
© 2009 IBM Corporation

Introduction to Assembler Programming
Sessions 17690, 17691

IBM HLASM – SHARE – Orlando 2015

© 2015 IBM Corporation

Richard Cebula (riccebu@uk.ibm.com) IBM HLASM

mailto:riccebu@uk.ibm.com

2 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Who am I?

■ Richard Cebula – HLASM, IBM Hursley, UK

■ riccebu@uk.ibm.com

■ Develop and support the following products:
– HLASM
– SuperC
– XREF
– IDF
– DISASM
– Structured Programming Macros

mailto:riccebu@uk.ibm.com

3 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Audience

■ This course aims to provide the grounding knowledge for programming in assembler

■ The audience should have a basic understanding of computers

■ The audience should be new to the world of z Systems Assembler programming

■ At the end of this course the attendee should be able to:
– Understand the basics of assembler programming on z Systems
– Understand a variety of simple machine instructions
– Understand how to Assemble, Bind and run simple assembler programs

4 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming

■ Why program in assembler?

■ Computer Organisation – Overview of z/Architecture

■ Assemblers, Compilers, Binders – Building programs on z Systems

■ Working with the High Level Assembler (HLASM)
– Using HLASM to assemble your program
– Syntax
– Machine vs Assembler instructions

■ Programming in Assembler
– Moving data around

● Loading, storing and moving data
– Manipulating Data

● Logical operations
● Arithmetic

– Making Decisions
● Comparing
● Branching

5 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming

■ Programming in Assembler
– Forming High Level Language constructs

● If...then...else
● Looping

– Addressing Data and some of its subtleties
– Basics of Calling Conventions
– Reading Principles of Operation

■ Reading the HLASM listing

■ The PSW and an introduction to Debugging Assembler Programs

6 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler?

7 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler?

■ Assembler programming has been around since the very start of computer languages as an
easy way to understand and work directly with machine code

■ Assembler programming can produce the most efficient code possible
– Memory is cheap
– Chips are fast
– So what?

■ Assembler programming TRUSTS the programmer
– Humans are smart (?)
– Compilers are dumb (?)

■ Assembler programming requires some skill
– No more than learning the complex syntax of any high-level language, APIs (that

change every few years), latest programming trends and fashions
– Your favorite language will too become old, bloated and obsolete!

8 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler?

■ Misconceptions of assembler programming
– I need a beard right?
– It's too hard...
– Any modern compiler can produce code that's just as efficient now days...
– I can do that quicker using...
– But assembler isn't portable...

9 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler?

■ Misconceptions of assembler programming
– I need a beard right?

● Assembler programmers tend to be older and more experienced and typically
wiser

● Experienced programmers that have used assembler know that they can rely on
it for the most complex of programming tasks

– It's too hard...
● Learning assembler is just like learning any other language
● Each instruction to learn is as easy as the next
● Syntax is consistent
● No difficult APIs to get to grips with

– Any modern compiler can produce code that's just as efficient now days...
● Compilers CAN produce efficient code but that is not to say that they WILL
● Optimization in compilers is a double-edged sword – compilers make mistakes

– I can do that quicker using...
● Good for you, so can I...

– But assembler isn't portable...
● Neither is Java, nor C, nor C++... portability depends on your definition of it

10 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler?

■ The assembler mindset
– You are not writing code – you are programming the machine
– You must be precise
– Your assembler program is no better than your programming

■ Assembler programming provides the programmer with TOTAL freedom
– What you choose to do with that freedom is your choice and your responsibility

■ WYWIWYG – What you write is what you get – even if you think you wrote something else...

11 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why program in assembler? - I thought this was the 21st century...

■ Well there are a number of good reasons to program in assembler still:
– Precise machine control – trust me...your compiler doesn't do what you think it

does...
– Precise definition of data – we have more data types than other languages
– Self-writing code – the world's best macro facility
– When someone's program goes wrong – finding the cause of the problem is much

easier in assembler
– Assembler is high-tech – no need to wait for compilers to catch up to what your chip

can do

12 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation

13 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation

■ The main parts of a computer when discussing programming are:
– Processor – z Systems is a multiprocessor computer
– Storage – (don't call it RAM on an EC12 and later it's RAIM!!)
– Disks (more often referred to as DASD in z Systems)

■ Programs are stored on disk since disks are non-volatile media, i.e. they do not loose their
contents when the computer is not running

■ A program is fetched from disk and placed into storage from where it can be executed by the
processor

■ The processor is the brain of the computer and is responsible for actually executing
programs

■ Operations inside a computer such as loading programs from disk are performed by a piece
of software called an Operating System (OS)

■ z Systems have 5 operating systems available z/OS, z/VM, z/VSE, z/TPF and z/Linux

14 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation

DASD
(Disk)

Processor

Storage

DASD
(Disk)

DASD
(Disk)

Processor

Processor

15 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation

■ The closer that data gets to the processor, the quicker it is to access the data both in terms
of type of storage used and also due to the physical distance to the processor

■ In order to improve the speed at which the program is accessed from storage, a special form
of storage called cache is built into the processor

■ Data and instructions are fetched from storage into the cache on the processor and then
accessed from there

■ Depending on how often the data requires to be accessed, how much data is to be accessed
and whether the data needs to be shared between different processors or not, depends on
which cache level the data is placed into on the processor with level 1 being the smallest
and fastest and level 4 being the slowest but largest

■ The implementation of cache is dependent on not only the processor architecture, e.g. Intel
vs z/Architecture vs ARM etc. but also the model of processor itself, e.g. EC12 cache
structure is different to z196

16 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – z13

■ Each processor in z Systems is split into a number of processor cores called PUs
(processing units)

■ Each PU (core) has its own L1 (96KB I, 128KB D) and L2 (2MB I, 2MB D) instruction and
data caches

■ Each processor chip contains up to 8 processing cores which share a 64MB L3 cache

■ PU chips and storage control (SC) chips are packaged as single chip modules (SCMs). 3
PU chips and 1 SC chip form a CPC drawer node. Each SC has a 480MB L4 cache.

■ 2 nodes are contained on a CPC drawer. Each system can have up to 4 drawers which
contain all the storage for the system.

■ All of the highly complex cache structure is transparent to the programmer
– Experienced programmers will often change their code in order to improve cache

performance

■ Depending on how the machine is configured, each processor may run a different level of
microcode which governs how it functions changing the PU into either a CP, zIIP or IFL

■ Additionally, z Systems has specialist I/O processors called System Assist Processors
(SAP) used to send signals to devices attached to the machine

17 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – z/Architecture

18 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – z/Architecture

19 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – z/Architecture

■ In order for data to be manipulated by the processor, it needs to be loaded into a register

■ A register is the fastest storage available to the processor and is located inside each
processor core

■ In z/Architecture, each processor core has:
– 16 64-bit General Purpose Registers (GPRs)
– 16 32-bit Access Registers (ARs)
– 16 64-bit Floating Point Registers (FPRs)*
– 16 64-bit Control Registers (CRs)
– 32 128-bit Vector Registers (VRs)*
– 1 Program Status Word (PSW)

■ Note that all registers are numbered 0-15 (or 0-31) in machine instructions – the instruction
itself determines which type of register is being used

■ z/Architecture – the processor architecture used for all z Systems Mainframes

■ Processor specifications vary
– Processor level – the physical (or virtual) chip used
– Architecture level – the instruction specification of a chip

■ * Vector registers 0-15 bits 0-63 are mapped over the FPRs.

20 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – z/Architecture

■ z/Architecture is a big-endian, 64-bit, rich CISC processor architecture
– Big-endian

● Data is organised such that the most significant byte of a piece of data is stored
in the lowest address of memory

– 64-bit
● The size of general purpose registers is 64-bits in length

– CISC
● Complex Instruction Set Computer
● A single instruction comprises a number of micro-instructions which are

executed by the processor
● This scheme allows for a single machine instruction to perform a number of

complex tasks

■ For historical reasons, the size of data in z/Architecture is measured as:
– 4 bits = 1 nibble
– 8 bits = 2 nibbles = 1 byte
– 16 bits = 2 bytes = a halfword
– 32 bits = 4 bytes = 2 halfwords = a word
– 64 bits = 8 bytes = 2 words = a doubleword
– 128 bits = 16 bytes = 2 doublewords = a quadword

21 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Computer Organisation – Understanding Registers

■ GPRs – used for arithmetic, logical operations, passing operands to instructions, calling
subroutines etc

■ ARs – used in “Access Register” mode – provides the ability to access another address
space

■ FPRs – used for floating point instructions, binary, decimal and hexadecimal floating-point
arithmetic

– Do not confuse decimal floating-point with packed decimal arithmetic – the latter is
performed in storage not in registers

■ VRs – used for SIMD (Single Instruction Multiple Data) operations including integer, string,
floating-point and general operations

■ CRs – used for controlling processor operations

■ PSW – provides the status of the processor consisting of 2 parts:
– PSW Flags – these show the state of the processor during instruction execution
– Instruction address – this is the address of the next instruction to be executed

■ GPRs and FPRs are sometimes operated on in pairs by certain instructions
– GPRs form even-odd pairs, i.e. (0,1), (2,3),...,(14,15)
– FPRs pair evenly / oddly, i.e. (0,2), (1,3),...,(13,15)

22 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders
Building programs on z Systems

23 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders

■ Typing in the code for a computer program will not mean that the computer can load and
then execute the program

■ The written code must be changed into binary form – this is done for the programmer by a
compiler or assembler

– Compilers are used for HLLs and often attempt to optimise the code written by the
programmer

– Assemblers are used for assembly language and do NOT optimise any code written
by the programmer – assembler is a WYWIWYG language – What You Write Is What
You Get

■ Each language will require its own compiler / assembler to process it and change it into
binary code

■ Cross compiling is where a compiler runs on one machine architecture and produces
machine code for another architecture

24 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders

■ The machine code produced by the assembler is called object code

■ It is the job of a binder (sometimes called a linker) to create a complete program which can
then be loaded by the operating system's loader into storage and then executed by the
processor

■ The binder works by ordering a set of objects and resolving any references between them
– The bound object on z/OS is called a program object (for GOFF format) or a load

module (for OBJ format)
– Program objects and load modules vary in their capability – it is recommended that

new programs use the GOFF format

■ Some references are unable to be resolved by the binder at bind time and can only be
resolved when the program is loaded into storage by the operating system's loader

– In order to do this, the binder creates a list of these references and notes their
location in the program object / load module

– Examples of such unresolvable references are various operating system services
and shared libraries

■ The terms “load module” and “program object” are used interchangeably in this presentation

25 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders – Working with HLASM

■ HLASM – IBM's High Level Assembler

■ Available on z/OS, z/VM, z/VSE, z/Linux and z/TPF

■ High Level Assembler??? - YES!
– Provides a wide range of assembler directives

● An assembler directive is not a machine instruction
● It is an instruction to the assembler during assembly of your program

– A very powerful macro programming facility
– Structured programming

26 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders – Working with HLASM

■ HLASM produces 2 primary outputs
– OBJECT DECKS – this is the object code that is used as input to binding
– Listing – this shows any errors, all diagnostics and human readable output from the

assemble phase

■ The binder produces 2 primary outputs
– LOAD MODULE – this is the bound object decks forming an executable program
– A LOAD MAP – this is the Binder equivalent of an assembler listing

■ A LOAD MODULE can be loaded into memory by the operating system and run

27 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders – Working with HLASM

HLASM

Binder

COPYBOOKS

System
Libraries PROGRAM

SOURCE

OBJECTS

LISTING

LINK MAP

28 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Assemblers, Compilers and Binders – Working with HLASM

HLASM

Binder

COPYBOOKS

System
Libraries PROGRAM

SOURCE

OBJECTS

LISTING

LINK MAP

29 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with the High Level Assembler
HLASM

30 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with the High Level Assembler HLASM

■ These slides explain about using HLASM specifically for z/OS
– The same principles apply on other platforms although HLASM is started differently,

e.g. different command lines on z/VM and z/Linux, VSE JCL for z/VSE

■ HLASM is started on z/OS via JCL and is shipped with some JCL PROCs to make using
HLASM easier

– ASMAC – Assembles a program
– ASMACG – Assembles a program and invokes the loader to bind, load and execute

the program (no load module is retained)
– ASMACL – Assembles and invokes the binder to bind the program producing a load

module
– ASMACLG – Assembles and binds the program then runs the produced load module

31 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with the High Level Assembler HLASM

■ The following JCL invokes ASMACL to assemble and bind the program into a load module:

// SET OPTLIB=&SYSUID..AOPT
// SET SRCLIB=&SYSUID..SOURCE
// SET LSTING=&SYSUID..LISTINGS
// SET LODLIB=&SYSUID..LOAD
//*
// SET PRGNM=MYPROG
//*
//ASMMSAMP EXEC ASMACL,PARM.C=(OBJ,ADATA)
//C.ASMAOPT DD DSN=&OPTLIB,DISP=SHR
//C.SYSIN DD DSN=&SRCLIB(&PRGNM),DISP=SHR
//C.SYSPRINT DD DSN=&LSTING(&PRGNM),DISP=OLD
//L.SYSLMOD DD DSN=&LODLIB(&PRGNM),DISP=SHR

32 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with the High Level Assembler HLASM

■ The ASMACL JCL PROC has two steps:
– C – Assemble the program
– L – Bind the program
– Using the notation step.ddname allows multiple DDNAMEs to be specified for the

JCL steps

■ DDNAMEs used by the Assemble step (C)
– SYSIN → specifies the program's source
– SYSLIN → specifies copybooks / macro libraries
– SYSPRINT → specifies the destination of the program's listing
– ASMAOPT → specifies a data set which contains assembly options*
– PARM → specifies some options for HLASM*

■ DDNAMEs used by the Bind step (L)
– SYSLMOD → specifies the destination of the bound load module

■ * Options may be specified in up to 6 different locations when assembling a program –
allowing for a hierarchy of options to be specified.

33 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Assembling and Binding a program

HLASM

Binder

COPYBOOKS

System
Libraries

PROGRAM

SOURCE

OBJECTS

LISTING

LINK MAP

ASMAOPT

34 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Assembling and Binding a program

HLASM

COPYBOOKSSOURCE

OBJECTS

LISTING

ASMAOPT

C.SYSIN

C.ASMAOPT C.SYSPRINT

C.SYSLIN

C.SYSLIB

35 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Examining the listing

■ The program listing produced by HLASM is an invaluable source of information for the
programmer

■ It lists in detail everything that HLASM has done when assembling a program including:
– All the options that were used when the program was assembled
– Any external references that the program produces or relies upon in the External

Symbol Dictionary (ESD)
– Each line of source code and the machine code that was produced
– Any symbols in the code that require relocation in the Relocation Dictionary (RLD)
– A summary of all lines in error in the program
– A list of all data sets used

■ The assembler uses the following return codes whenever it issues a message:
– 0 – Success / Information
– 2 – Notice – A condition which may need correcting – program appears to be correct
– 4 – Warning – Program may not work as expected
– 8 – Error – Error in program
– 12 – Severe error – Unlikely that the program assembles as expected or runs
– 16 – Critical – Unlikely that the program runs
– 20 – Unrecoverable – Unable to continue

36 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – A look at syntax

37 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – A look at syntax

Comments start with a * in column 1 or appear after free-form instruction
operands until column 72

38 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – A look at syntax

Labels start in column 1

39 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – A look at syntax

Instructions start after column 1 or a label

40 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – A look at syntax

Operands start after a space after instructions and are delimited by
commas and brackets

41 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – CSECTs and DSECTs

■ CSECT → CONTROL SECTION (HLASM directive)
– A CSECT contains machine instructions to be run on the machine

■ DSECT → DUMMY SECTION (HLASM directive)
– Used to define the structure of data

■ Both CSECT and DSECT are terminated with the end statement
MYPROG CSECT START OF CODE
 ...awesome assembler program goes here...
MYSTRUCT DSECT START OF DATA STRUCTURE
 ...awesome data structure goes here...
 END END OF PROGRAM

42 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Defining Data

■ Data is defined via the DC and DS HLASM directives

■ DC – Define Constant
– Defines data and initialises it to a given value

■ DS – Define Storage
– Defines storage for data but does not give it a value

■ e.g.
NUMBER1 DC F'12' DEFINE A FULLWORD WITH VALUE 12
NUMBER2 DC H'3' DEFINE A HALFWORD WITH VALUE 3
TOTAL DS H DEFINE A HALFWORD
MYSTR DC C'HELLO WORLD' DEFINE A SERIES OF CHARACTERS
MYHEX DC X'FFFF' DEFINE A SERIES OF HEX

 CHARACTERS

43 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Literals

■ A literal is an inline definition of data used in an instruction but the space taken for the literal
is in the nearest literal pool

■ A literal pool collects all previous literals and reserves the space for them

■ By default, HLASM produces an implicitly declared literal pool at the end of your CSECT

■ To cause HLASM to produce a literal pool, use the LTORG directive
 L 1,=F'1' LOAD REGISTER 1 WITH FULLWORD OF 1
 X 1,=H'2' XOR REGISTER 1 WITH HALFWORD OF 2
 ...more awesome assembler code here...
 LTORG , THE LITERAL POOL IS CREATED

44 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Working with HLASM – Machine VS Assembler Instructions

■ There are two distinct types of instruction accepted by HLASM – Machine instructions and
Assembler instructions

■ Machine instructions are changed into machine code by the assembler – these are the
instructions that will be used when your program is executed

■ Assembler instructions are instructions which affect the behavior of the assembler itself as it
is assembling a program

■ Some assembler instructions such as DC will cause the resultant program to contain certain
pieces of data although the majority of assembler instructions do not

■ The assembler also includes a macro language – macros are code which are used to
generate other code programmatically and therefore can shorten development time

45 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Moving Data

46 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Moving Data

■ Moving data is the most common operation that ANY computer program performs

■ Before any computations can be performed, data must be moved to the correct places
– Data is moved to the processor (from disk, memory, networks, devices etc)
– Data is manipulated by the processor
– The result is stored somewhere (back to disk, memory, networks, devices etc)

■ Data is LOADed into the processor's registers via LOAD instructions

■ Data is STOREd to memory via STORE instructions

47 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Moving Data – Loading from Register to Register

■ The LOAD REGISTER (LR) instruction is used to load the value stored in one register to
another

LR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (32-BITS)

■ The instruction copies 32-bits from a register to another

■ The instruction has a 64-bit variant LOAD GRANDE REGISTER (LGR)
LGR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (64-BITS)

■ The instruction has a 16-bit variant LOAD HALFWORD REGISTER
LHR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (16-BITS)

48 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Moving Data – Loading from Memory to Register

■ The LOAD (L) instruction is used to load the value stored in memory to a register
L 1,MY_NUM LOAD REGISTER 1 WITH THE VALUE MY_NUM (32-BITS)

■ The instruction copies 32-bits from memory to a register

■ The instruction has a 64-bit variant LOAD GRANDE (LG)
LG 1,MY_NUM LOAD REGISTER 1 WITH THE VALUE MY_NUM (64-BITS)

■ The instruction has a 16-bit variant LOAD HALFWORD
LH 1,MY_NUM LOAD MY_NUM INTO REGISTER 1 (16-BITS)

49 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Moving Data – Storing from a Register to Memory

■ The STORE (ST) instruction is used to store the value in a register to memory
ST 1,MY_NUM STORE REGISTER 1 TO MY_NUM (32-BITS)

■ The instruction copies 32-bits from a register to memory

■ The instruction has a 64-bit variant STORE GRANDE (STG)
STG 1,MY_NUM STORE REGISTER 1 TO MY_NUM (64-BITS)

■ The instruction has a 16-bit variant STORE HALFWORD
STH 1,MY_NUM STORE REGISTER 1 TO MY_NUM (16-BITS)

50 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Moving Data – Moving data without registers

■ The MOVE (MVC) instruction can be used to move data in memory without the need for a
register

MVC MY_OUTPUT,MY_INPUT MOVE MY_INPUT TO MY_OUTPUT

■ The MVC instruction can move up to 256B from one area of memory to another

■ The MVCL instruction can move up to 16M (but uses different parameters)

■ The MVCLE instruction can move up to 2G (or up to 16EB in 64-bit addressing)

■ In all cases, the move instruction moves 1 byte at a time (left to right in memory)

51 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Why no one writes assembler like this...

■ Many instructions may appear very similar but may have very different (and unintended)
consequences, e.g.:

LR 1,2 Load register 1 with the value of register 2

■ Unless you know what you're doing, don't do this:
L 1,2 Load register 1 with the value at memory offset 2

■ The very simple example above shows how confusing assembler programming can be as
there is no distinction between writing the value of a number and the value of a register in an
instruction and instead the distinction is made by which instruction was written by the
programmer.

■ Many programmers often name their registers r0-r15 to make it clearer to understand which
values are registers and which values are numbers in an instruction. To do this, the best
solution is to start a program with the statement ASMDREG which will include all the register
names for your program to use.

– From now on, this material will refer to GPRs registers as r0-r15

■ Using r0-r15 also means that type checking can be performed by HLASM and they will also
appear in the cross-reference section of the listing making it easier to find that rogue
register...

52 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Logical Operations

53 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Logical Instructions – EXCLUSIVE OR (X, XG, XR, XGR, XC)

■ The EXCLUSIVE OR instructions perform the EXCLUSIVE OR bit-wise operation
X r1,MY_NUM XOR REGISTER 1 WITH MY_NUM (32-BITS)
XG r1,MY_NUM XOR REGISTER 1 WITH MY_NUM (64-BITS)
XR r1,r2 XOR REGISTER 1 WITH REGISTER 2 (32-BITS)
XGR r1,r2 XOR REGISTER 1 WITH REGISTER 2 (64-BITS)
XC NUM1,NUM2 XOR NUM1 WITH NUM2 (UP TO 256-BYTES)

■ Notice a pattern with the instruction mnemonics?
– Rules of thumb:

● G → 64bits (DOUBLEWORD)
● H → 16bits (HALFWORD)
● R → register
● C → character (byte / memory)
● L → logical (i.e. unsigned)

54 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Logical Instructions – AND (Nx), OR (Ox)

■ The AND instructions perform the AND bit-wise operation
N r1,MY_NUM AND REGISTER 1 WITH MY_NUM (32-BITS)
NG r1,MY_NUM AND REGISTER 1 WITH MY_NUM (64-BITS)
NR r1,r2 AND REGISTER 1 WITH REGISTER 2 (32-BITS)
NGR r1,r2 AND REGISTER 1 WITH REGISTER 2 (64-BITS)
NC NUM1,NUM2 AND NUM1 WITH NUM2 (UP TO 256-BYTES)

■ The OR instructions perform the OR bit-wise operation
O r1,MY_NUM OR REGISTER 1 WITH MY_NUM (32-BITS)
OG r1,MY_NUM OR REGISTER 1 WITH MY_NUM (64-BITS)
OR r1,r2 OR REGISTER 1 WITH REGISTER 2 (32-BITS)
OGR r1,r2 OR REGISTER 1 WITH REGISTER 2 (64-BITS)
OC NUM1,NUM2 OR NUM1 WITH NUM2 (UP TO 256-BYTES)

55 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

A word on instruction choice

■ In 5 basic operations (loading, storing, AND, OR, XOR) we have already seen over 25
instructions!

■ How do I decide which instruction to use?
– The instruction should be chosen for:

● Its purpose, e.g. don't use a STORE instruction to LOAD a register – it won't
work!

● Its data, e.g. 32-bits, 16-bits, 64-bits, bytes?

■ Many instructions can perform similar operations, e.g.
XR r15,r15 XOR REGISTER 15 WITH REGISTER 15
L r15,=F'0' LOAD REGISTER 15 WITH 0
LA r15,0 LOAD REGISTER 15 WITH ADDRESS 0

■ Different instructions NEVER do the same thing even if you think they do
– The result does not justify the means

56 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Arithmetic

57 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Arithmetic

■ Arithmetic is performed in a wide variety ways on z/Architecture
– Fixed point arithmetic (including logical) ← performed in GPRs
– Packed Decimal arithmetic ← performed in memory
– Binary and Hexadecimal Floating point arithmetic ← performed in FPRs

■ Fixed point arithmetic
– Normal arithmetic, e.g. adding the contents of 2 numbers together
– Fixed point arithmetic is signed with numbers being stored in 2's complement form
– Logical fixed point arithmetic is unsigned, i.e. both numbers are positive

■ Pack Decimal arithmetic
– Performed in memory
– Numbers are in packed decimal format

58 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Arithmetic – Fixed point arithmetic operations

■ ADD instructions
AR r1,r2 ADD REGISTER 2 TO REGISTER 1 (32-BIT SIGNED)
ALR r1,r2 ADD REGISTER 2 TO REGISTER 1 (32-BIT LOGICAL)
A r1,MY_NUM ADD MY_NUM TO REGISTER 1 (32-BIT SIGNED)
AL r1,MY_NUM ADD MY_NUM TO REGISTER 1 (32-BIT LOGICAL)
AFI r1,37 ADD 37 TO REGISTER 1 (IMMEDIATE 32-BIT SIGNED)

■ Note that for immediate instructions, the operand is included in the instruction rather than
needing to be obtained from memory

■ At the end of the addition, the CC is updated (as specified in POPs)
– CC → 0 → Result is 0; no overflow
– CC → 1 → Result less than 0; no overflow
– CC → 2 → Result greater than 0; no overflow
– CC → 3 → Overflow occurred

59 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Arithmetic – Fixed point arithmetic operations

■ SUBTRACT instructions
SR r1,r2 SUBTRACT REGISTER 2 FROM REGISTER 1 (SIGNED)
SLR r1,r2 SUBTRACT REGISTER 2 FROM REGISTER 1 (LOGICAL)
S r1,MY_NUM SUBTRACT MY_NUM FROM REGISTER 1 (SIGNED)
SL r1,MY_NUM SUBTRACT MY_NUM FROM REGISTER 1 (LOGICAL)
AFI r1,-37 ADD -37 TO REGISTER 1 (IMMEDIATE 32-BIT SIGNED)

■ At the end of the subtraction, the CC is updated (as specified in POPs)
– CC → 0 → Result is 0; no overflow
– CC → 1 → Result less than 0; no overflow
– CC → 2 → Result greater than 0; no overflow
– CC → 3 → Overflow occurred

60 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Arithmetic – Fixed point arithmetic operations

■ MULTIPLY instructions
MR r2,r7 MULTIPLY REGISTER 2 BY REGISTER 7
M r2,MY_NUM MULTIPLY REGISTER 2 BY MY_NUM

■ The first operand is an even-odd pair – the result of the MULTIPLY is stored in:
– The even register (of the pair) – top 32-bits of result
– The odd register (of the pair) – bottom 32-bits of the result

■ At the end of the multiplication, the CC is UNCHANGED

61 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Arithmetic – Fixed point arithmetic operations

■ DIVIDE instructions
DR r2,r7 DIVIDE REGISTER 2 BY REGISTER 7
D r2,MY_NUM DIVIDE REGISTER 2 BY MY_NUM

■ The first operand is an even-odd pair
– The even register (of the pair) – top 32-bits of dividend
– The odd register (of the pair) – bottom 32-bits of the dividend

■ The result is stored in the first operand:
– The quotient is stored in the odd register of the pair
– The remainder in the even register of the pair

■ At the end of the division, the CC is UNCHANGED

62 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Branching

63 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching

■ Branching allows control flow in the program to move nonsequentially

■ Branches are performed via the BRANCH instructions

■ Most branch instructions are conditional – i.e. they will pass control to the branch target if a
condition is met otherwise control will continue sequentially

■ The condition on which the branch will take place is called the CONDITION CODE (CC)
– The CC is 2-bits stored in the PSW; thus the value is 0-3
– Each instruction may (or may not) set the CC

■ A branch instruction provides a branch mask
– The branch mask instructs the processor that the branch will be taken if any of the

bits in the CC match those in the branch mask

■ Fortunately, HLASM provides extended-mnemonics which provide branch masks for most
branch instructions

64 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching – Using HLASM's extended-mnemonics

■ B – Branch (unconditionally)

■ BE – Branch on condition Equal

■ BL – Branch on condition Lower than

■ BH – Branch on condition Higher than

■ BNL – Branch Not Low

■ BNH – Branch Not High

■ BZ – Branch on Zero

■ BNZ – Branch Not Zero

■ There are also other extended-mnemonics which HLASM provides

65 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching – How does a branch mask work

■ B – Branch (unconditionally)
– This is translated to the BRANCH ON CONDITION (BC) instruction with a mask of

15

■ So, 15 → b'1111' → 8+4+2+1

■ Thus the branch is taken if CC 0, 1, 2 or 3 is met, i.e. ALWAYS

Condition
Code

0 1 2 3

Mask value 8 4 2 1

66 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching – How does a branch mask work

■ BE – Branch on Equal
– This is translated to the BRANCH ON CONDITION (BC) instruction with a mask of 8

■ So, 8 → b'1000' → 8

■ Thus the branch is taken if CC 0 is met

Condition Code 0 1 2 3

Mask value 8 4 2 1

67 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching – Using a branch to form an if statement

LT r1,MY_NUM LOAD MY_NUM INTO REGISTER 1 AND SET CC
BNZ NONZERO BRANCH TO 'NONZERO' IF REGISTER 1 IS NOT ZERO
 ...code where register 1 is zero goes here...
B COMMONCODE REJOIN COMMON CODE

NONZERO DS 0H
 ...code where register 1 is non-zero goes here...

COMMONCODE DS 0H

68 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Branching – Using a branch to form an if statement

//Example C-like equivalent
if(register_1==0){

//Code for register_1 being 0 goes here
}
else{

//Code for register_1 being non-zero goes here
}

//Common code goes here

69 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Looping

70 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Looping

■ A simple loop is formed by using a counter, a comparison and a branch, e.g.
 LA r2,0 INITIALISE COUNTER REGISTER TO 0
MYLOOP AHI r2,1 INCREMENT COUNTER
 WTO 'HELLO' SAY HELLO
 CHI r2,10 IS THE COUNTER 10?
 BL MYLOOP IF IT'S LESS THAN 10, GO TO MYLOOP

■ That's simple – but there's a better way – use BRANCH ON COUNT (BCT)
 LA r2,10 INITIALISE COUNTER REGISTER TO 10
MYLOOP WTO 'HELLO'
 BCT r2,MYLOOP SUBTRACTS, COMPARES & BRANCHES

■ There are other instructions similar to BCT that subtract/add values and then branch
depending on the result, e.g. BCTR, BXH etc...

71 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Addressing Data

72 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data

■ There are 2 ways to access data for manipulation
– Base-Displacement (and index) addressing
– Relative addressing

■ Relative addressing is a new form of addressing which calculates the data's relative position
from the current PSW (in half-word increments)

 LRL r1,MY_NUM LOAD RELATIVE REGISTER 1 WITH MY_NUM
 ...more awesome assembler code here...
MY_NUM DC F'23'

73 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data - Base-Displacement-Index

■ Base-Displacement(-index) addressing involves using a register as a pointer to memory –
this is called the BASE register

– Base (and index) registers, are GPRs and the term base and index are used purely
for referring to the different usage in a particular set of instructions

■ A displacement is usually between 0 and 4095 bytes allowing a single base register to
address 4K of memory

■ An index register is an additional register whose value is added to the base and
displacement to address more memory

■ Incrementing an index register allows the assembler programmer to cycle through an array
whilst maintaining the same base-displacement

■ Note that register 0 cannot be used as a base or index register
– Register 0 used in this way means that the value 0 will be used as a base / index and

NOT the contents of register 0

■ Base, displacement and indexes are optionally specified on an instruction
– Implicit default value for each is 0

74 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data - Base-Displacement-Index

■ Address = BASE(register) + INDEX(register) + DISPLACEMENT

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

+5MYDATA

Register 4 → 3

75 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data - Base-Displacement-Index

■ Address of MYDATA = 5(r0,r12) → displacement 5 + index (register) 0 + base (register) 12

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

+5MYDATA

Register 4 → 3

76 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data - Base-Displacement-Index

■ Address of 'L' in 'HELLO' = 5(r4,r12) → displacement 5 + index (register) 4 + base (register)
12

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

Register 4 → 3

+5MYDATA

© 2013 IBM Corporation

77 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – Loading addresses

■ To load an address into a register, use the LOAD ADDRESS (LA) instruction
 LA r1,DATA LOAD ADDRESS OF DATA INTO REGISTER 1

■ The LA instruction can be used to set a register to between 0 and 4095 by specifying a base
and index register of 0 – these are automatically implicitly specified, e.g.

 LA r1,12 base=0, index=0, displacement=12

■ To store a 'L' in 'HELLO' in the previous example:
 ...some setup for REGISTER 12...
 LA r4,3 LOAD ADDRESS 3* INTO REGISTER 4
 IC r3,=C'L' LOAD CHARACTER 'L' INTO REGISTER 3
 STC r3,MYDATA(r4) base=12, index=4, displacement=5

78 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – Base VS Index registers

■ Both base and index registers can be dropped from an instruction and can almost be used
interchangeably. Consider the following:

LA r4,MYDATA LOAD ADDRESS OF MYDATA INTO REGISTER 4
 IC r3,=C'H' LOAD CHARACTER 'H' INTO REGISTER 3
 STC r3,0(,r4) STORE H AT 0 DISP + (0 INDEX) + BASE 4

■ Contrast with:
LA r4,MYDATA LOAD ADDRESS OF MYDATA INTO REGISTER 4

 IC r3,=C'H' LOAD CHARACTER 'H' INTO REGISTER 3
 STC r3,0(r4) STORE H AT 0 DISP + 4 INDEX + (BASE 0)

■ Both store the character H at the same address, i.e. at a displacement 0 from the start of
MYDATA.

■ However, if the program is running in Access Register Mode, then using a base register will
cause its corresponding access register to be involved in the address calculation too!

79 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – When a base register is not a base register...

■ Certain instructions, e.g. various shift instructions, specify a base-displacement operand but
do not address storage

■ Instead, the calculated address forms a value for the operand which is used by the
instruction

■ The advantage of instructions such as this is that by varying the contents of a register, the
same instruction in a program can be used repeatedly but it will modify varying amounts of
data

80 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – the HLASM USING instruction

■ HLASM can be used to generate base-displacement values for your program automatically.

■ In order to do this, the USING instruction is used to specify a base register for program /
data addressability.

■ HLASM will then calculate any displacements necessary in order to address parts of the
program or data, e.g.:

BALR r12,0 LOAD ADDRESS OF NEXT INSTRUCTION INTO R12
USING *,r12 USE R12 AS A BASE REGISTER FROM HERE

■ If a register that is being used as a base register by HLASM needs to be used for another
purpose, it is good practice to use the DROP instruction to cancel the previous USING
instruction for that register, e.g.:

DROP r12 DROP THE USE OF R12 AS A BASE

■ Note that HLASM has different forms for the USING instruction – the HLASM Language
Reference should be consulted for more information.

81 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – using multiple base registers

■ For most instructions, the displacement field is only 12-bits in length and therefore a
maximum displacement value of 4095 can be achieved.

■ If a section of code or data is bigger than 4096-bytes in size, then the programmer must use
another base register to address the data further into the code. This can be done be issuing
another USING instruction and assigning another register as a base register.

– It is important that the other base register's contents point at the correct place in the
code which it will be addressing

■ A common use of multiple base registers is to assign one set of base registers for a piece of
code and another for the data in the program.

■ The HLASM PUSH instruction can be used to save the current state of the USINGs for a
program and the POP instruction can be used to restore the previous USING state.

82 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – using multiple base registers

* Call the subroutine MYSUB
LA r15,MYSUB Prepare to call subroutine

 BALR r14,r15 Call it
 LTR r15,r15 Check return code

* ***
* START OF MY SUBROUTINE MYSUB
* This subroutine starts with the contents of register 15 pointing to the
* start of the code. The mainline code of the program uses register 12 as
* its base register.
* ***
MYSUB DC 0H
* Subroutine code goes here...

L r15,RETURN_CODE Set return code
BR r14 Branch back to caller

RETURN_CODE DC F'1'

83 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – using multiple base registers

000000 05C0 11 BALR r12,0
 R:C 00002 12 USING *,r12
000002 41F0 C008 0000A 13 la r15,mysub
000006 05EF 14 balr r14,r15
000008 12FF 15 ltr r15,r15
 16 * ****************************
 17 * MYSUB
 18 * ****************************
00000A 19 mysub dc 0h
00000A 58F0 C00E 00010 20 l r15,return_code
00000E 07FE 21 br r14
000010 00000001 22 return_code dc f'1'

■ Register 12 is being used as a base register for both the main program and the subroutine.

84 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – using multiple base registers

* Call the subroutine MYSUB
LA r15,MYSUB Prepare to call subroutine

 BALR r14,r15 Call it
 LTR r15,r15 Check return code

* ***
* START OF MY SUBROUTINE MYSUB
* This subroutine starts with the contents of register 15 pointing to the
* start of the code. The mainline code of the program uses register 12 as
* its base register.
* ***
MYSUB DC 0H
* Subroutine code goes here...
 PUSH USING
 USING *,r15 Set new base register*

L r15,RETURN_CODE Set return code
BR r14 Branch back to caller

 POP USING
RETURN_CODE DC F'1'

85 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – using multiple base registers

000000 05C0 11 BALR r12,0
 R:C 00002 12 USING *,r12
000002 41F0 C008 0000A 13 la r15,mysub
000006 05EF 14 balr r14,r15
000008 12FF 15 ltr r15,r15
 16 DROP r12
 17 * **********************************
 18 * MYSUB
 19 * **********************************
00000A 20 mysub dc 0h
 21 push using
 R:F 0000A 22 using *,r15
00000A 58F0 F006 00010 23 l r15,return_code
00000E 07FE 24 br r14
 25 pop using
000010 00000001 26 return_code dc f'1'

■ Register 12 is being used as a base register for the main program

■ The current state of the USINGs is saved via the PUSH USING statement

■ Register 15 is established as the base register for the subroutine

86 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Addressing Data – Addressing beyond 4096 bytes

■ There are a number of methods for addressing code and data beyond 4096 bytes – we have
already see how we could use more than one base register to do this.

■ The LONG DISPLACEMENT family of instructions can address up to 512KB (both positive
and negative from the base register) of data using 20-bits. This is only available if the long-
displacement facility is installed.

■ Using relative instructions, an immediate field is encoded into the instruction which specifies
the number of half-words that the target of the instruction is from the instruction itself.

– Relative instructions can be used to eliminate the need for base registers altogether
– so long as your code has been designed for it

87 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
Calling conventions

88 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Calling Conventions

■ A calling convention is a convention used between programs and subroutines to call each
other

■ The calling convention is not enforced, but if it is disregarded undesirable and unpredictable
results may occur

■ In general, when programming in assembler, the caller will provide a save area and the
called program or routine will save all GPRs into that save area.

■ The subroutine will then execute its code

■ To return control to the caller, the subroutine will typically:
– Set a return code in a register
– Prepare the register on which it should branch back on
– Restore all other registers
– Branch back

89 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Calling Conventions – Typical register usage on z/OS

■ Although free to do as they please, most assembler programs on z/OS use the following
register convention during initialisation

– Register 1 → parameter list pointer
– Register 13 → pointer to register save area provided by caller
– Register 14 → return address
– Register 15 → address of subroutine

■ Once the registers are saved, the called subroutine will:
– Update register 13 to point to a new save area (so that it can call other programs /

routines)
– Establish register 12 as a base register for the program

■ Upon termination, the called subroutine will:
– Set a return code in register 15
– Restore register 13 to the value it was previously
– Restore registers 14,0,1,...,12 from the save area pointed to by register 13
– Branch back on register 14

90 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Calling a subroutine in code – Going in...

■ The caller calls the subroutine
 LA r1,PARAMS POINT TO PARAMETERS
 LA r15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR r14,r15 BRANCH AND LINK
 LTR r15,r15 CHECKS RETURN CODE 0?
 ...caller code continues here...

■ The subroutine saves the caller's registers and establishes a base register
 STM r14,r12,12(r13) STORE REGISTERS
 LR r12,r15 GET ENTRY ADDRESS
 ...subroutine code continues here...

91 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Calling a subroutine in code – Getting out...

■ The subroutine restores the caller's registers, sets the return code and branches back
 LM r14,r12,12(r13) RESTORE REGISTERS
 XR r15,r15 SET RETURN CODE 0
 BR r14 BRANCH BACK TO CALLER

■ Due to this calling convention, during epilog and prologue of a program or subroutine or
when calling or having control returned from a program or subroutine, avoid using registers
0, 1, 12, 13, 14, 15

■ z/OS services, typically will use registers 0, 1, 14, 15

■ Not sure which registers are used by a service?
– The manuals explain in detail

92 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

What exactly is a “save area”?

■ As with most things in software, the answer is, “it depends”
– On z Systems, there are different types of save area which are used differently

depending on the calling convention in use.
– Your program must use the correct type of save area

■ The standard z/OS linkage save area has the following format:

Offset in save area Purpose

0 Used by language products

4 Address of previous save area

8 Address of next save area

12 Register 14

16 Register 15

20 Registers 0-12

93 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Chaining Save areas

Lang
Prev
Next

Regs

Lang
Prev
Next

Regs

Lang
Prev
Next

Regs

Register 13

94 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Chaining save areas – Going in...

■ The caller calls the subroutine
 LA r1,PARAMS POINT TO PARAMETERS
 LA r15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR r14,r15 BRANCH AND LINK
 LTR r15,r15 CHECKS RETURN CODE 0?
 ...caller code continues here...

■ The subroutine saves the caller's registers and establishes a base register
 STM r14,r12,12(r13) STORE REGISTERS

GETMAIN RU,LV=72 Get storage for save area
ST r13,4(,r1) Chain previous save area to new
ST r1,8(,r13) Chain new to previous
LR r13,r1 Set r13 to new save area

 LR r12,r15 GET ENTRY ADDRESS
 ...subroutine code continues here...

95 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Chaining save areas – Getting out...

■ The caller calls the subroutine
 LA r1,PARAMS POINT TO PARAMETERS
 LA r15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR r14,r15 BRANCH AND LINK
 LTR r15,r15 CHECKS RETURN CODE 0?
 ...caller code continues here...

■ The subroutine restores frees its save area, restores the caller's registers, sets a return code
and branches back

 LR r1,r13 Address of save area to free
LA r0,72 Length of save area
L r13,4(,r13) Point at previous save area
FREEMAIN R,LV=(0),A=(1) Free save area
LM r14,r12,12(13) Restore registers

 XR r15,r15 Set return code
BR r14 Branch back to caller

96 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Introduction to Assembler Programming
How to read Principles of Operation

97 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading POPs

■ Principles of Operation (better known as POPs) is the z/Architecture manual

■ It explains everything from system organisation and memory, to instructions and number
formats

■ It provides a useful set of appendices some of which provide good detailed examples of
instruction use, including programming techniques

■ The vast majority of POPs is instruction descriptions
– Hint – Appendix A contains examples of instructions

98 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading POPs – Understanding Instruction Descriptions

■ Each instruction is described in exact detail including:
– The instruction's syntax
– Machine code
– Operation
– Condition code settings
– Programming Exceptions

■ There are 2 forms of syntax provided for each instruction
– The syntax for the assembler, i.e. what is written in your assembler program
– The machine code for the instruction, i.e. the binary code run on the processor

■ The instruction's machine code is grouped together with other instructions which share a
similar machine code layout called an instruction format

99 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading POPs – Instruction Formats

■ The instruction format used, is generally related to
– The assembler syntax used to code the instruction
– The operation that the instruction performs

■ Instructions that we've used have had the following formats:
– RR – Register-Register – this form usually manipulates registers, e.g. LR, MR, DR
– RX – Register, Index, base displacement – usually moving data between memory

and registers, e.g. L, LA, ST, A, X, S, D, M
– SS – Storage-Storage – acts on data in memory, e.g. MVC

100 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading POPs – Instruction Formats – RR – LR instruction

101 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading POPs – Instruction Formats – RX – L instruction

102 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Looking at Instruction Formats

■ Why do I need to know an instruction's format?
– You don't...but it might come in useful when debugging...

■ Consider having a dump and the failing instruction was 5810 0004

■ Examining the “Principles of Operation” z/Architecture manual tells me:
– 58 = LOAD Instruction
– Format = RX-a

103 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Looking at Instruction Formats

5810 0004

104 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Looking at Instruction Formats

58100004

105 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Looking at Instruction Formats
58100004

L R
1
,D

1
(X

2
,B

2
)

 1 0 0 004

L 1,4(0,0)

106 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading HLASM Listings

107 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading HLASM Listings

■ One of the outputs produced by HLASM is the “listing” - it explains in detail all that
transformations that have happened to change your source code into the produced object
code.

■ In certain programs, it is not possible to use a debugger and it is in these circumstances
where relying on a dump and the assembler listing proves invaluable.

– Examining a dump and a listing can also be much quicker to solve the problem than
trying to work through the program with a debugger

■ Unlike a lot of compilers, the HLASM listing contains much more information than just error
messages that were produced when attempting to assemble your source code:

108 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Reading HLASM Listings

■ The HLASM listing is divided into:
– High Level Assembler Option Summary
– External Symbol Dictionary
– Source Statements
– Relocation Dictionary
– Ordinary Symbol and Literal Cross Reference
– Unreferenced Symbols Defined in CSECTs
– Macro and Copy Code Source Summary
– Macro and Copy Code Cross Reference
– DSECT Cross Reference
– Using Map
– General Purpose Register Cross Reference
– Diagnostic Cross Reference and Assembler Summary

109 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Specifying options

■ HLASM options can be specified in:
– *PROCESS OVERRIDE
– ASMAOPT
– Invocation Parms
– *PROCESS
– Installation Defaults

■ The location in which an option is specified since the location of each option specifies its
precedence over other options.

– Also some options cannot be specified in certain places, e.g. *PROCESS
OVERRIDE VS *PROCESS

Highest Precedence

Lowest Precedence

110 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Specifying options
Our example specifies:

In source:
*process override(adata,mxref(full))
*process align
*process nodbcs
*process mxref(full),nolibmac
*process flag(0)
*process nofold,language(ue)
*process nora2
*process nodbcs
*process xref(full)

In JCL procedure - parms:
OPTS1='NOOBJECT,language(en),size(4meg)',
OPTS2='xref(short,unrefs)',
OPTS3='nomxref,norxref,adata,noadata'
//C EXEC PGM=ASMA90,
// PARM='&OPTS1,&OPTS2,&OPTS3'

In ASAMOPT DD:
//ASMAOPT DD *
* My ASMAOPTS Overides
sysparm(thisisatestsysparm) pass this to assembler
goff create GOFF object code
/*

111 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

HLASM Option Summary

 High Level Assembler Option Summary (PTF R160) Page 1
 HLASM R6.0 2013/11/01 13.45
 Overriding ASMAOPT Parameters -
 >* My ASMAOPTS Overides
 >sysparm(thisisatestsysparm) pass this to assembler
 >goff create GOFF object code
 Overriding Parameters- NOOBJECT,language(en),size(4meg),xref(short,unrefs),nomxref,norxref,adata,noadata
 Process Statements- override(adata,mxref(full))
 align
 nodbcs
 mxref(full),nolibmac
 flag(0)
 nofold,language(ue)
 nora2
 nodbcs
 xref(full)

** ASMA434N GOFF/XOBJECT option specified, option LIST(133) will be used
** ASMA400W Error in invocation parameter - size(4meg)
** ASMA423N Option adata, in a *PROCESS OVERRIDE statement conflicts with invocation or default option.
Option is not permitted in a *PROCESS statement and has been ignored.
** ASMA422N Option language(ue) is not valid in a *PROCESS statement.
** ASMA437N Attempt to override invocation parameter in a *PROCESS statement. Suboption full of xref
option ignored.

112 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

HLASM Option Summary

 Options for this Assembly
 3 Overriding Parms NOADATA
 5 *Process ALIGN
 NOASA
 NOBATCH
 CODEPAGE(047C)
 NOCOMPAT
 5 *Process NODBCS
 NODECK
 DXREF
 ESD
 NOEXIT
 5 *Process FLAG(0,ALIGN,NOCONT,EXLITW,NOIMPLEN,NOPAGE0,PUSH,RECORD,NOSUBSTR,USING0)
 5 *Process NOFOLD
 2 ASMAOPT GOFF(NOADATA)
 NOINFO
 3 Overriding Parms LANGUAGE(EN)
 5 *Process NOLIBMAC
 LINECOUNT(60)
 LIST(133)
 MACHINE(,NOLIST)
1 *Process Override MXREF(FULL)
 3 Overriding Parms NOOBJECT
 OPTABLE(UNI,NOLIST)
 NOPCONTROL
 NOPESTOP
 NOPROFILE
 5 *Process NORA2
 NORENT
 RLD
 3 Overriding Parms NORXREF
 SECTALGN(8)
 SIZE(MAX)
 TYPECHECK(MAGNITUDE,REGISTER)
 USING(NOLIMIT,MAP,NOWARN)
 NOWORKFILE
 3 Overriding Parms XREF(SHORT,UNREFS)

113 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 External Symbol Dictionary

Symbol Type Id Address Length Owner Id Flags Alias-of
LISTINGB SD 00000001
B_IDRL ED 00000002 00000001
B_PRV ED 00000003 00000001
B_TEXT ED 00000004 00000000 00000084 00000001 08
LISTINGB LD 00000005 00000000 00000004 08
EXTERNAL_FUNCTION
 ER 00000006 00000001
FUNCY ER 00000007 00000001
listme ER 00000008 00000001 LISTINGZ
COMMON_DATA
 SD 00000009
B_IDRL ED 0000000A 00000009
B_PRV ED 0000000B 00000009
B_TEXT ED 0000000C 00000000 00000018 00000009 00
COMMON_DATA
 CM 0000000D 00000000 0000000C 00

This section of the listing contains the External Symbol Dictionary information passed to the
Binder

External Symbol Dictionary (ESD)

114 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

External Symbol Dictionary

■ Each entry in the ESD has a particular type:

■ SD – Section Definition
– The symbol appeared in the name field of a START, CSECT or RSECT instruction

■ LD – Label Definition
– The symbol appeared as the operand of an ENTRY statement. When you specify

the GOFF assembler option on z/OS or CMS, the assembler generates an entry type
of LD for each CSECT and RSECT name.

■ ER – External Reference
– The symbol appeared as the operand of an EXTRN statement or appeared as an

operand of a V-type address constant.

■ CM – Common control section definition
– The symbol appeared in the name field of a COM statement

115 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

■ This section of the listing documents source statements of the module and the resulting
object code.

■ The TITLE, CEJECT and EJECT assembler instructions can be used to control when the
page title is printed

 360 *
00000034 361 continue_code_again dc 0h'0' define a label
00000034 9836 2014 00000014 362 lm r3,r6,l_regs reload registers
00000038 58B0 A038 00000080 363 l r11,=f'1504' load constant
0000003C 50B0 3014 00000014 364 st r11,comm_country ... and save in common
00000040 58C0 A028 00000070 365 l r12,pDateFormat load address constant
00000044 07FE 366 br r14 and exit program
 367 *

 Page 4
 Active Usings: linkage_data(X'54'),R2 common_data,R3 static_data(X'3C'),R10
R-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2013/11/01 15.23
00000046 0000
00000048 369 static_data dc 0d'0' start of static
00000048 839697A899898788 370 copyright dc c'copyright IBM(UK) Ltd 2013'
00000062 0000
00000064 00000000 371 listingx dc v(external_function) declare external
00000068 E8E8E8E8D4D4C4C4 372 dateFormat dc cl(date_len)'YYYYMMDD' define format

Source Statement

116 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 360 *
00000034 361 continue_code_again dc 0h'0' define a label
00000034 9836 2014 00000014 362 lm r3,r6,l_regs reload registers
00000038 58B0 A038 00000080 363 l r11,=f'1504' load constant
0000003C 50B0 3014 00000014 364 st r11,comm_country ... and save in common
00000040 58C0 A028 00000070 365 l r12,pDateFormat load address constant
00000044 07FE 366 br r14 and exit program
 367 *

 Page 4
 Active Usings: linkage_data(X'54'),R2 common_data,R3 static_data(X'3C'),R10
R-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2013/11/01 15.23
00000046 0000
00000048 369 static_data dc 0d'0' start of static
00000048 839697A899898788 370 copyright dc c'copyright IBM(UK) Ltd 2013'
00000062 0000
00000064 00000000 371 listingx dc v(external_function) declare external
00000068 E8E8E8E8D4D4C4C4 372 dateFormat dc cl(date_len)'YYYYMMDD' define format

Source Statement – Location Counter and Statement number

117 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Active Usings: linkage_data(X'54'),R2 common_data,R3 static_data(X'3C'),R10
R-Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2013/11/01 15.23

00000074 00000000 374 pZERO dc a(0)
00000078 00000000 375 ListData dc v(FUNCY)
 376 extrn listingz
 377 listingz alias c'listme'
 378 *
00000080 379 ltorg ,
00000080 000005E0 380 =f'1504'
 381 *
 00000084 382 static_data_end equ *
 383 *
 384 drop r2
 385 drop r3
 386 *
00000000 00000000 00000018 387 common_data com ,
00000000 A8A8A8A894948484 388 comm_date dc cl(date_len)'yyyy....
00000008 A8A8A8A894948484 389 comm_user dc cl(10)'yyyymmdd'
00000012 0000
00000014 00000000 390 comm_country dc f'0000'
 391 *
00000000 00000000 00000054 392 linkage_data dsect ,
00000000 C140D58194854040 393 l_name dc cl(10)'A Name'
0000000A A8A8A8A894948484 394 l_date dc cl(date_len)'yyyymmdd'

Source Statement – Location Counter and Statement number

118 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 19 print on,gen print statements
 20 sysstate archlvl=1 set arch level
 21+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO
 + L=1 OSREL=00000000
 22 ieabrcx DEFINE use relative branching
 00000048 341 larl r10,static_data
 00000048 342 using (static_data,static_data_end),r10
 343 *

The column following the statement number contains one of these values:

A space () indicates open source

A plus sign (+) indicates that the statement was generated as the result of macro call processing.

An unnumbered statement with a plus sign (+) is the result of open code substitution.

A minus sign (-) indicates that the statement was read by a preceding AREAD instruction.

An equals sign (=) indicates that the statement was included by a COPY instruction.

A greater-than sign (>) indicates that the statement was generated as the result of a preceding AINSERT
instruction. If the statement is read by an AREAD instruction, this takes precedence and a minus sign is
printed.

Source Statement – Location Counter and Statement number

119 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

R-Loc Object Code Addr1 Addr2 Stmt Source Statement
 21+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P..
 22 ieabrcx DEFINE use relative branching
00000000 C0A0 0000 0024 00000048 341 larl r10,static_data
 R:A 00000048 342 using (static_data,static_data_end),r10
 343 *
00000006 17FF 344 xr r15,r15 initialise register
 R:2 00000000 345 using (linkage_data,l_end),r2 set using scope
 R:3 00000000 346 using common_data,r3 set using scope
00000008 C040 0000 000A 0000001C 347 larl r4,address_constant address of....
0000000E D207 3000 200A 00000000 0000000A 348 mvc comm_date,l_date copy
00000014 9036 2014 00000014 349 stm r3,r6,l_regs save a copy of the reg..
00000018 A7F4 0008 00000028 350 j continue_code jump over constant
 351 *
0000001C C1C4C4D9C5E2E240 352 address_constant dc cl12'ADDRESS' constant value

Source Statement - Addr1 and Addr2 Fields and USING Statements

120 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Relocation Dictionary
 Pos.Id Rel.Id Address Type Action
 00000004 00000004 00000070 A 4 +
 00000004 00000006 00000064 V 4 ST
 00000004 00000007 00000078 V 4 ST

00000048 839697A899898788 370 copyright dc c'copyright IBM(UK) Lt
00000062 0000
00000064 00000000 371 listingx dc v(external_function)
00000068 E8E8E8E8D4D4C4C4 372 dateFormat dc cl(date_len)'YYYYMMDD'
00000070 00000068 373 pDateFormat dc a(dateFormat) po
00000074 00000000 374 pZERO dc a(0) po
00000078 00000000 375 ListData dc v(FUNCY) de
 376 extrn listingz de

Location counter 70, and ADCON symbol pDateFormat has a value of 00000068 – which is the location
counter for symbol dateFormat

■ This section of the listing describes the relocation dictionary information passed to the
Binder.

■ The entries describe the address constants in the assembled program that are affected by
relocation.

■ This section helps you find relocatable constants in your program.

Relocation Dictionary (RLD)

121 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Ordinary Symbol and Literal Cross Reference
Symbol Length Value Id R Type Asm Program Defn References
address_constant
 12 0000001C 00000004 C C 352 347
comm_country
 4 00000014 0000000C F F 390 364M
comm_date
 8 00000000 0000000C C C 388 348M
common_data
 1 00000000 0000000C J 387 346U
continue_code
 2 00000028 00000004 H H 354 350B
continue_code_again
 2 00000034 00000004 H H 361 357B
date_len 1 00000008 00000004 A U 4 372 388 394

r10 1 0000000A 00000004 A U GR32 12 341M 342U
r11 1 0000000B 00000004 A U GR32 13 363M 364
r12 1 0000000C 00000004 A U GR32 14 365M
r14 1 0000000E 00000004 A U GR32 16 366B
r15 1 0000000F 00000004 A U GR32 17 344M 344

Symbol name , length, value, Assembler type, Definition

References – no suffix, Branch, Modified, Using, Drop and eXecution

This section of the listing concerns symbols and literals that are defined and used in the
program.

Ordinary Symbol and Literal Cross Reference

122 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Unreferenced Symbols Defined in CSECTs
 Defn Symbol
 370 copyright
 375 ListData
 371 listingx
 374 pZERO
 6 r0
 7 r1
 15 r13

This section of the listing shows symbols that have been defined in CSECTs but not
referenced. This may help you to remove unnecessary data definitions, and reduce the size
of your program.

Unreferenced Symbols Defined in CSECTs

123 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Macro and Copy Code Source Summary Page 8
 Con Source Volume Members HLASM R6.0 2013/11/01 15.23
 PRIMARY INPUT B BAL BAS BC BCT BE BH
 BL BM BNE BNH BNL BNM BNO
 BNP BNZ BO BP BXH BXLE BZ
 L2 SYS1.MACLIB 37SY01 IEABRC IEABRCX SYSSTATE

In section 'Diagnostic Cross Reference and Assembler Summary'

Data Sets Allocated for this Assembly
 Con DDname Data Set Name Volume Member
 A1 ASMAOPT SMORSA.LISTINGC.JOB63822.D0000101.?
 P1 SYSIN SMORSA.ASM.ASM 37P001 LISTINGC
 L1 SYSLIB SMORSA.ASM.ASM 37P001
 L2 SYS1.MACLIB 37SY01
 SYSLIN SYS13305.T152320.RA000.LISTINGC.OBJ.H01
 SYSPRINT SMORSA.LISTINGC.JOB63822.D0000102.?

This section of the listing shows the names of the macro libraries from which the assembler
read macros or copy code members, and the names of the macros and copy code members
that were read from each library.

Macro and Copy Code Source Summary

124 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Macro and Copy Code Cross Reference
Macro Con Called By Defn References
B PRIMARY INPUT 117 355
BAL 273
BAS 297
BC PRIMARY INPUT 177 356
BCT 201
BE 121
BH 129
BL 125
BM 133
BNE 137
....
BXLE 225
BZ 173
IEABRC L2 IEABRCX - 22C
IEABRCX L2 PRIMARY INPUT - 22
SYSSTATE L2 PRIMARY INPUT - 20

 19 print on,gen print statements
 20 sysstate archlvl=1 set arch level
 21+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=N
 + L=1 OSREL=00000000
 22 ieabrcx DEFINE use relative branching
 341 larl r10,static_data
 342 using (static_data,static_data_end),r10

This section of the listing shows the names of macros and copy code members and the statements
where the macro or copy code member was called.

Macro and Copy Code Cross Reference

125 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Dsect Cross Reference
Dsect Length Id Defn
linkage_data
 00000054 FFFFFFFF 392

 391 *
00000000 00000000 00000054 392 linkage_data dsect , data passed in to me
00000000 C140D58194854040 393 l_name dc cl(10)'A Name' users name
0000000A A8A8A8A894948484 394 l_date dc cl(date_len)'yyyymmdd' users date
00000012 0000
00000014 0000000000000000 395 l_regs dc 4f'0,0,0,0' return registers values
 00000054 396 l_end equ * end
 397 *

This section of the listing shows the names of all internal or external dummy sections
defined in the program, and the number of the statement where the definition of the dummy
section began.

 DSECT Cross Reference

126 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Using Map
 Stmt -----Location----- Action ----------------Using-----------------
 Count Id Type Value Range Id
 342 00000006 00000004 USING ORDINARY 00000048 0000003C 00000004
 345 00000008 00000004 USING ORDINARY 00000000 00000054 FFFFFFFF
 346 00000008 00000004 USING ORDINARY 00000000 00001000 0000000C
 384 00000084 00000004 DROP
 385 00000084 00000004 DROP

Stmt -----Location----- Action ------------..... Reg Max Last Label and Using Text
 Count Id Type Disp Stmt
 342 00000006 00000004 USING ORDINARY 10 00038 365 (static_data,static_data_end),r10
 345 00000008 00000004 USING ORDINARY 2 00014 362 (linkage_data,l_end),r2
 346 00000008 00000004 USING ORDINARY 3 00014 364 common_data,r3
 384 00000084 00000004 DROP 2 r2
 385 00000084 00000004 DROP 3 r3

 Addr1 Addr2 Stmt Source Statement
 00000048 341 larl r10,static_data
 R:A 00000048 342 using (static_data,static_data_end),r10

 Active Usings: linkage_data(X'54'),R2 common_data,R3 static_data(X'3C'),R10
R-Loc Object Code Addr1 Addr2 Stmt Source Statement
00000046 0000
00000048 369 static_data dc 0d'0' start of
00000048 839697A899898788 370 copyright dc c'copyright IBM(UK) Ltd 2
00000062 0000
00000064 00000000 371 listingx dc v(external_function)

This section of the listing shows a summary of the USING, DROP, PUSH USING, and POP
USING instructions used in your program.

Using Map

127 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 General Purpose Register Cross Reference
 Register References (M=modified, B=branch, U=USING, D=DROP, N=index)
 0(0) (no references identified)
 1(1) (no references identified)
 2(2) 345U 384D
 3(3) 346U 349 362M 385D
 4(4) 347M 349 362M
 5(5) 349 362M
 6(6) 349 362M
 7(7) (no references identified)
 8(8) (no references identified)
 9(9) (no references identified)
 10(A) 341M 342U
 11(B) 363M 364
 12(C) 365M
 13(D) (no references identified)
 14(E) 366B
 15(F) 344M 344

Register 10 – no DROP statement?
 Loc Object Code Addr1 Addr2 Stmt Source Statement
00000000 C0A0 0000 0024 00000048 341 larl r10,static_data
 R:A 00000048 342 using (static_data,static_data_end),r10

Register 5?

00000014 9036 2014 00000014 349 stm r3,r6,l_regs

00000034 9836 2014 00000014 362 lm r3,r6,l_regs

This section of the listing shows all references in the program to each of the general
registers. Additional flags indicate the type of reference.

General Purpose Register Cross Reference

128 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Diagnostic Cross Reference and Assembler Summary

Statements Flagged
 24(P1,24)

 1 Statement Flagged in this Assembly 8 was Highest Severity Code
HIGH LEVEL ASSEMBLER, 5696-234, RELEASE 6.0, PTF R160
SYSTEM: z/OS 01.13.00 JOBNAME: LISTINGB STEPNAME: B PROCSTEP: C

R-Loc Object Code Addr1 Addr2 Stmt Source Statement
0000000C 50B0 3014 00000014 22 st r11,comm_country
00000010 58C0 F040 00000040 23 l r12,pDateFormat
00000014 0000 0000 00000000 24 l r7,someData
** ASMA044E Undefined symbol - r7
** ASMA029E Incorrect register specification - r7
** ASMA044E Undefined symbol - someData
** ASMA435I Record 24 in SMORSA.ASM.ASM(LISTINGB) on volume: 37P001
00000018 07FE 25 br r14
 26 *

Data Sets Allocated for this Assembly
 Con DDname Data Set Name Volume Member
 A1 ASMAOPT SMORSA.LISTINGB.JOB63825.D0000101.?
 P1 SYSIN SMORSA.ASM.ASM 37P001 LISTINGB
 L1 SYSLIB SMORSA.ASM.ASM 37P001
 L2 SYS1.MACLIB 37SY01
 SYSLIN SYS13305.T173626.RA000.LISTINGB.OBJ.H01
 SYSPRINT SMORSA.LISTINGB.JOB63825.D0000102.?

This section of the listing summarises the error diagnostic messages issued during the
assembly, and provides statistics about the assembly.

Diagnostic Cross Reference and Assembler Summary

129 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

 Diagnostic Cross Reference and Assembler Summary

 No Statements Flagged in this Assembly
HIGH LEVEL ASSEMBLER, 5696-234, RELEASE 6.0, PTF R160
SYSTEM: z/OS 01.13.00 JOBNAME: LISTINGC STEPNAME: B PROCSTEP: C
Data Sets Allocated for this Assembly
 Con DDname Data Set Name Volume Member
 A1 ASMAOPT SMORSA.LISTINGC.JOB63822.D0000101.?
 P1 SYSIN SMORSA.ASM.ASM 37P001 LISTINGC
 L1 SYSLIB SMORSA.ASM.ASM 37P001
 L2 SYS1.MACLIB 37SY01
 SYSLIN SYS13305.T152320.RA000.LISTINGC.OBJ.H01
 SYSPRINT SMORSA.LISTINGC.JOB63822.D0000102.?

 4096K allocated to Buffer Pool Storage required 200K
 76 Primary Input Records Read 1093 Library Records Read 0 Work File Reads
 2 ASMAOPT Records Read 312 Primary Print Records Written 0 Work File Writes
 23 Object Records Written 0 ADATA Records Written
Assembly Start Time: 15.23.20 Stop Time: 15.23.20 Processor Time: 00.00.00.0044
Return Code 000

Diagnostic Cross Reference and Assembler Summary

130 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

The PSW and an introduction to debugging
assembler programs

131 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW)

132 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW)

Reserved

133 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW)

■ The Program Status Word (PSW) is a register in the processor which includes control
information to determine the state of the CPU.

■ The z/Architecture PSW is 128-bits in length
– Bits 0-32 contain flag bits indicating control information for the CPU
– Bits 33-63 are 0
– Bits 64-127 contain the instruction address

■ EPSW – Extract PSW
– Obtain bits 0-63 of the PSW and place them into operands of the instruction

■ LPSW(E) – Load PSW (Extended)
– Replace the entire PSW with the contents of storage
– This means that the instruction branches – well might do...

134 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Addresses

135 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Addresses

■ Since the z/Architecture can run in a number of addressing modes, the instruction address is
determined by a variable number of bits in the PSW. The current addressing mode is
determined by bits 31-32 of the PSW with the following combinations:

– 00 → 24-bit mode
– 01 → 31-bit mode
– 10 → invalid
– 11 → 64-bit mode

■ Bits 64-127 are used to determine the address of the next instruction to be executed
– However, some instructions may be interrupted and therefore the PSW may point at

the same instruction which was being executed so that it is redriven

136 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Instruction Address

24-bit address31-bit

64-bit address

Determine Addressing mode

137 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Flag bits

138 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Flag bits

(A bit value of 1 indicates that the CPU is enabled for a function unless stated otherwise)

■ Bit 1 – Program Event Recording (PER) Mask
– Controls whether the CPU is enabled for interrupts associated with PER

■ Bit 5 – DAT Mode
– Controls whether the CPU has Dynamic Address Translation turned on

■ Bit 6 – I/O Mask
– Controls whether the CPU is enabled for interrupts

■ Bit 7 – External Mask
– Controls whether the CPU is enabled for external interrupts

139 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Flag bits

PER

DAT

I/O EX

140 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key

PSW Key

141 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key

■ Bits 8-11 are used to represent the PSW Key (value of 0-15)

■ PSW Keys are used to provide a security mechanism over various regions of memory with
key 0 being the most secure

■ Whenever an instruction attempts to access a storage location that is protected against that
type of reference (read/write of storage) and the storage key does not match the access
key, a protection exception is recognised.

■ Programs running in PSW key 0 have read write access to storage in every storage key

■ Programs in keys 1 – 15 have read access to:
– Storage which matches their PSW key
– Storage (in any key) that's not fetch protected
– Storage in key 9 if the hardware feature “subsystem storage protection override” is

installed

■ Programs in keys 1-15 have write access to:
– Storage whose key matches their PSW key
– Storage in key 9 if subsystem storage protection override is installed

142 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – Manipulation

■ IPK – Insert PSW Key
– Used to insert the PSW Key into register 2
– Used to store a copy of the current PSW Key typically before a switch to another key.
– Bits 56-59 of register 2 are updated to contain the PSW Key, bits 60-63 are set to 0

and all other bits remain unmodified

■ IPK cannot be used when bit 36 of CR0 is set to 0 and in problem state

■ SPKA – Set PSW Key from Address
– Used to set the PSW Key from an address value
– Bits 56-59 of the 2nd operand are inserted into the PSW Key

■ SPKA can only be used to set a key to which the current task is allowed to set a key
determined by the PSW Key mask in CR3

■ Both IPK and SPKA are privileged instructions

143 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – Manipulation

■ MVCK – Move with Key
– Moves an operand with an access key specified as part of the instruction
– If the program is not enabled to use that access key, then a privileged operation

exception is raised
– Can be a slow instruction

■ BSA – Branch and Set Authority
– Used to branch to another place in code and set the PSW key at the same time
– Works as a flip-flop branching from “base authority” state to “reduced authority” state

144 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – BSA Operation

■ BSA – Branch and Set Authority – example scenario
– A service routine, e.g. a middleware service begins in the base authority state
– The routine issues a BSA to switch to running a user routine
– The user routine runs in reduced authority state
– When the user routine wants to invoke the middleware service, it issues a BSA which

branches back to a fixed location in the middleware and the state is returned to
running in base authority state

■ The control of the states is determined by the Dispatchable Unit Control Table (DUCT)
– The BSA instruction uses words 5, 8 and 9 of the DUCT.

145 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – BSA Operation - DUCT

146 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – BSA Operation

Problem state bit
Reduced Authority bit

147 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – BSA Operation – BA

■ When the BSA instruction is used in base authority, the following is stored in the DUCT:
– The PSW-key Mask (from CR3)
– The current PSW Key
– Problem state bit
– The return address

■ BSA then sets the Reduced Authority bit (RA) to 1 and loads:
– The PSW-key Mask into CR3 from operand 1
– The PSW Key from operand 1
– The branch address into the PSW

148 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – BSA Operation – RA

■ When the BSA instruction is used in reduced authority, the following is restored from the
DUCT:

– The PSW-key Mask (to CR3)
– The current PSW Key (to the PSW)
– Problem state bit (to the PSW)
– The return address (to the PSW – therefore the machine branches...)

■ BSA then sets the Reduced Authority bit (RA) to 0

149 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – More flag bits

150 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – More flag bits

■ Bit 13 – Machine Check Mask
– Controls whether the CPU is enabled for interrupts by machine check conditions

■ Bit 14 – Wait State
– If on, the machine is waiting and no instructions are processed but interrupts may

take place.

■ Bit 15 – Problem State
– The machine operates in two states – problem state (used for user code) and

supervisor state (used for privileged code)
– If an attempt is made to execute a privileged instruction in problem state, then a

privileged operation exception occurs.
Some instructions are semi-privileged and may or may not be permitted to execute in
problem state depending on the outcome of other flags

– All instructions are valid in supervisor state

151 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – More flag bits

■ Bit 16-17 – Address-Space Control
– Determines how addresses are handled in conjunction with bit 5 (DAT) via the

following table:

■ Bits 18-19 – Condition Code

5 16 17 DAT Mode Instruction
Addresses

Logical Addresses

0 0 0 Off Real Mode Real Real

0 0 1 Off Real Mode Real Real

0 1 0 Off Real Mode Real Real

0 1 1 Off Real Mode Real Real

1 0 0 On Primary-space Mode Primary virtual Primary virtual

1 0 1 On Access-register Mode Primary virtual AR specified vrt

1 1 0 On Secondary-space Mode Primary virtual Secondary vrt

1 1 1 On Home-space Mode Home virtual Home virtual

152 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – More flag bits

Machine Check

Wait

Problem state

Address Space Control

Condition Code

153 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – PSW Key – Program Mask

Program Mask

154 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Program Mask

■ Bits 20-23 – Program Mask
– Controls a set of program exceptions
– When the corresponding bit is on, the exception results in an interrupt

■ The Program Mask can be manipulated by using the instruction SET PROGRAM MASK
(SPM)

■ The contents of the Program Mask can be examined using the instruction INSERT
PROGRAM MASK (IPM)

Program Mask PSW bit Program Exception

20 Fixed-point overflow

21 Decimal overflow

22 HFP exponent underflow

23 HFP significance

155 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Using the PSW for debugging

■ The PSW stores invaluable information about the general state of the machine during a
program's execution

■ The most interesting time to examine a PSW is when something goes wrong. Even a
summary dump will provide the programmer with:

– The contents of the PSW
– The contents of the general purpose registers
– The next instruction to be executed

156 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ Running a job has resulted in an 0C4 ABEND occurring. The summary dump in the job may
be enough information to work out what has gone wrong.

157 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ First, look at the active load module
– In this example, the load module name is GO since the LKEDG JCL procedure was

used. From this we already know that the error occurred in our load module and not
in either the assembler, linkage editor nor other part of z/OS

Active load module

158 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ Next, double check the information in the PSW against the other information in the summary
dump

– The PSW shows that the next instruction address to be executed is X'7FF6'
– This agrees with the data in the dump showing the address of the load module

(X'7FF0') and the offset into the load module (X'0006')

Address of load module and offset

Address in PSW

159 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ The data at the PSW shows the instructions which were, are being, and will be executed

Data at PSW

160 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

161 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ Examining the program listing at offset 6 shows where the error occurred. Using the data at
the PSW and looking at the machine code generated by HLASM in the listing confirms this
and that so far our diagnosis of the problem is correct

■ We now know the instruction which caused the error was:
58F0 C006 → L R15,RET_CODE

Offset 6

162 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ At this stage of our debugging we know:
– The load module name that caused the error
– The offset into the load module at which the error occurred

■ We have also double-checked that what was printed in the summary dump is confirmed by
the data at the PSW

■ Examining the instruction at fault, we determine the following:
– 58F0 C006 → L R15,RET_CODE
– 58 – OPCODE = LOAD
– F – Register 15, the register to be loaded
– 0 – Index register (unused since it has a value of 0)
– C – Base register is register 12
– 006 – Displacement from the base register from which the data will be loaded

■ So, the instruction is attempting to load register 15 with the contents of memory at an offset
of 6 from register 12.

163 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ The summary dump also shows the contents of the general purpose registers

■ The value in register 12 is X'FD000008'

■ The instruction at fault is attempting to load a value from address X'FD00000E' – which is
unaddressable by our program and therefore the cause of the error

■ Note that the value of register 12 is the same as the value of register 0...

164 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Program Status Word (PSW) – Something has gone wrong

■ Looking back through the program, we can see that register 12 was loaded with the value of
register 0 during program startup

■ It looks as if the programmer made a typo and instead of using LR 12,0 should have used
BALR 12,0 in order to load the address of the next instruction into register 12. This would
make sense since they are using register 12 to establish addressability to the program's
data

■ Correcting this mistake fixes the program

Oops!

165 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Summary

■ Introductory topics
– Computer organisation and z/Architecture
– Building programs on z Systems
– Working with HLASM

■ Programming in Assembler
– Loading, storing and moving data
– Manipulating data – logic and arithmetic
– Making decisions
– Branching and looping
– Reading Principles of Operation

■ Reading the HLASM Listing

■ The PSW and an introduction to debugging assembler programs

166 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Where can I get help?

■ z/OS V2R1 Elements and Features
http://www.ibm.com/systems/z/os/zos/bkserv/v2r1pdf/#IEA

■ HLASM Programmer's Guide (SC26-4941-06)
http://publibz.boulder.ibm.com/epubs/pdf/asmp1021.pdf

■ HLASM Language Reference (SC26-4940-06)
http://publibz.boulder.ibm.com/epubs/pdf/asmr1021.pdf

■ z/Architecture Principles of Operation
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

http://www.ibm.com/systems/z/os/zos/bkserv/v2r1pdf/#IEA
http://publibz.boulder.ibm.com/epubs/pdf/asmp1021.pdf
http://publibz.boulder.ibm.com/epubs/pdf/asmr1021.pdf
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

167 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

168 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

■ The following slides show a small demo program which determines whether or not an
employee is eligible for a pay increase

■ The slides are ordered as:
– JCL to assemble, bind and run the program called SALARY
– Assembler source code for the SALARY program
– Job output from the program

169 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

JCL to assemble, bind and run SALARY program

//XXXXXXX JOB NOTIFY=&SYSUID
//S1 EXEC PGM=ASMA90
// SET PRGNM=SALARY
//* ***
// SET SRCLIB=&SYSUID..STAGE1.ASM0.ANSWERS
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&TEMP,DISP=(,PASS),SPACE=(CYL,1)
//SYSIN DD DSN=&SRCLIB(&PRGNM),DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=PP.HLASM.ZOS201.SASMMAC1,DISP=SHR
// DD DSN=PP.HLASM.ZOS201.SASMMAC2,DISP=SHR
//S2 EXEC LKEDG,COND=(8,LE),
// PARM.LKED='XREF,LIST,NCAL,MAP'
//SYSLIN DD DISP=OLD,DSN=*.S1.SYSLIN
//SYSPRINT DD SYSOUT=*
//GO.SYSUDUMP DD SYSOUT=*
//* ***
//* ***
//* ***

170 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Assembler source code for SALARY program (1)
**
* PUTTING IT ALL TOGETHER PROGRAM
**
*
* The purpose of this small demo program is to demonstrate some small
* parts of assembler programming.
* The demo pretends that it has been passed an employee record via
* register 1.
* It will copy this record to some working storage and then proceed
* to determine whether or not the employee is eligible for a pay
* increase by comparing the employee's annual salary to the target
* salary.
*
* The employee's annual salary is calculated as:
* 12 x (MONTHLY_PAY-BENEFITS) + BONUS
*
*
 ASMDREG ,
SALARY CSECT
SALARY AMODE 31
SALARY RMODE 24
* USUAL PROGRAM SETUP
 STM 14,12,12(13)
 BALR 12,0
 USING *,12
* Point register 1 at the first employee to process...
 la r1,employee_id_1

171 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Assembler source code for SALARY program (2)
*
* The data for the employee record is passed in from register 1.
* This small program will determine whether or not the employee
* is eligable for a pay rise or not.
*
 xc employee(employee_rec_len),employee Clear WS
 mvc employee(employee_rec_len),0(r1) Copy record to WS
*
* Output the name of the employee that is being processed
*
 xc wto_text,wto_text Clear text buffer
 mvc wto_text(l'process_text),process_text
 mvc wto_text+l'process_text(l'employee_name),employee_name
* Calculate the amount of text to output
 lhi r5,l'process_text+l'employee_name
 sth r5,wto_buf Store length in buffer
 la r5,wto_buf Load address of bufffer
 WTO TEXT=(5) Output text
*
* Calculate employee's yearly pay as 12*(MONTHLY_PAY-BENEFITS)+BONUS
* We will use register 3 as a work register
*
 l r3,employee_monthly_pay
 s r3,employee_benefits MONTHLY-BENEFITS
 m r2,=f'12' Multiply by 12
 ah r3,employee_bonus Add yearly bonus
 c r3,target_salary Compare total with target
 bl deserves_increase

172 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Assembler source code for SALARY program (3)
 WTO 'Employee has matched or exceeded target salary'
 b resume_code
deserves_increase dc 0h
 WTO 'Employee deserves a pay increase'
*
* Return to the caller of the program
*
resume_code dc 0h
 LM 14,12,12(13)
*
 XR 15,15
 BR 14
* **
* END OF PROGRAM - DATA FOLLOWS
* **
*
WTO_BUF DC H'0'
WTO_TEXT DS CL256
PROCESS_TEXT DC C'Processing employee '
* SALARY SCHEME DATA
TARGET_SALARY DC F'24000' TARGET SALARY FOR COMPANY
* EMPLOYEE RECORD STRUCTURE
EMPLOYEE DC 0F
EMPLOYEE_NAME DS CL40 EMPLOYEE'S NAME
EMPLOYEE_MONTHLY_PAY DS F VALUE OF MONTHLY PAY
EMPLOYEE_BONUS DS H YEARLY BONUS AMOUNT
EMPLOYEE_BENEFITS DS F MONTHLY BENEFITS
EMPLOYEE_REC_LEN EQU *-EMPLOYEE SIZE OF EMPLOYEE RECORD

173 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Assembler source code for SALARY program (4)
* EMPLOYEE EXAMPLE DATA
EMPLOYEE_ID_1 DC 0F
 DC CL40'BOB SMITH'
 DC F'2000'
 DC H'1000'
 DC F'50'
 LTORG ,
 END

174 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (1)

1 J E S 2 J O B L O G -- S Y S T E M M V 3 3 -- N O D E W I N M V S 3 3
0
 21.20.35 JOB47759 ---- TUESDAY, 29 APR 2014 ----
 21.20.35 JOB47759 IRR010I USERID XXXXXXX IS ASSIGNED TO THIS JOB.
 21.20.35 JOB47759 IEF677I WARNING MESSAGE(S) FOR JOB XXXXXXX ISSUED
 21.20.35 JOB47759 ICH70001I XXXXXXX LAST ACCESS AT 21:00:58 ON TUESDAY, APRIL 29, 2014
 21.20.35 JOB47759 $HASP373 XXXXXXX STARTED - INIT 1 - CLASS A - SYS MV33
 21.20.35 JOB47759 IEF403I XXXXXXX - STARTED
 21.20.35 JOB47759 - --TIMINGS (MINS.)-- ----PAGING COUNTS---
 21.20.35 JOB47759 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV PG PAGE SWAP VIO SWAPS STEPNO
 21.20.35 JOB47759 -XXXXXXX S1 00 95 .00 .00 .00 615 0 0 0 0 0 1
 21.20.35 JOB47759 -XXXXXXX S2 LKED 00 28 .00 .00 .00 191 0 0 0 0 0 2
 21.20.35 JOB47759 +Processing employee BOB SMITH
 21.20.35 JOB47759 +Employee has matched or exceeded target salary
 21.20.35 JOB47759 -XXXXXXX S2 GO 00 4 .00 .00 .00 51 0 0 0 0 0 3
 21.20.35 JOB47759 IEF404I XXXXXXX - ENDED
 21.20.35 JOB47759 -XXXXXXX ENDED. NAME- TOTAL CPU TIME= .00 TOTAL ELAPSED TIME= .00
 21.20.35 JOB47759 $HASP395 XXXXXXX ENDED
0------ JES2 JOB STATISTICS ------
- 29 APR 2014 JOB EXECUTION DATE
- 24 CARDS READ
- 669 SYSOUT PRINT RECORDS
- 0 SYSOUT PUNCH RECORDS
- 37 SYSOUT SPOOL KBYTES
- 0.00 MINUTES EXECUTION TIME
 1 //XXXXXXX JOB NOTIFY=&SYSUID JOB47759
 IEFC653I SUBSTITUTION JCL - NOTIFY=XXXXXXX
 2 //S1 EXEC PGM=ASMA90
 //* ***
 //* CHANGE THE FOLLOWING LINE TO REFLECT THE PROGRAM NAME
 //* ***

175 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (2)

 3 // SET PRGNM=SALARY
 //* ***
 //* ***
 //* ***
 4 // SET SRCLIB=&SYSUID..STAGE1.ASM0.ANSWERS
 IEFC653I SUBSTITUTION JCL - SRCLIB=XXXXXXX.STAGE1.ASM0.ANSWERS
 5 //SYSPRINT DD SYSOUT=*
 6 //SYSLIN DD DSN=&&TEMP,DISP=(,PASS),SPACE=(CYL,1)
 7 //SYSIN DD DSN=&SRCLIB(&PRGNM),DISP=SHR
 IEFC653I SUBSTITUTION JCL - DSN=XXXXXXX.STAGE1.ASM0.ANSWERS(SALARY),DISP=SHR
 8 //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
 9 // DD DSN=PP.HLASM.ZOS201.SASMMAC1,DISP=SHR
 10 // DD DSN=PP.HLASM.ZOS201.SASMMAC2,DISP=SHR
 11 //S2 EXEC LKEDG,COND=(8,LE),
 // PARM.LKED='XREF,LIST,NCAL,MAP'
 12 XXLKED EXEC PGM=HEWLH096,PARM='SIZE=(384K,96K),XREF,LIST,NCAL', 00033302
 XX REGION=512K 00066600
 13 //SYSPRINT DD SYSOUT=*
 X/SYSPRINT DD SYSOUT=A 00100000
 14 //SYSLIN DD DISP=OLD,DSN=*.S1.SYSLIN
 X/SYSLIN DD DDNAME=SYSIN 00150000
 15 XXSYSLMOD DD DSN=&&GOSET(GO),SPACE=(1024,(50,20,1)), *00200000
 XX UNIT=SYSDA,DISP=(MOD,PASS) 00250000
 16 XXSYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), *00300000
 XX SPACE=(1024,(200,20)) 00400000
 17 XXGO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED) 00450000
 18 //GO.SYSUDUMP DD SYSOUT=*
 //* ***
 //* ***
 //* ***
 STMT NO. MESSAGE

176 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (3)

 11 IEFC001I PROCEDURE LKEDG WAS EXPANDED USING SYSTEM LIBRARY SYS1.PROCLIB
 14 IEF648I INVALID DISP FIELD- PASS SUBSTITUTED
 ICH70001I XXXXXXX LAST ACCESS AT 21:00:58 ON TUESDAY, APRIL 29, 2014
 IEF236I ALLOC. FOR XXXXXXX S1
 IEF237I JES2 ALLOCATED TO SYSPRINT
 IGD101I SMS ALLOCATED TO DDNAME (SYSLIN)
 DSN (SYS14119.T212035.RA000.XXXXXXX.TEMP.H01)
 STORCLAS (STANDARD) MGMTCLAS () DATACLAS ()
 VOL SER NOS= VIO
 IGD103I SMS ALLOCATED TO DDNAME SYSIN
 IEF237I ADA1 ALLOCATED TO SYSLIB
 IEF237I ADA1 ALLOCATED TO
 IEF237I ADA1 ALLOCATED TO
 IEF142I XXXXXXX S1 - STEP WAS EXECUTED - COND CODE 0000
 IEF285I XXXXXXX.XXXXXXX.JOB47759.D0000101.? SYSOUT
 IGD106I SYS14119.T212035.RA000.XXXXXXX.TEMP.H01 PASSED, DDNAME=SYSLIN
 IGD104I XXXXXXX.STAGE1.ASM0.ANSWERS RETAINED, DDNAME=SYSIN
 IEF285I SYS1.MACLIB KEPT
 IEF285I VOL SER NOS= 33SY02.
 IEF285I PP.HLASM.ZOS201.SASMMAC1 KEPT
 IEF285I VOL SER NOS= 33SY02.
 IEF285I PP.HLASM.ZOS201.SASMMAC2 KEPT
 IEF285I VOL SER NOS= 33SY02.
 IEF373I STEP/S1 /START 2014119.2120
 IEF032I STEP/S1 /STOP 2014119.2120
 CPU: 0 HR 00 MIN 00.01 SEC SRB: 0 HR 00 MIN 00.00 SEC
 VIRT: 220K SYS: 264K EXT: 65536K SYS: 10404K
 ATB- REAL: 36K SLOTS: 0K
 VIRT- ALLOC: 6M SHRD: 0M
 IEF236I ALLOC. FOR XXXXXXX LKED S2
 IEF237I JES2 ALLOCATED TO SYSPRINT

177 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (4)

 IGD103I SMS ALLOCATED TO DDNAME SYSLIN
 IGD101I SMS ALLOCATED TO DDNAME (SYSLMOD)
 DSN (SYS14119.T212035.RA000.XXXXXXX.GOSET.H01)
 STORCLAS (STANDARD) MGMTCLAS () DATACLAS ()
 VOL SER NOS= VIO
 IGD101I SMS ALLOCATED TO DDNAME (SYSUT1)
 DSN (SYS14119.T212035.RA000.XXXXXXX.R0111176)
 STORCLAS (STANDARD) MGMTCLAS () DATACLAS ()
 VOL SER NOS= VIO
 IEF142I XXXXXXX LKED S2 - STEP WAS EXECUTED - COND CODE 0000
 IEF285I XXXXXXX.XXXXXXX.JOB47759.D0000102.? SYSOUT
 IGD106I SYS14119.T212035.RA000.XXXXXXX.TEMP.H01 PASSED, DDNAME=SYSLIN
 IGD106I SYS14119.T212035.RA000.XXXXXXX.GOSET.H01 PASSED, DDNAME=SYSLMOD
 IGD105I SYS14119.T212035.RA000.XXXXXXX.R0111176 DELETED, DDNAME=SYSUT1
 IEF373I STEP/LKED /START 2014119.2120
 IEF032I STEP/LKED /STOP 2014119.2120
 CPU: 0 HR 00 MIN 00.00 SEC SRB: 0 HR 00 MIN 00.00 SEC
 VIRT: 100K SYS: 268K EXT: 1772K SYS: 10376K
 ATB- REAL: 0K SLOTS: 0K
 VIRT- ALLOC: 0M SHRD: 0M
 IEF236I ALLOC. FOR XXXXXXX GO S2
 IGD103I SMS ALLOCATED TO DDNAME PGM=*.DD
 IEF237I JES2 ALLOCATED TO SYSUDUMP
 Processing employee BOB SMITH
 Employee has matched or exceeded target salary
 IEF142I XXXXXXX GO S2 - STEP WAS EXECUTED - COND CODE 0000
 IGD104I SYS14119.T212035.RA000.XXXXXXX.GOSET.H01 RETAINED, DDNAME=PGM=*.DD
 IEF285I XXXXXXX.XXXXXXX.JOB47759.D0000103.? SYSOUT
 IEF373I STEP/GO /START 2014119.2120
 IEF032I STEP/GO /STOP 2014119.2120
 CPU: 0 HR 00 MIN 00.00 SEC SRB: 0 HR 00 MIN 00.00 SEC

178 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (5)

 VIRT: 8K SYS: 252K EXT: 0K SYS: 10440K
 ATB- REAL: 0K SLOTS: 0K
 VIRT- ALLOC: 0M SHRD: 0M
 IGD105I SYS14119.T212035.RA000.XXXXXXX.TEMP.H01 DELETED, DDNAME=SYSLIN
 IGD105I SYS14119.T212035.RA000.XXXXXXX.GOSET.H01 DELETED, DDNAME=SYSLMOD
 IEF375I JOB/XXXXXXX /START 2014119.2120
 IEF033I JOB/XXXXXXX /STOP 2014119.2120
 CPU: 0 HR 00 MIN 00.01 SEC SRB: 0 HR 00 MIN 00.00 SEC
1 High Level Assembler Option Summary (PTF UI11676) Page 1
- HLASM R6.0 2014/04/29 21.20
0 No Overriding ASMAOPT Parameters
 No Overriding Parameters
 No Process Statements

 Options for this Assembly
0 NOADATA
 ALIGN
 NOASA
 NOBATCH
 CODEPAGE(047C)
 NOCOMPAT
 NODBCS
 NODECK
 DXREF
 ESD
 NOEXIT
 FLAG(0,ALIGN,NOCONT,EXLITW,NOIMPLEN,NOPAGE0,PUSH,RECORD,NOSUBSTR,USING0)
 NOFOLD
 NOGOFF
 NOINFO

179 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (6)

 LANGUAGE(EN)
 NOLIBMAC
 LINECOUNT(60)
 LIST(121)
 MACHINE(,NOLIST)
 MXREF(SOURCE)
 OBJECT
 OPTABLE(UNI,NOLIST)
 NOPCONTROL
 NOPESTOP
 NOPROFILE
 NORA2
 NORENT
 RLD
 RXREF
 SECTALGN(8)
 SIZE(MAX)
 NOSUPRWARN
 SYSPARM()
 NOTERM
 NOTEST
 THREAD
 NOTRANSLATE
 TYPECHECK(MAGNITUDE,REGISTER)
 USING(NOLIMIT,MAP,NOWARN)
 NOWORKFILE
 XREF(SHORT,UNREFS)

 No Overriding DD Names
1 External Symbol Dictionary Page 2
-Symbol Type Id Address Length Owner Id Flags Alias-of HLASM R6.0 2014/04/29 21.20

180 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (7)

0 PC 00000001 00000000 00000000 00
 SALARY SD 00000002 00000000 000002C4 02
1 Page 3
 Active Usings: None
0 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2014/04/29 21.20
0 1 **
 2 * PUTTING IT ALL TOGETHER PROGRAM
 3 **
 4 *
 5 * The purpose of this small demo program is to demonstrate some small
 6 * parts of assembler programming.
 7 * The demo pretends that it has been passed an employee record via
 8 * register 1.
 9 * It will copy this record to some working storage and then proceed
 10 * to determine whether or not the employee is eligible for a pay
 11 * increase by comparing the employee's annual salary to the target
 12 * salary.
 13 *
 14 * The employee's annual salary is calculated as:
 15 * 12 x (MONTHLY_PAY-BENEFITS) + BONUS
 16 *
 17 *
 18 ASMDREG ,
 19+ PUSH PRINT 01-ASMDR
 119+ POP PRINT 01-ASMDR
 000000 00000 002C4 120 SALARY CSECT
 121 SALARY AMODE 31
 122 SALARY RMODE 24
 123 * USUAL PROGRAM SETUP
 000000 90EC D00C 0000C 124 STM 14,12,12(13)
 000004 05C0 125 BALR 12,0

181 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (8)

 R:C 00006 126 USING *,12
 127 * Point register 1 at the first employee to process...
 000006 4110 C286 0028C 128 la r1,employee_id_1
 129 *
 130 * The data for the employee record is passed in from register 1.
 131 * This small program will determine whether or not the employee
 132 * is eligable for a pay rise or not.
 133 *
 00000A D733 C252 C252 00258 00258 134 xc employee(employee_rec_len),employee Clear WS
 000010 D233 C252 1000 00258 00000 135 mvc employee(employee_rec_len),0(r1) Copy record to WS
 136 *
 137 * Output the name of the employee that is being processed
 138 *
 000016 D7FF C13A C13A 00140 00140 139 xc wto_text,wto_text Clear text buffer
 00001C D213 C13A C23A 00140 00240 140 mvc wto_text(l'process_text),process_text
 000022 D227 C14E C252 00154 00258 141 mvc wto_text+l'process_text(l'employee_name),employee_name
 142 * Calculate the amount of text to output
 000028 A758 003C 0003C 143 lhi r5,l'process_text+l'employee_name
 00002C 4050 C138 0013E 144 sth r5,wto_buf Store length in buffer
 000030 4150 C138 0013E 145 la r5,wto_buf Load address of bufffer
 146 WTO TEXT=(5) Output text
 000034 148+ CNOP 0,4 01-WTO
 000034 A715 003A 000A8 149+ BRAS 1,IHB0002A BRANCH AROUND MESSAGE @LCC 01-WTO
 000038 0008 150+ DC AL2(8) TEXT LENGTH @YA17152 01-WTO
 00003A 0010 151+ DC B'0000000000010000' MCSFLAGS 01-WTO
 00003C 00000000 152+ DC AL4(0) MESSAGE TEXT ADDRESS @L5A 01-WTO
 000040 02 153+ DC AL1(2) VERSION LEVEL @PJC 01-WTO
 000041 00 154+ DC B'00000000' MISCELLANEOUS FLAGS @L2A 01-WTO
 000042 00 155+ DC AL1(0) REPLY LENGTH @L2A 01-WTO
1 Page 4
 Active Usings: SALARY+X'6',R12

182 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (9)

0 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2014/04/29 21.20
0000043 68 156+ DC AL1(104) LENGTH OF WPX @L5C 01-WTO
 000044 0080 157+ DC B'0000000010000000' EXTENDED MCS FLAGS @L2A 01-WTO
 000046 0000 158+ DC AL2(0) RESERVED @L2A 01-WTO
 000048 00000000 159+ DC AL4(0) REPLY BUFFER ADDRESS @P7C 01-WTO
 00004C 00000000 160+ DC AL4(0) REPLY ECB ADDRESS @P7C 01-WTO
 000050 00000000 161+ DC AL4(0) CONNECT ID @01C 01-WTO
 000054 0000 162+ DC B'0000000000000000' DESCRIPTOR CODES @L2A 01-WTO
 000056 0000 163+ DC AL2(0) RESERVED @L2A 01-WTO
 000058 0000000000000000 164+ DC XL16'00000000000000000000000000000000' X01-WTO
 000060 0000000000000000 + EXTENDED ROUTING CODES @L2A
 000068 0000 165+ DC B'0000000000000000' MESSAGE TYPE @L2A 01-WTO
 00006A 0000 166+ DC AL2(0) MESSAGE'S PRIORITY @L2A 01-WTO
 00006C 4040404040404040 167+ DC CL8' ' JOB ID @L2A 01-WTO
 000074 4040404040404040 168+ DC CL8' ' JOB NAME @L2A 01-WTO
 00007C 4040404040404040 169+ DC CL8' ' RETRIEVAL KEY @L2A 01-WTO
 000084 00000000 170+ DC AL4(0) TOKEN FOR DOM @P1C 01-WTO
 000088 00000000 171+ DC AL4(0) CONSOLE ID @P1C 01-WTO
 00008C 4040404040404040 172+ DC CL8' ' SYSTEM NAME @L2A 01-WTO
 000094 4040404040404040 173+ DC CL8' ' CONSOLE NAME @L3A 01-WTO
 00009C 00000000 174+ DC AL4(0) REPLY CONSOLE NAME/ID ADDR @L3A 01-WTO
 0000A0 00000000 175+ DC AL4(0) CART ADDRESS @L4C 01-WTO
 0000A4 00000000 176+ DC AL4(0) WSPARM ADDRESS @L6C 01-WTO
 0000A8 177+IHB0002A DS 0H 01-WTO
 0000A8 18E1 178+ LR 14,1 FIRST BYTE OF PARM LIST @L2A 01-WTO
 0000AA 1BFF 179+ SR 15,15 CLEAR REGISTER 15 @L2A 01-WTO
 0000AC 4AF1 0000 00000 180+ AH 15,0(1,0) ADD LENGTH OF TEXT + 4 @L2A 01-WTO
 0000B0 1AEF 181+ AR 14,15 FIRST BYTE AFTER TEXT @L2A 01-WTO
 0000B2 5050 1004 00004 182+ ST 5,4(0,1) STORE TEXT ADDR INTO PLIST @L5A 01-WTO
 0000B6 0A23 183+ SVC 35 ISSUE SVC 35 @L6A 01-WTO
 184 *

183 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (10)

 185 * Calculate employee's yearly pay as 12*(MONTHLY_PAY-BENEFITS)+BONUS
 186 * We will use register 3 as a work register
 187 *
 0000B8 5830 C27A 00280 188 l r3,employee_monthly_pay
 0000BC 5B30 C282 00288 189 s r3,employee_benefits MONTHLY-BENEFITS
 0000C0 5C20 C2BA 002C0 190 m r2,=f'12' Multiply by 12
 0000C4 4A30 C27E 00284 191 ah r3,employee_bonus Add yearly bonus
 0000C8 5930 C24E 00254 192 c r3,target_salary Compare total with target
 0000CC 4740 C106 0010C 193 bl deserves_increase
 194 WTO 'Employee has matched or exceeded target salary'
 0000D0 196+ CNOP 0,4 01-WTO
 0000D0 A715 001B 00106 197+ BRAS 1,IHB0004A BRANCH AROUND MESSAGE @LCC 01-WTO
 0000D4 0032 198+ DC AL2(50) TEXT LENGTH @YA17152 01-WTO
 0000D6 0000 199+ DC B'0000000000000000' MCSFLAGS 01-WTO
 0000D8 C594979396A88585 200+ DC C'Employee has matched or exceeded target salary' X01-WTO
 0000E0 408881A2409481A3 + MESSAGE TEXT @L6C
 000106 201+IHB0004A DS 0H 01-WTO
 000106 0A23 202+ SVC 35 ISSUE SVC 35 @L6A 01-WTO
 000108 47F0 C130 00136 203 b resume_code
 00010C 204 deserves_increase dc 0h
 205 WTO 'Employee deserves a pay increase'
 00010C 207+ CNOP 0,4 01-WTO
 00010C A715 0014 00134 208+ BRAS 1,IHB0006A BRANCH AROUND MESSAGE @LCC 01-WTO
 000110 0024 209+ DC AL2(36) TEXT LENGTH @YA17152 01-WTO
 000112 0000 210+ DC B'0000000000000000' MCSFLAGS 01-WTO
1 Page 5
 Active Usings: SALARY+X'6',R12
0 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2014/04/29 21.20
0000114 C594979396A88585 211+ DC C'Employee deserves a pay increase' X01-WTO
 00011C 408485A28599A585 + MESSAGE TEXT @L6C
 000134 212+IHB0006A DS 0H 01-WTO

184 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (11)

 000134 0A23 213+ SVC 35 ISSUE SVC 35 @L6A 01-WTO
 214 *
 215 * Return to the caller of the program
 216 *
 000136 217 resume_code dc 0h
 000136 98EC D00C 0000C 218 LM 14,12,12(13)
 219 *
 00013A 17FF 220 XR 15,15
 00013C 07FE 221 BR 14
 222 * **
 223 * END OF PROGRAM - DATA FOLLOWS
 224 * **
 225 *
 00013E 0000 226 WTO_BUF DC H'0'
 000140 227 WTO_TEXT DS CL256
 000240 D799968385A2A289 228 PROCESS_TEXT DC C'Processing employee '
 229 * SALARY SCHEME DATA
 000254 00005DC0 230 TARGET_SALARY DC F'24000' TARGET SALARY FOR COMPANY
 231 * EMPLOYEE RECORD STRUCTURE
 000258 232 EMPLOYEE DC 0F
 000258 233 EMPLOYEE_NAME DS CL40 EMPLOYEE'S NAME
 000280 234 EMPLOYEE_MONTHLY_PAY DS F VALUE OF MONTHLY PAY
 000284 235 EMPLOYEE_BONUS DS H YEARLY BONUS AMOUNT
 000288 236 EMPLOYEE_BENEFITS DS F MONTHLY BENEFITS
 00034 237 EMPLOYEE_REC_LEN EQU *-EMPLOYEE SIZE OF EMPLOYEE RECORD
 238 * EMPLOYEE EXAMPLE DATA
 00028C 239 EMPLOYEE_ID_1 DC 0F
 00028C C2D6C240E2D4C9E3 240 DC CL40'BOB SMITH'
 0002B4 000007D0 241 DC F'2000'
 0002B8 03E8 242 DC H'1000'
 0002BA 0000

185 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (12)

 0002BC 00000032 243 DC F'50'
 0002C0 244 LTORG ,
 0002C0 0000000C 245 =f'12'
 246 END
1 Ordinary Symbol and Literal Cross Reference Page 6
-Symbol Length Value Id R Type Asm Program Defn References HLASM R6.0 2014/04/29 21.20
0deserves_increase
 2 0000010C 00000002 H H 204 193B
 EMPLOYEE 4 00000258 00000002 F F 232 134M 134 135M 237
 EMPLOYEE_BENEFITS
 4 00000288 00000002 F F 236 189
 EMPLOYEE_BONUS
 2 00000284 00000002 H H 235 191
 EMPLOYEE_ID_1
 4 0000028C 00000002 F F 239 128
 EMPLOYEE_MONTHLY_PAY
 4 00000280 00000002 F F 234 188
 EMPLOYEE_NAME
 40 00000258 00000002 C C 233 141 141 143
 EMPLOYEE_REC_LEN
 1 00000034 00000002 A U 237 134 135
 IHB0002A 2 000000A8 00000002 H H 177 149B
 IHB0004A 2 00000106 00000002 H H 201 197B
 IHB0006A 2 00000134 00000002 H H 212 208B
 PROCESS_TEXT
 20 00000240 00000002 C C 228 140 140 141M 143
 resume_code
 2 00000136 00000002 H H 217 203B
 R1 1 00000001 00000001 A U 28 128M 135
 R2 1 00000002 00000001 A U 29 190M
 R3 1 00000003 00000001 A U 30 188M 189M 191M 192

186 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (13)

 0002BC 00000032 243 DC F'50'
 0002C0 244 LTORG ,
 0002C0 0000000C 245 =f'12'
 246 END
1 Ordinary Symbol and Literal Cross Reference Page 6
-Symbol Length Value Id R Type Asm Program Defn References HLASM R6.0 2014/04/29 21.20
0deserves_increase
 2 0000010C 00000002 H H 204 193B
 EMPLOYEE 4 00000258 00000002 F F 232 134M 134 135M 237
 EMPLOYEE_BENEFITS
 4 00000288 00000002 F F 236 189
 EMPLOYEE_BONUS
 2 00000284 00000002 H H 235 191
 EMPLOYEE_ID_1
 4 0000028C 00000002 F F 239 128
 EMPLOYEE_MONTHLY_PAY
 4 00000280 00000002 F F 234 188
 EMPLOYEE_NAME
 40 00000258 00000002 C C 233 141 141 143
 EMPLOYEE_REC_LEN
 1 00000034 00000002 A U 237 134 135
 IHB0002A 2 000000A8 00000002 H H 177 149B
 IHB0004A 2 00000106 00000002 H H 201 197B
 IHB0006A 2 00000134 00000002 H H 212 208B
 PROCESS_TEXT
 20 00000240 00000002 C C 228 140 140 141M 143
 resume_code
 2 00000136 00000002 H H 217 203B
 R1 1 00000001 00000001 A U 28 128M 135
 R2 1 00000002 00000001 A U 29 190M
 R3 1 00000003 00000001 A U 30 188M 189M 191M 192

187 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (14)

 R5 1 00000005 00000001 A U 32 143M 144 145M
 SALARY 1 00000000 00000002 J 120 121 122
 TARGET_SALARY
 4 00000254 00000002 F F 230 192
 WTO_BUF 2 0000013E 00000002 H H 226 144M 145
 WTO_TEXT 256 00000140 00000002 C C 227 139M 139 140M 141M
 =f'12' 4 000002C0 00000002 F 245 190
1 Unreferenced Symbols Defined in CSECTs Page 7
- Defn Symbol HLASM R6.0 2014/04/29 21.20
0 103 AR0
 104 AR1
 113 AR10
 114 AR11
 115 AR12
 116 AR13
 117 AR14
 118 AR15
 105 AR2
 106 AR3
 107 AR4
 108 AR5
 109 AR6
 110 AR7
 111 AR8
 112 AR9
 84 CR0
 85 CR1
 94 CR10
 95 CR11
 96 CR12
 97 CR13

188 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (15)

 98 CR14
 99 CR15
 86 CR2
 87 CR3
 88 CR4
 89 CR5
 90 CR6
 91 CR7
 92 CR8
 93 CR9
 46 FR0
 47 FR1
 56 FR10
 57 FR11
 58 FR12
 59 FR13
 60 FR14
 61 FR15
 48 FR2
 49 FR3
 50 FR4
 51 FR5
 52 FR6
 53 FR7
 54 FR8
 55 FR9
 27 R0
 37 R10
 38 R11
 39 R12
 40 R13

189 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (16)

 41 R14
 42 R15
1 Unreferenced Symbols Defined in CSECTs Page 8
- Defn Symbol HLASM R6.0 2014/04/29 21.20
0 31 R4
 33 R6
 34 R7
 35 R8
 36 R9
 65 VR0
 66 VR1
 75 VR10
 76 VR11
 77 VR12
 78 VR13
 79 VR14
 80 VR15
 67 VR2
 68 VR3
 69 VR4
 70 VR5
 71 VR6
 72 VR7
 73 VR8
 74 VR9
1 Macro and Copy Code Source Summary Page 9
- Con Source Volume Members HLASM R6.0 2014/04/29 21.20
0 L1 SYS1.MACLIB 33SY02 SYSSTATE WTO
 L3 PP.HLASM.ZOS201.SASMMAC2 33SY02 ASMDREG
1 Using Map Page 10
- HLASM R6.0 2014/04/29 21.20

190 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (17)

 41 R14
 42 R15
1 Unreferenced Symbols Defined in CSECTs Page 8
- Defn Symbol HLASM R6.0 2014/04/29 21.20
0 31 R4
 33 R6
 34 R7
 35 R8
 36 R9
 65 VR0
 66 VR1
 75 VR10
 76 VR11
 77 VR12
 78 VR13
 79 VR14
 80 VR15
 67 VR2
 68 VR3
 69 VR4
 70 VR5
 71 VR6
 72 VR7
 73 VR8
 74 VR9
1 Macro and Copy Code Source Summary Page 9
- Con Source Volume Members HLASM R6.0 2014/04/29 21.20
0 L1 SYS1.MACLIB 33SY02 SYSSTATE WTO
 L3 PP.HLASM.ZOS201.SASMMAC2 33SY02 ASMDREG
1 Using Map Page 10
- HLASM R6.0 2014/04/29 21.20

191 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (18)

 Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text
 Count Id Type Value Range Id Disp Stmt
0 126 00000006 00000002 USING ORDINARY 00000006 00001000 00000002 12 002BA 203 *,12
1 General Purpose Register Cross Reference Page 11
- Register References (M=modified, B=branch, U=USING, D=DROP, N=index) HLASM R6.0 2014/04/29 21.20
0 0(0) 124 218M
 1(1) 124 128M 135 149M 178 180N 182 197M 208M 218M
 2(2) 124 190M 218M
 3(3) 124 188M 189M 190M 191M 192 218M
 4(4) 124 218M
 5(5) 124 143M 144 145M 182 218M
 6(6) 124 218M
 7(7) 124 218M
 8(8) 124 218M
 9(9) 124 218M
 10(A) 124 218M
 11(B) 124 218M
 12(C) 124 125M 126U 218M
 13(D) 124 218
 14(E) 124 178M 181M 218M 221B
 15(F) 124 179M 179 180M 181 218M 220M 220
1 Diagnostic Cross Reference and Assembler Summary Page 12
- HLASM R6.0 2014/04/29 21.20
0 No Statements Flagged in this Assembly
 HIGH LEVEL ASSEMBLER, 5696-234, RELEASE 6.0, PTF UI11676
0SYSTEM: z/OS 02.01.00 JOBNAME: XXXXXXX STEPNAME: S1 PROCSTEP: (NOPROC)
0Data Sets Allocated for this Assembly
 Con DDname Data Set Name Volume Member
 P1 SYSIN XXXXXXX.STAGE1.ASM0.ANSWERS 33P002 SALARY
 L1 SYSLIB SYS1.MACLIB 33SY02
 L2 PP.HLASM.ZOS201.SASMMAC1 33SY02

192 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (19)

 L3 PP.HLASM.ZOS201.SASMMAC2 33SY02
 SYSLIN SYS14119.T212035.RA000.XXXXXXX.TEMP.H01
 SYSPRINT XXXXXXX.XXXXXXX.JOB47759.D0000101.?

 64840K allocated to Buffer Pool Storage required 384K
 91 Primary Input Records Read 3707 Library Records Read 0 Work File Reads
 0 ASMAOPT Records Read 384 Primary Print Records Written 0 Work File Writes
 10 Object Records Written 0 ADATA Records Written
0Assembly Start Time: 21.20.35 Stop Time: 21.20.35 Processor Time: 00.00.00.0068
 Return Code 000

1z/OS V2 R1 BINDER 21:20:35 TUESDAY APRIL 29, 2014
 BATCH EMULATOR JOB(XXXXXXX) STEP(S2) PGM= HEWLH096 PROCEDURE(LKED)
 IEW2278I B352 INVOCATION PARAMETERS - XREF,LIST,NCAL,MAP
 IEW2650I 5102 MODULE ENTRY NOT PROVIDED. ENTRY DEFAULTS TO SECTION SALARY.

1 *** M O D U L E M A P ***

 CLASS B_TEXT LENGTH = 2C4 ATTRIBUTES = CAT, LOAD, RMODE= 24
 OFFSET = 0 IN SEGMENT 001 ALIGN = DBLWORD

 SECTION CLASS ------- SOURCE --------
 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 SALARY CSECT 2C4 SYSLIN 01 **NULL**
1 *** DATA SET SUMMARY ***

 DDNAME CONCAT FILE IDENTIFICATION

193 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (20)

 SYSLIN 01 SYS14119.T212035.RA000.XXXXXXX.TEMP.H01

 *** E N D O F M O D U L E M A P ***

1 C R O S S - R E F E R E N C E T A B L E

 TEXT CLASS = B_TEXT

 --------------- R E F E R E N C E -------------------------- T A R G E T ---
 CLASS ELEMENT | ELEMENT |
 OFFSET SECT/PART(ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME |
 | |
 *** NO ADDRESS CONSTANTS FOR THIS CLASS ***
 *** E N D O F C R O S S R E F E R E N C E ***

 *** O P E R A T I O N S U M M A R Y R E P O R T ***

1PROCESSING OPTIONS:

 ALIASES NO
 ALIGN2 NO
 AMODE UNSPECIFIED
 CALL NO
 CASE UPPER
 COMPAT UNSPECIFIED
 COMPRESS AUTO
 DCBS NO

194 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (21)

 DYNAM NO
 EXTATTR UNSPECIFIED
 EXITS: NONE
 FILL NONE
 GID UNSPECIFIED
 HOBSET NO
 INFO NO
 LET 04
 LINECT 060
 LIST SUMMARY
 LISTPRIV NO
 LONGPARM NO
 MAP YES
 MAXBLK 032760
 MODMAP NO
 MSGLEVEL 00
 OVLY NO
 PRINT YES
 RES NO
 REUSABILITY UNSPECIFIED
 RMODE UNSPECIFIED
 SIGN NO
 STORENX NOREPLACE
 STRIPCL NO
 STRIPSEC NO
 SYMTRACE
 TERM NO
 TRAP ON
 UID UNSPECIFIED
 UPCASE NO
 WKSPACE 000000K,000000K

195 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (22)

 XCAL NO
 XREF YES
 END OF OPTIONS

1SAVE OPERATION SUMMARY:

 MEMBER NAME GO
 LOAD LIBRARY SYS14119.T212035.RA000.XXXXXXX.GOSET.H01
 PROGRAM TYPE LOAD MODULE
 VOLUME SERIAL
 MAX BLOCK 32760
 DISPOSITION ADDED NEW
 TIME OF SAVE 21.20.35 APR 29, 2014

1SAVE MODULE ATTRIBUTES:

 AC 000
 AMODE 31
 COMPRESSION NONE
 DC NO
 EDITABLE YES
 EXCEEDS 16MB NO
 EXECUTABLE YES
 LONGPARM NO
 MIGRATABLE YES
 OL NO
 OVLY NO

196 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (23)

 PACK,PRIME NO,NO
 PAGE ALIGN NO
 REFR NO
 RENT NO
 REUS NO
 RMODE 24
 SCTR NO
 SIGN NO
 SSI
 SYM GENERATED NO
 TEST NO
 XPLINK NO
 MODULE SIZE (HEX) 000002C8

1 ENTRY POINT AND ALIAS SUMMARY:

 NAME: ENTRY TYPE AMODE C_OFFSET CLASS NAME STATUS

 SALARY MAIN_EP 31 00000000 B_TEXT

 *** E N D O F O P E R A T I O N S U M M A R Y R E P O R T ***

1z/OS V2 R1 BINDER 21:20:35 TUESDAY APRIL 29, 2014
 BATCH EMULATOR JOB(XXXXXXX) STEP(S2) PGM= HEWLH096 PROCEDURE(LKED)
 IEW2008I 0F03 PROCESSING COMPLETED. RETURN CODE = 0.

197 © 2009 IBM Corporation
© 2015 IBM Corporation

Introduction to Assembler Programming 17690, 17691 – SHARE – Orlando 2015

Putting it all together

Job output for assembling, binding and running SALARY program (24)

1----------------------
 MESSAGE SUMMARY REPORT

 TERMINAL MESSAGES (SEVERITY = 16)
 NONE

 SEVERE MESSAGES (SEVERITY = 12)
 NONE

 ERROR MESSAGES (SEVERITY = 08)
 NONE

 WARNING MESSAGES (SEVERITY = 04)
 NONE

 INFORMATIONAL MESSAGES (SEVERITY = 00)
 2008 2278 2650

 **** END OF MESSAGE SUMMARY REPORT ****

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197

