccccccccc

Simply declaring the name is not good
l.e. don’'t code: DCL RC;

Because then RC is FLOAT DEC(6) when FIXED BIN(31)
was probably what was wanted.

The compiler will issue warning message IBM1215 for such
declares — or message IBM1216 if part of a structure

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval "
in Orlando 2015 &

Declare your variables with attributes N

ccccccccccccccccccccccccc

A common way this error occurs is in code such as

DCL RC1, RC2 FIXED BIN(31) INIT(O);

Enterprise PL/L issues message IBM1215 saying that RC1 is
declared without any attributes

And like the old compiler, Enterprise PL/I will give RC1 the
attributes FLOAT DEC(6) — not FIXED BIN

The declare above is not the same as

DCL (RC1, RC2) FIXED BIN(31) INIT(0);

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
inQrlando 2015 €

Declare your variables with attributes o

eeeeeeeeeeeeeeeeeeeeeeee

Some customer code contained this code

DCL
PARDIASE CHAR(20),
1 INDIASE1l BASED (PTPDIASE),
2 C1CODIA CHAR(L),

2 CIFECDI DEC FIXED(9),
2 C1DIADI CHAR(9),

2 ClABRDI CHAR(3),

2 ClRESDI;

Here the compiler issues the message IBM1216 saying that
C1RESDI is declared without any attributes

Again, C1RESDI will get the attributes FLOAT DEC(6)

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval "
in Orlando 2015 &
O

Declare your variables with attributes 9

ccccccccccccccccccccccccc

However, this means the structure needs 22 bytes

DCL

PARDIASE CHAR(20),

1 INDIASE1l BASED (PTPDIASE),
2 CICODIA CHAR(1),
2 CIFECDI DEC FIXED(9),
2 CIDIADI CHAR(9),
2 C1ABRDI CHAR(3),
2 C1lRESDI;

And then this later bit of code overwrites 2 bytes of storage

PTPDIASE = ADDR(PARDIASE); INDIASELl = ;

This leads to a protection exception in some circumstances, and
remember, this is a user error, not a compiler error

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Qrlando 2015 &

Declare your variables with sensible attributes B

ccccccccccccccccccccccccc

You will get warning message IBM1091 with text

FIXED BIN precision less than storage allows

If you declare (or use in a built-in)

SIGNED FIXED BIN with precision other than 7, 15, 31 or
63

UNSIGNED with precision other than 8, 16, 32 or 64

Most users would think this couldn’t possibly be an issue

for them
SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Qrlando 2015

Declare your variables with sensible attributes -3

But this banking code copies an array to a new array twice as

large
40.1 UBSEMB:PROC(ACCOUNT_TABLE) REORDER;
42.1 DCL 1 ACCOUNT_TABLE(*) CONTROLLED,
43.1 2 CUSTOMER_NAME CHAR(120),
44 .1 2 ACCT_INSTR_NUMBER CHAR(17),
45.1 2 ACCT_INSTR_CODE CHAR(8),
jg-% 2 ORIGINAL_BLNCE_AMT CHAR(9),
48°1 2 DATE_OF_LAST_TXN,
49.1 3 YEAR CHAR(4),
0 1 3 MONTH CHAR(2),
. 3 DAY CHAR(2);
55.1 DCL NEW_SIZE FIXED BIN(5) INIT(0);
56.1 DCL OLD_SIZE FIXED BIN(5) INIT(O0);
57.1 DCL RECORD_NO FIXED BIN(5) INIT(1);
58.1 DCL 1 TEMP_TABLE(*) CONTROLLED,
59.1 2 CUSTOMER_NAME CHAR(120),
60.1 2 ACCT_INSTR_NUMBER CHAR(17),

_IN R_DE

Compleéiyiur session evalléatlons online t SHARE.or%/I_(I)AEEgS-’Eval

SHARE Og
in Orlando 2015 59

Declare your variables with sensible attributes B

ccccccccccccccccccccccccc

Via this small bit of code

68.1 NEW_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1) * 2
69.1 ALLOCATE TEMP TABLE(NEW SIZE);

70.1 TEMP, TABLE() = ;

/1.1 OLD_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1):
72.1 RECORD_NO = 1 TO OLD_SIZE;

;Z:% TEMP_TABLE (RECORD_NO) = ACCOUNT_TABLE(RECORD_NO) ;
75.1 END;

76.1 FREE ACCOUNT_TABLE;

771 ALLOCATE ACCOUNT_TABLE(NEW_SIZE):; ACCOUNT_TABLE =
781 TEMP_TABLE;

79.1 FREE TEMP_TABLE;

END; /*UBSEMB*/

And it abends

Only because the customer ignored message IBM1091 flagging
that a variable was declared as FIXED BIN(5) (when 15 was
almost certainly intended)

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

Declare your variables with sensible attributes -3

40.

42.
43.
44,
45.
46.
47.
48.
49.
50.

55.
56.

57.

58.

59.

60.

ol.

RPRRRRRERRR R

=

1

1

UBSEMB : PROC(ACCOUNT_TABLE) REORDER;

DCL 1 ACCOUNT_TABLE(*) CONTROLLED,
2 CUSTOMER_NAME CHAR(120),

2 ACCT_INSTR_NUMBER CHAR(17),
2 ACCT_INSTR_CODE CHAR(8),

2 ORIGINAL_BLNCE_AMT CHAR(9),
2 DATE_OF_LAST_TXN,

3 YEAR CHAR(4),

3MONTH CHAR(2),

3pAY CHAR(2);
DCL NEW_SIZE FIXED BIN(5) INIT(O)
DCL OLD_SIZE FIXED BIN(5) INIT(0);
DCL RECORD_NO FIXED BIN(5) INIT(1);
DCL 1 TEMP_TABLE(*) CONTROLLED,

2 CUSTOMER_NAME CHAR(120),

2 ACCT_INSTR_NUMBER CHAR(17),

2 ACCT_INSTR_CODE CHAR(8),

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

62.

1

2 ORIGINAL_BLNCE_AMT CHAR(9),

SHARE Og
in Orlando 2015 3

Describe your interfaces -9

ccccccccccccccccccccccccc

This starts with how you declare external routines

Do not declare them without a parameter list as in

DCL A EXT ENTRY;

This lets you pass any number of arguments of any type to this
routine without the compiler being able to check your code

The compiler would quietly accept all of these

CALL A;
CALL A(TIMESTAMP):
CALL A(2,333J):;

SHAREO

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

Describe your interfaces

eeeeeeeeeeeeeeeeeeeeeeee

Be accurate — if the routine has no parameters, say So
DCL A EXT ENTRY();
Or if the routine should receive one string, declare it as
DCL A EXT ENTRY(CHAR(*));
Now the compiler can flag bad calls of this routine
And if a string parameter must have a certain length, say that:

DCL A EXT ENTRY(CHAR(17));

But then you need to be especially on watch for messages about “dummy” arguments

SHARE 9¢

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

Recap Y

cccccccccccccccccccccccc

Let the compiler work for you by telling it
The hardware to exploit
The importance of compile-time vs. execution performance
More precise details about the source code
Sensitiveness of module size

Work together with the compiler
Writing good code
Make use of BIFs and #pragmas
Exploit the language features
Tell the compiler what you know

SHAREO
in Orlando 2015

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

Additional Reading Materials s 3
z/OS C/C++ Programming Guide
Part 5. Performance optimization
Enterprise PL/I for z/OS Programming Guide
Chapter 13. Improving performance
SHARE Og

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm
http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

Quick Survey

eeeeeeeeeeeeeeeeeeeeeeee

Users of:
PL/I
o C/C++
NOOPTIMIZE/OPTIMIZE(O), OPTIMIZE(2), OPTIMIZE(3)
ARCH(7), ARCH(8), ARCH(9), ARCH(10)
C/C++ only:
TUNE
LP64
PDF

SHARE Og

Complete your sessi-Fions online at www.SHARE.org/Orlando-Eval
in Orlando 2015

Questions?

eeeeeeeeeeeeeeeeeeeeeeee

Connect with us
Email me at visdav
Rational Café - the compilers user community & forum
C/C++:
PL/I:

RFE community — for feature requests
o C/C++:

PL/I:

Product Information
C/C++:
PL/I:

Thank You! SHARE©

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
in Orlando 2015

mailto:dickson.chau@ca.ibm.com
mailto:dickson.chau@ca.ibm.com
http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/pli
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www-03.ibm.com/software/products/us/en/czos
http://www-03.ibm.com/software/products/en/plicompfami

