
Make Your PL/I and C/C++ Code Fly 

With the Right Compiler Options

Visda Vokhshoori

visdav@ca.ibm.com

Insert

Custom

Session

QR if 

Desired



2

• does good application performance mean to you?

• Fast Execution Time

• Short Compile Time

Can you please take this poll:  http://p2.gg/itp

WHAT …



3

• to achieve good application performance:

• Install New Hardware

• Utilize Compiler Options

• Code for Performance

HOW …



4

• Can make your code run faster

• Requires NO

• Recompilation

• Relinking

• Migration to new release

• BUT, are you taking full advantage of all the new features 

from the new hardware?

• i.e. the full ROI on the new piece of hardware

Install New Hardware



5

Utilize Compiler Options

• Allows the compiler to exploit the hardware:

• ARCH

• HGPR

• FLOAT(AFP)

• Balance between compile-time vs. execution-time:

• OPT(2)

• OPT(3)

• HOT [C/C++]

• IPA [C/C++]

• PDF



6

Utilize Compiler Options (cont’d)

• Provide the details about the source or environment:

• • C/C++:

• ANSIALIAS

• IGNERRNO

• LIBANSI

• NOTHREADED

• NOSTRICT

• STRICT_INDUCTION

• XPLINK

• PL/I:

• REDUCE

• RESEXP



7

Utilize Compiler Options (cont’d)

• Controls load module size:

• COMPACT [C/C++]

• INLINE [C/C++]

• DEFAULT(INLINE) [PL/I]

• UNROLL



8

Code for Performance

• Writing good code

• Make use of built-in functions

• Make use of #pragmas [C/C++]

• Make use of attributes and keywords

• OpenMP [C/C++]



9

• Keep it simple and concise

• Good for both the programmer and the compiler to 

understand the code easily

• Don’t ignore the compiler informational and warning

messages, even if the program appears to work

• Attempts to be clever and produce “optimal” code might 

produce:

• Code that is unreadable

• Code that cannot be maintained

• Code that performs worse than the straightforward solutions

• Code that fails

Code for performance



10

• The ARCH option specifies the level of the hardware on 

which the generated code must run

• C/C++ default is ARCH(8) for V2R2 and up

• That's code customized for z10 EC and z10 BC

• PL/I default is ARCH(7) for 4.5 and up

• produces code that will run on z9 (or later) machines

• LE 2.1 requires z9 (or later) machines

• However: you must set ARCH to the lowest level 

machine where your generated code will run

• If you specify ARCH(n) and run the generated code on an

ARCH(n-1) machine, you will most likely get an operation

exception

ARCHitecture Option



11

ARCHitecture - Timeline

0

1

2

3

4

5
6

7

8

10

G1:

G2, G3, G4:

Support for 

branch 

relative

Support for string 

operation h/w 

instruction

all models

G5, G6:

12-Additional

Floating Point 

registers

Support for 

IEEE Floating 

Point

z900, z800 –

ESA/390 mode:

Support for 

32-bit add/

subtract with 

carry/borrow

z990, z890:

Long displacement,

Load Byte …

z900, z800 –

z/Architecture:

LP64 support

z9:

Extended immediate,

Extended translation,

Decimal Floating point

z10:

Compare and Branch, 

Prefetch, Add Logical with 

Signed Immediate

ARCH(9) z196, z114:

Load/store on condition, 

Non-destructive ops, High-

word

ARCH(10): 

zEC12, zBC12:

DFP-Zoned Conversions, 

Transaction Execution

z/Architecture

9

Out-Of Order 

(OOO) pipeline

1

1

ARCH(11): 

zEC13:

Vector instructions

DFP-Packed Conversions



12

ARCH(9): Load/store on condition

12

consider this small program:

2.0 |  test: proc returns( fixed bin(31) );

3.0 |
exec sql include sqlca;

dcl c fixed bin(31);

exec sql commit;

if sqlcode = 0 then

c = 0;

else

c = -1;

4.0 |

5.0 |

6.0 |

7.0 |

8.0 |

9.0 |

10.0 |

11.0 |

12.0 |

13.0 |

14.0 |

15.0 | return( c );

16.0 | end;



ARCH(9): Load/store on condition
• Under OPT(3) ARCH(8), the instructions after the call are:

13



ARCH(9): Load/store on condition
• under OPT(3) ARCH(9), the instructions after the call are:

14



15

ARCH(9): Load/store on condition

15

• So, under ARCH(8), the code sequence was:
– Load SQLCODE into r0

– Load -1 into r1

– Compare r0 (SQLCODE) with 0 and branch if NE to @1L8

– Load 0 into r1

– @1L8

– Store r1 into the return value

• While under ARCH(9), the code sequence has no label and no branch:
– Load -1 into r1

– Load SQLCODE into r0 via ICM (so that CC is set)

– Load 0 into r0

– Load-on-condition r1 with r0 if the CC is zero (i.e. if SQLCODE = 0)

– Store r1 into the return value



16

ARCH(10): DFP Zoned Conversion Facility

16

• This code converts a PICTURE array to FIXED BIN

pic2int: proc( ein, aus ) options(nodescriptor);

dcl ein(0:100_000) pic'(9)9' connected;

dcl aus(0:hbound(ein)) fixed bin(31) connected; 

dcl jx fixed bin(31);

do jx = lbound(ein) to hbound(ein); aus(jx) = 

ein(jx);

end; end;



17

ARCH(10): DFP Zoned Conversion Facility

17

• Under ARCH(9), the heart of the loop consists of these 8 instructions

0058 F248 D098 1000 PACK #pd580_1(5,r13,152),_shadow2(9,r1,0)

005E C020 0000 0021 LARL r2,F'33'

0064 D204 D0A0 D098 MVC #pd581_1(5,r13,160),#pd580_1(r13,152)

006A 4110 1009 LA r1,#AMNESIA(,r1,9)

006E D100 D0A4 200C MVN #pd581_1(1,r13,164),+CONSTANT_AREA(r2,12)

0074 F874 D0A8 D0A0 ZAP #pd582_1(8,r13,168),#pd581_1(5,r13,160)

007A 4F20 D0A8 CVB r2,#pd582_1(,r13,168)

007E 502E F000 ST r2,_shadow1(r14,r15,0)



18

ARCH(10): DFP Zoned Conversion Facility

18

• While under ARCH(10), it consists of 9 instructions and uses DFP in 

several of them – but since only the ST and the new CDZT refer to 

storage, the loop runs more than 66% faster

0060 EB2F 0003 00DF SLLK r2,r15,3

0066 B9FA 202F ALRK r2,r15,r2

006A A7FA 0001 AHI r15,H'1'

006E B9FA 2023 ALRK r2,r3,r2

0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR f0,f0,r0

0080 B941 9020 CFDTR r2,b'1001',f0



19

ARCH(11): Vector Instruction Facility

20

• With ARCH(11), the vector instruction facility is used to inline it as

E700 E000 0006 VL v0,+CONSTANT_AREA(,r14,0)
E740 E010 0006 VL v4,+CONSTANT_AREA(,r14,16)

@1L2 DS 0H

A74E 0010 CHI r4,H'16'

4150 0010 LA r5,16

B9F2 4054 LOCRL r5,r4

B9FA F0E2 ALRK r14,r2,r15

E725 E000 0037 VLL v2,r5,_shadow1(r14,0)

E722 0180 408A VSTRC v2,v2,v0,v4,b'0001',b'1000'

E7E2 0001 2021 VLGV r14,v2,1,2

EC5E 000D 2076 CRJH r5,r14,@1L3

A74A FFF0 AHI r4,H'-16'



20

ARCH(11): Vector Instruction Facility

19

foo (double * restrict p,
double * restrict q,
double * restrict r,
int n) {

for (int i=0; i<n; i++) {
p[i]=p[i]+q[i]*r[i];

}
return 0;
}

xlC -c report.C -qlist=./ -qHOT -qARCH=11 -qVECTOR -qphaseid  -qfloat=ieee



21

ARCH(11): Vector Instruction Facility

19

000160                    000005 |        @1L41    DS       0H

000006 |       *      p[i]=p[i]+q[i]*r[i];

000160  E70E  3000  0006  000006 |                 VL       v0,@V.(r{double})0(r14,r3,0)

000166  E72E  2000  0006  000006 |                 VL       v2,@V.(q{double})1(r14,r2,0)

15650ZOS V2.2 z/OS XL C++                                           report.C: foo(_bfp 

doub...)   08/10/15 10:40:42            4

OFFSET OBJECT CODE        LINE#  FILE#    P S E U D O   A S S E M B L Y   L I S T I N G

00016C  E74E  1000  0006  000006 |                 VL       v4,@V.(p{double})2(r14,r1,0)

000172  E702  0000  30E7  000006 |                 VFM      v0,v2,v0,b'0011',b'0000'

000178  E704  0000  30E3  000006 |                 VFA      v0,v4,v0,b'0011',b'0000'

00017E  E70E  1000  000E  000006 |                 VST      v0,@V.(p{double})2(r14,r1,0)

000184  41E0  E010        000000 |                 LA       r14,#AMNESIA(,r14,16)

000188  A746  FFEC        000005 |                 BRCT     r4,@1L41



22

• The wonderful feature of the ARCH option is that no code 

changes are required by you

• In all of the above examples, the compiler

• figured out where it could exploit the option

• and then did all the work

ARCHitecture Option



23

• Stands for High half of 64-bit General Purpose Register

• Permitted to exploit 64-bit GPRs in 32-bit programs

• Compiler can now make use of

• The 64-bit version of the z/Architecture instructions

• Improves run-time performance for source programs 

that utilize 64-bit types in 32-bit amode, e.g. long 

long 

• PRESERVE sub-option

• Save/re-store in prolog/epilog the high halves of used GPRs

• Only necessary if the caller is not known to be compiler-

generated code

• Default is NOHGPR(NOPRESERVE)

• Metal C defaults to HGPR(PRESERVE)

HGPR Option



24

• Additional Floating-Point (AFP) registers were added to 

ESA/390 models

• AFP sub-option enable use of the full set (16) of FPRs

• VOLATILE sub-option

• FPR8 – FPR15 is considered volatile

• i.e. compiler will not expect they’re preserved by any called 

program

• No longer required for CICS TS V4.1 or newer

• Default is AFP(NOVOLATILE)

FLOAT(AFP) Option



25

• The OPT option controls how much, or even if at all, the 

compiler tries to optimize your code

• A trade-off between compile-time vs. execution-time

• NOOPT/OPT(0):

• The compiler simply translates your code into machine code

• Generated code could be large and slow

• Good choice for:

• Matching code generated with written source code

• for the purpose of debugging a problem

• Reducing compile time

• Terrible choice if you care about run-time performance

OPTIMIZE Option



26

• When optimizing, the compiler will improve, often vastly, 

the code it generates by, for example

• Keeping intermediate values in registers

• Moving code out of loops

• Merging statements

• Reordering instructions to improve the instruction pipeline

• Inlining functions

• Require more CPU and REGION during compilation

OPTIMIZE Option (cont’d)



27

• OPT(2):

• Start enabling the optimizer

• A balance between compile speed and code quality

• OPT(3):

• Optimizer much more aggressive

• Tips balance towards code quality over compile speed

• C/C++ compiler will alter other options defaults:

• ANSIALIAS, IGNERRNO, STRICT, etc

• The C/C++ and PL/I compilers use the same optimizing 

backend

• But there are differences in what the OPT sub-options does

OPTIMIZE Option (cont’d)



28

OPTIMIZE Option (cont’d)



29

Other C/C++ Options Related to OPT

• HOT option

• High-Order loop analysis and Transformations

• More aggressive optimization on the loops

• Requires OPT(2) or higher

• IPA option

• Inter-Procedural Analysis

• Optimization decisions made based on the entire program

• 3 sub-levels to control aggressiveness

• Requires OPT(2) or higher

• PDF sub-option

• Profile Directed Feedback

• Sample program execution to help direct optimization

• Requires a training run with representative data



30

IPA Option [C/C++] (cont’d)

30

file1.c

file2.c

file3.c

file1.o

file2.o

file3.o

executable

IPA compile

IPA(LINK)

librariesxlc

xlc

xlc

xlc

binder



31

IPA PDF Sub-Option [C/C++]

PDF1:

Training run:

executable 

with

instrumentation

typical input profiling information

file1.c
file2.c

xlc
xlc

xlc

file.o
file3.o

executable 

with 

instrumentation

IPA compile PDF1

file.c file.o

IPA link PDF1

PDF2:

file.o
file3.o

PDF optimized 

executable
(w/o instrumentation)

file.o

IPA link PDF2

xlc

xlc



32

ANSIALIAS Option [C/C++]

• Optimizer presumes pointers can point only to objects of the same 

type

• The simplified rule is that you cannot safely dereference a pointer 

that has been cast to a type that is not closely related to the type of 

what it points at

• The ISO C and C++ standards define the closely related types

• If this assumption is false, wrong code could be generated

• The INFO(ALS) option might able to help you find potential violation 

of the ANSI type-based aliasing rule

• OPT(3) defaults to ANSIALIAS

• OPT(2) defaults is NOANSIALIAS

• Has no effect to NOOPT/OPT(0)



33

• Informs the compiler that the program is not using errno

• Allows the compiler more freedom to explore optimization

opportunities for certain library functions

• For example: sqrt

• Need to include the system header files to get the full 

benefit

• OPT(3) defaults to IGNERRNO

• NOOPT and OPT(2) defaults are NOIGNERRNO

IGNERRNO Option [C/C++]



34

• Indicates the name of an ANSI C library function are in 

fact ANSI C library functions and behave as described in 

the ANSI standard

• The optimizer can generate better code based on existing

behavior of a given function

• E.g. whether or not a particular library function has any side 

effects

• Provides additional benefits when used in conjunction 

with IGNERRNO

• Defaults is NOLIBANSI

LIBANSI Options [C/C++]



35

• For user to assert their application is single-threaded

• Allows for non-thread-safe transformations be performed

• Defaults is THREADED

NOTHREADED Option [C/C++]



36

• Allows the optimizer to alter the semantics of a program

• Performing code motion and scheduling on computations 

such as loads and floating-point computations that may 

trigger an exception

• Relax conformance to IEEE rules

• Reassociating floating-point expressions

• OPT(3) defaults is NOSTRICT

• NOOPT and OPT(2) defaults are STRICT

NOSTRICT Option [C/C++]



37

• Asserts to the compiler the induction (loop counter) 

variables do not overflow or wrap-around

• Use STRICT_INDUCTION only if your program logic has

such intent

• Only affects loops which have an induction variable 

declared with a different size than a register

• Default is NOSTRICT_INDUCTION

• Except with the c99 invocation command on USS

NOSTRICT_INDUCTION Option [C/C++]



38

• XPLINK stands for eXtra Performance LINKage

• A modern linkage convention that is 2.5 times more efficient 
than the conventional linkage conventions

• We have seen some programs improved by 30%

• XPLINK and non-XPLINK parts can work across DLL and 
fectch() boundaries

• Must tell compiler about this, so the (expensive) 
switching code get executed

• If your application contains few switches, then mixing will 
still be beneficial

• Defaults:

• ILP32: NOXPLINK

• LP64: XPLINK

XPLINK Option [C/C++]



39

• REDUCE option

• Specifies that the compiler is permitted to reduce an 

assignment of a null string to a structure into a simpler 

operation

• Even if that means padding bytes might be overwritten 

or zerored out

• RESEXP option

• Specifies that the compiler is permitted to evaluate all 

restricted expressions at compile time even if this would 

cause a condition to be raised and the compilation to end 

with S-level messages

REDUCE and RESEXP Options [PL/I]



40

• Specifies that the compiler disallows a CONTROLLED 

variable to be declared with a constant extent and yet to 

be allocated with a differing extent

• To allocate a CONTROLLED variable with a variable 

extent, that extents must be declared either with an 

asterisk or with a non-constant expression.

• When the compiler sees a reference to a structure, or to 

any member of that structure, it knows the lengths, 

dimensions or offsets of the fields in it

RULES(NOLAXCTL) Option [PL/I]



41

• CONNECTED sub-option

• Compiler presumes application never passes nonconnected 

parameters

• REORDER sub-option

• Indicates that the ORDER option is not applied to every

block, meaning the compiler doesn’t have to insure that

variables referenced in ON-units (or blocks dynamically

descendant from ON-units) have their latest values

• NOOVERLAP sub-option

• Compiler presumes the source and target in an assignment 

do not overlap

DEFAULT Sub-Option

CONNECTED REORDER NOOVERLAP



42

• Compiler favors optimizations that tend to limit the growth 

of the code

• Depending on your specific program, the object size may 

increase or decrease and the execution time may 

increase or decrease

• Default is NOCOMPACT

• PL/I effectively always has NOCOMPACT on

COMPACT Option [C/C++]



43

• Inlining eliminates the overhead of the function call and 

linkage, and also exposes the function's code to the 

optimizer

• Too much inlining can increase the size of the program

• AUTO sub-option [C/C++]

• Inliner runs in automatic mode

• Threshold sub-option

• Maximum relative size of a subprogram to inline

• LIMIT sub-option

• Maximum relative size a subprogram can grow before

auto-inlining stops

INLINE Option [C/C++] 

DEFAULT(INLINE) Option [PL/I]



44

• Instructs the compiler to perform loop unrolling

• It replicates a loop body multiple times, and adjusts the 

loop control code accordingly

• It increases code size in the new loop body

• Auto sub-option

• Compiler decides via heuristics the appropriate candidate

and amount of unrolling

UNROLL Option



45

• Library function example:

Make Use Of Built-in Functions

• Less efficient comparison on a loop
int i, a[1000], b[1000];

…

for (i = 0; i < 1000; ++i) if (a[i] != b[i])

break;

if (i == 1000)

/* arrays are equal */

• More efficient comparison with a memcmp() library function
int a[1000], b[1000];

…

if (!memcmp (a, b, sizeof(a)))

/* arrays are equal */



46

• Hardware built-in function example

• A naive implementation of population count
unsigned long popcount(unsigned long op) {

Make Use Of Built-in Functions (cont’d)

= 0;

1;

64; i++) {

unsigned

unsigned

for (int 

if (op

long count

long bit =

i = 0; i < 

& bit)

count++;

bit = bit << 1;

}

return count;

}

• with  popcnt() hardware built-in 

function
unsigned long   popcnt(unsigned long op)

• Available from ARCH(9)
• A single POPCNT instruction

• Or as POPCNT built-in function in PL/I



47

• Provides more details about your code to help the optimizer

• #pragma execution_frequency (C++only)

• Marks program source code that you expect will be either very 
frequently or very infrequently executed

• #pragma isolated_call

• Lists functions that have no side effects (that do not modify global 
storage)

• For fine-grained control

• #pragma inline

• Hint to the compiler to inline this frequently used function

• #pragma noinline

• Prevents a function from being inlined

• #pragma unroll
• Informs the compiler how to perform loop unrolling on the

loop body that immediately follows it

Make Use Of #pragmas [C/C++]



48

• Provides more details about your code to help the optimizer

• restrict keyword

• Use with ASSERT(RESTRICT) to indicate disjointed pointers

• Defaults is ASSERT(RESTRICT)

• Two restrict qualified pointers, declared in the same scope, designate

distinct objects and thus shouldn’t alias each other

• RESTRICT option (C only) can also be used to indicates to the
compiler that pointer parameters in all functions or in specified
functions are disjoint

• Defaults is NORESTRICT

• For fine-grained control

• inline keyword

• Hint to the compiler to inline this frequently used function

• always_inline function attribute

• Instructs the compiler to inline a function

Make Use of Attributes & Keywords [C/C++]



49

• Use RETURNS( BYVALUE ) for items that can be returned in 

registers (such as FIXED BIN and FLOAT)

• Use the BYVALUE attribute on parameters that are input-only and 

which can be passed in registers

• Use the INONLY, OUTONLY, and NONASSIGNABLE attributes on 

parameters and in ENTRY declares

• Routines with OPTIONS(LINKAGE(OPTLINK)) will outperform those 

with OPTIONS( LINKAGE(SYSTEM) )

Make Use of Attributes & Keywords [PL/I]



50

Make Use of Attributes & Keywords [PL/I]

51

• You should always fully prototype all ENTRY declarations

• Specify BYADDR/BYVALUE and (NON)ASGN for each parameter

• And specify (NON)CONNECTED for each array parameter

• Also specify BYADDR/BYVALUE for the RETURNS

• Also include an OPTIONS attribute and specify therein the LINKAGE as 

well as NODESCRIPTOR options (as appropriate)



51

• Industry-standard API designed to create portable C/C++
applications to exploit shared-memory parallelism

• Users can create or migrate parallel applications to take 
advantage of the multi-core design of modern processors

• Consists of a collection of compiler directives and library

routines

• New SMP option to allow OpenMP parallelization 
directives to be recognized

• Only supported in 64-bit

• Executable must be run under USS

• Thread-safe version of standard library must be used inside 
the parallel regions

• Not supported with Metal C

OpenMP API 3.1 [C/C++]

52



52

Declare your variables

53

• A common sign in Texas:

– Trespassers will be prosecuted or shot

 Those who don’t declare their variables deserve the same 

fate

• Use the RULES(NOLAXDCL) compiler option to enforce 

this in PL/I



53

Declare your variables with good names

54

• Generally, you should not name a variable after its type,

• i.e. do not code the following

DCL BASED_FB15 FIXED BIN(15) BASED; DCL

1 ELEMENT_REC BASED,

PTR,

PTR,

2 NEXT_PTR

2 PREV_PTR

2 DATA, ….

• Because this name becomes meaningless if PTR becomes
OFFSET



54

Declare your variables with attributes

55

• Simply declaring the name is not good

• i.e. don’t code: DCL RC;

• Because then RC is FLOAT DEC(6) when FIXED BIN(31) 

was probably what was wanted.

• The compiler will issue warning message IBM1215 for such 

declares – or message IBM1216 if part of a structure



55

Declare your variables with attributes

56

• A common way this error occurs is in code such as

– DCL RC1, RC2 FIXED BIN(31) INIT(0);

• Enterprise PL/L issues message IBM1215 saying that RC1 is 
declared without any attributes

• And like the old compiler, Enterprise PL/I will give RC1 the
attributes FLOAT DEC(6) – not FIXED BIN

• The declare above is not the same as

– DCL ( RC1, RC2 ) FIXED BIN(31) INIT(0);



56

Declare your variables with attributes

57

• Some customer code contained this code

DCL

PARDIASE CHAR(20),

1 INDIASE1 BASED (PTPDIASE),

CHAR(1),

DEC FIXED(9), 

CHAR(9),

CHAR(3),

2 C1CODIA

2 C1FECDI

2 C1DIADI

2 C1ABRDI

2 C1RESDI;

• Here the compiler issues the message IBM1216 saying that 
C1RESDI is declared without any attributes

• Again, C1RESDI will get the attributes FLOAT DEC(6)



57

Declare your variables with attributes

58

• However, this means the structure needs 22 bytes

DCL
PARDIASE CHAR(20),
1 INDIASE1 BASED (PTPDIASE),

CHAR(1),
DEC FIXED(9),
CHAR(9),
CHAR(3),

2 C1CODIA
2 C1FECDI
2 C1DIADI
2 C1ABRDI
2 C1RESDI;

• And then this later bit of code overwrites 2 bytes of storage

PTPDIASE = ADDR(PARDIASE); INDIASE1 = ‘’;

• This leads to a protection exception in some circumstances, and

remember, this is a user error, not a compiler error



58

Declare your variables with sensible attributes

59

• You will get warning message IBM1091 with text

– FIXED BIN precision less than storage allows

• If you declare (or use in a built-in)

– SIGNED FIXED BIN with precision other than 7, 15, 31 or
63

– UNSIGNED with precision other than 8, 16, 32 or 64

• Most users would think this couldn’t possibly be an issue
for them



59

Declare your variables with sensible attributes

60

• But this banking code copies an array to a new array twice as 
large

40.1 UBSEMB:PROC(ACCOUNT_TABLE) REORDER;

DCL 1 ACCOUNT_TABLE(*)
2 CUSTOMER_NAME
2 ACCT_INSTR_NUMBER
2 ACCT_INSTR_CODE

CONTROLLED, 
CHAR(120), 
CHAR(17),

CHAR(8),
2 ORIGINAL_BLNCE_AMT CHAR(9),
2 DATE_OF_LAST_TXN,

42.1
43.1
44.1
45.1
46.1
47.1
48.1
49.1
50.1

3 YEAR
3 MONTH
3 DAY

CHAR(4),
CHAR(2),
CHAR(2);

55.1 DCL NEW_SIZE FIXED BIN(5) INIT(0);

56.1 DCL OLD_SIZE FIXED BIN(5) INIT(0);

57.1 DCL RECORD_NO FIXED BIN(5) INIT(1);

58.1 DCL 1 TEMP_TABLE(*) CONTROLLED,

59.1 2 CUSTOMER_NAME CHAR(120),

60.1 2 ACCT_INSTR_NUMBER CHAR(17),

61.1 2 ACCT_INSTR_CODE CHAR(8),

62.1 2 ORIGINAL_BLNCE_AMT CHAR(9),



60

Declare your variables with sensible attributes

61

• Via this small bit of code

68.1
69.1
70.1
71.1
72.1
73.1
74.1
75.1
76.1
77.1
78.1
79.1

NEW_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1) * 2; 
ALLOCATE TEMP_TABLE(NEW_SIZE);
TEMP_TABLE(*) = '';
OLD_SIZE = HBOUND(ACCOUNT_TABLE.CUSTOMER_NAME,1); DO 
RECORD_NO = 1 TO OLD_SIZE;

TEMP_TABLE(RECORD_NO) = ACCOUNT_TABLE(RECORD_NO);
END;
FREE ACCOUNT_TABLE;
ALLOCATE ACCOUNT_TABLE(NEW_SIZE); ACCOUNT_TABLE = 
TEMP_TABLE;

FREE TEMP_TABLE;

END; /*UBSEMB*/

• And it abends

• Only because the customer ignored message IBM1091 flagging 
that a variable was declared as FIXED BIN(5) (when 15 was 
almost certainly intended)



61

Declare your variables with sensible attributes

40.1 UBSEMB:PROC(ACCOUNT_TABLE) REORDER;

DCL 1 ACCOUNT_TABLE(*) CONTROLLED, 
CHAR(120), 
CHAR(17),

CHAR(8),
ORIGINAL_BLNCE_AMT CHAR(9),

42.1
43.1
44.1
45.1
46.1
47.1
48.1
49.1
50.1

2 CUSTOMER_NAME
2 ACCT_INSTR_NUMBER
2 ACCT_INSTR_CODE
2
2
3
3
3

DATE_OF_LAST_TXN, 
YEAR
MONTH
DAY

CHAR(4),
CHAR(2),
CHAR(2);

62

55.1 DCL NEW_SIZE FIXED BIN(5) INIT(0);
56.1 DCL OLD_SIZE FIXED BIN(5) INIT(0);

57.1 DCL RECORD_NO FIXED BIN(5) INIT(1);

58.1 DCL 1 TEMP_TABLE(*) CONTROLLED,

59.1 2 CUSTOMER_NAME CHAR(120),

60.1 2 ACCT_INSTR_NUMBER CHAR(17),

61.1 2 ACCT_INSTR_CODE CHAR(8),

62.1 2 ORIGINAL_BLNCE_AMT CHAR(9),

63.1 2 DATE_OF_LAST_TXN,



62

Describe your interfaces

63

• This starts with how you declare external routines

• Do not declare them without a parameter list as in

– DCL A EXT ENTRY;

• This lets you pass any number of arguments of any type to this 
routine without the compiler being able to check your code

• The compiler would quietly accept all of these

– CALL A;

– CALL A( TIMESTAMP );

– CALL A( 2, JJJJ );



63

Describe your interfaces

64

• Be accurate – if the routine has no parameters, say so

– DCL A EXT ENTRY();

• Or if the routine should receive one string, declare it as

– DCL A EXT ENTRY( CHAR(*) );

• Now the compiler can flag bad calls of this routine

• And if a string parameter must have a certain length, say that:

– DCL A EXT ENTRY( CHAR(17)  );

• But then you need to be especially on watch for messages about “dummy” arguments



64

• Let the compiler work for you by telling it

• The hardware to exploit

• The importance of compile-time vs. execution performance

• More precise details about the source code

• Sensitiveness of module size

• Work together with the compiler

• Writing good code

• Make use of BIFs and #pragmas

• Exploit the language features

• Tell the compiler what you know

Recap



65

• z/OS C/C++ Programming Guide

• Part 5. Performance optimization

• http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zo 

s.v2r1.cbcpx01/cbc1p2399.htm

• Enterprise PL/I for z/OS Programming Guide

• Chapter 13. Improving performance

• http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf

Additional Reading Materials

http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.cbcpx01/cbc1p2399.htm
http://publibfp.boulder.ibm.com/epubs/pdf/ibm4pg03.pdf


66

Quick Survey

• Users of:

• PL/I

• • C/C++

• NOOPTIMIZE/OPTIMIZE(0), OPTIMIZE(2), OPTIMIZE(3)

• ARCH(7), ARCH(8), ARCH(9), ARCH(10)

• C/C++ only:

• TUNE

• LP64

• PDF

• HOT

• IPA



67

• Connect with us

• Email me at visdav@ca.ibm.com

• Rational Café - the compilers user community & forum

• C/C++: http://ibm.com/rational/community/cpp

• PL/I: http://ibm.com/rational/community/pli

• RFE community – for feature requests

• C/C++:

http://www.ibm.com/developerworks/rfe/?PROD_ID=700

• PL/I: http://www.ibm.com/developerworks/rfe/?PROD_ID=699

• Product Information

• C/C++: http://www-03.ibm.com/software/products/us/en/czos

• PL/I: http://www-03.ibm.com/software/products/en/plicompfami

Thank You!

Questions?

mailto:dickson.chau@ca.ibm.com
mailto:dickson.chau@ca.ibm.com
http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/pli
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
http://www.ibm.com/developerworks/rfe/?PROD_ID=699
http://www-03.ibm.com/software/products/us/en/czos
http://www-03.ibm.com/software/products/en/plicompfami

