SHARE 9 o

inOrlando 2015 ®@~ s ARE

#SHAREorg

0000

How to surprise by being a
Linux-performance “Know-it-all”

Martin Schwidefsky

IBM Lab Bbéblingen, Germany
12" August 2015

Sessions 17672 & 17673

SHARE is an independent volunteer-run information technology association

Except where otherwise noted, this work is licensed under

Linux on System z Performance Evaluation

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and service

names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at www.ibm.com/legal/copytrade.shtml.

2 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Agenda

* Your swiss army knife for the complex cases — Netstat — network statistics and overview
— Pidstat — per process statistics — Socket Statistics — extended socket statistics
— Slabtop — kernel memory pool consumption — top / ps — process overview
— Lsof — check file flags of open files — lcastats / Iszcrypt — check usage of crypto hw support
— Blktrace — low level disk 1/0O analysis — Lsluns / multipath — check multipath setup
— Hyptop — cross guest cpu consumption monitor — Lsqgeth — check hw checksumming and buffer count
— lIptraf - network traffic monitor — Ethtool — check offloading functions
— Dstat — very configurable live system overview — Collectl — full system monitoring
— Irgstats — check irqg amount and cpu distribution — Ftrace — kernel function tracing
— Smem — per process/per mapping memory overview — Lttng — complex latency tracing infrastructure
— Jinsight — Java method call stack analysis — Ziomon — Analyze FCP setup and I/O
— Htop — top on steroids — Systemtap — another kernel tracing infrastructure
— Strace — system call statistics — Wireshark / Tcpdump — analyze network traffic in depth
— Ltrace - library call statistics — lotop — order processes by disk 1/0
— Kernel tracepoints — get in-depth timing inside the kernel — Iftop - per connection traffic overview
— Vmstat — virtual memory statistics ... ever growing '

— Sysstat — full system overview

— lostat — /O related statistics

— Dasdstat — disk statistics

— scsi statistics — disk statistics \
— Perf — hw counters, tracepoint based evaluations, profiling to find hotspots

— Valgrind - in depth memory/cache analysis and leak detection

— Java Health Center — high level java overview and monitoring

— Java Garbage Collection and Memory visualizer — in depth gc analysis

3 March 3, 2015 Linux-Performance-know it all series

Linux on System z Performance Evaluation

Agenda — approximately 5 x 60 minutes

Basic Intermediate Advanced Master Elite

— Utilization —General — Strace —Perf —Cachestat
—Scheduling thoughts —Ltrace —slabtop —Smem
—Page Cache —Sysstat —Lsof —Blktrace —Valgrind
—Swapping ~ —Dasdstat —Lsluns —Ziomon —Irgstats

—3csi 110 —Multipath —Tcpdump —Wireshark
—top §tatistics —hyptop —Java Health Center —Kernel
—ps ~lotop —Dstat —Java Garbage Tracepoints
—vmstat —Lszcrpt —Htop Collection and — Systemtap

—icastats _ Netstat Memory visualizer

—Lsqgeth _Socket —Jinsight

— Ethtool Statistics \

—Preparation —|ptraf %

4 March 3, 2015 Linux-Performance-know it all series ‘//

Linux on System z Performance Evaluation

oday we makie up fo

roenee the so far missing introductlon(s)
Basic Intermediate
— Utilization —General
—Scheduling thoughts
—Page Cache —Sysstat
— Swapping —Dasdstat
—Scsi 1/0
—top statistics
—ps —iotop
—vmstat ~Lszcrpt
—icastats
—Lsqeth
— Ethtool
—Preparation 7

5 March 3, 2015 Linux-Performance-know it all series J/ © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization

= Utilization means that a cpu core is used

" Categories qualify what the core was used for
—System, IRQ, SoftIRQ
—Userspace, Guest
—Idle, IOWait, Steal
—Nice

" Accounting unit is Jiffy, reports usually as percentage
—Percentage is better to express relative ratios

" The maijority of those basics is usually known, but it still has a purpose
— Clarify and synchronize the understanding between everybody
—Provide metaphors that allow to explain it more easily next time

6 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - Metaphor

" For all the clarifications on basic terms | will use metaphors
—Based on well known real world examples
— At the beginning of a topic the matching metaphor is provided

" Imagine a laptop is a CPU core -

" People using that laptop are different Programs, that could be
— Application(s)
—Kernel
—Hypervisor

*Roles are defined by clothes and equipment
not people (bad actors)

7 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - USR

||||||

\“‘
O

‘\

\)
CPU °

- ,za pphcatlon

.4(T
..“'.-T" |
-

g

" |f a userspace application is running it is accounted as USR
—This is usually what you want
—Also known as problem state, because there your problems are solved

— If this “application” is actually a virtualized guest it is accounted to Guest
instead

8 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization — SYS, (H)IRQ, SIRQ

d =Privileges

n
uu.,,'.

Application

System Call

" For some tasks you need certain privileges
—so0 you call an administrator (System Call to the Kernel)
—He executes the privileged stuff for you (accounted as SYStem time)

9 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Other invocations of
the Kernel — IRQ/SIRQ

"y
1y,
"y
Tag,

Application

System Call

" For some tasks you need certain privileges
—so0 you call an administrator (System Call to the Kernel)
—He executes the privileged stuff for you (accounted as SYStem time)

—There are subcategories
* (H)IRQ: privileged work driven by interrupts instead by the user
* SIRQ: privileged work driven by soft interrupts and tasklets

10 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - Idle

Boooooring

llllll
llllllllllllll
LT}

Application not

CPU Idle * requesting work

" This is the most simple case of “doing nothing”
" The CPU executes nothing because it is not requested to do so
" This is accounted as idle

11 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - IOWait

Waiting for /O
CPU is Idle Application
accounted as iowait waiting for I/0

" Again “doing nothing”, but no more that simple

" The System was requested to do some synchronous 1/O
— Still the CPU executes nothing because it is not requested to do so
—But it knows it “could” do some work if that I/O would complete

" This is accounted as iowait

12 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

accounted as idle

13

Utilization — IOWait

Waiting for I/0

CPU is Idle, but

" |If no one is waiting for I/O, (asynchronous)
—Example 1: real Linux AlO
—Example 2: writes via page cache

®" Not accounted as iowait, but idle

March 3, 2015 Linux-Performance-know it all series

No one waiting for I/O

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - Steal

Application thought
it could work
(scheduled)

CPU seems to
be non existent

Ny
LITH
Ty
llll

" The CPU is doing something, just not for you

" CPU doesn't exist for you, but you'd need a CPU to reallze that
— Accounted as steal time
—Based on Virtual vs Real timers

" Imagine the laptop is used for multiple groups of people and switched
between their docking stations

— A group of people in front of one laptop cause Context switches (later)

14 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

15

Utilization - Steal

|||||||||||

i

|||||

llllll
llllll

llllll
lllll
|||||
|||||

If the Application
doesn't work

R

Nobody cares about
the CPU being "
“non existant”

IIII

" In case a CPU shouldn't run anyway the stealing isn't even recognized
= Still accounted as idle or iowait

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization - Steal

Thought it would
transmit network packets =, ,_ e | é
It got from the App Aé: ,‘ - \ e . - . ‘j_"-* Y '0,I‘ ._. ,."“:‘_“‘ ::::::::::::::::

CPU is still busy but
for other things
than Linux thought

\}
t\)
\)
““““
\Y
I\

" A Linux does not know for which purpose the cpu was stolen

* Steal can indicate issues
—Too high cpu or memory overcommitment

" But steal also isn't always bad
— It could be work you requested, just like “USR->SYS in Linux alone”

16 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Utilization — Steal Quiz

" |: Driving I/O synchronously e.g. causing a vswitch to work for your
submission
=> Steal? Yes

" |I: Driving sync reads from a file, mdisk does work for you
=> Steal? No, IOWait

" |II: Driving async writes (AlO) by a DB, causing mdisk work in the HV
=> Steal?

" [V: Paging in the HV takes place while you were running a Java based Bl
load utilizing all cores
=> Steal? Yes

" V: Paging in the HV takes place while your system is an idling
development testbed
=> Steal? No, Idle

17 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

18

Scheduling on Cores

" Most systems have more programs than CPUs
" So the OS will have to schedule them (time multiplexing)
" Such scheduling is called Context switching

" So in our metaphor we have multiple people of the same privilege level
using a laptop ...

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling on Cores

Application
working

" Well, that is easy a single program means no context switches

19 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling on Cores

\)
W

« CPU busy, for work and overhead

Application
working

~
~
~
~
~
S

Application
working

" With two programs the OS has to switch them every now and then
—Every program shall get its fair share

— Switching causes overhead
* Some CPU time is no more used for the actual work done by the programs (red)

20 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling on Cores

Applications trying
to working

||||||||||||||||

CPU busy, but primarily for overhead

Add steal time if you want real trouble &

" With too much runnable programs per CPU the OS gets in trouble
—Actually with any shared resource being shared a lot

" Eventually there are two bad options to chose from
—Real throughput converging to zero (latency optimized)
— Individual applications have to wait longer (throughput optimized)

21 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling on Cores

cooperative
Applications

||||||||

~ Voluntary
context switch

" There are ways to switch cooperatively
—On all blocking system calls like reads, timer sleeps

—On explicit generic or directed context switch
* local (yield / yield to)
* virtual (diagnose X'44'/ diagnose X'9C')

22 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling on Cores

... greedy
=" Applications

OS has to interrupt
and switch
— non voluntary

" There are ways to switch cooperatively ... or not
—OS can always interrupt and switch
—Actually it looks more like one works and one has to wait, but we fight ...

23 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

24

Scheduling between Cores

" Most systems also have more than one CPU

" So the OS will have to schedule/dispatch programs on them

—most “classic” System z Operating Systems use single queue dispatchers
(z/OS, z/VM)

—Linux has a multi queue scheduler (one queue per CPU)
* Tasks are migrated to or pulled from cpus

" So in our metaphor we have
—multiple people and a scheduler
—in our office being a 4 laptop (CPU core)

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling between Cores

4 Applications + " Dispatcher

n queue

" Single Queue scheduling
—One scheduler instance directs programs to the CPU cores
—Benefit of single control point and easy synchronization

25 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling between Cores
No need for the

) scheduler(s) to do anything

i
"t
ot

Applications
in local runqueue

Applications
in local runqueue

" Multi queue scheduler
—Here with the usual optimum of queues with 1 Program each

—There are cases where it is better to leave one CPU idle
* When two task are bound by the speed of their communication

—You can also see topology here, as some cores are more “remote” than others

26 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling between Cores

Scheduler

Ty,

migrates task

3 Applications
in local runqueue

" Multi queue scheduler
—Here one queue got rather full and a scheduler starts migrating tasks

27 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling / Utilization — Combo Quiz

" Based on a real customer case
—Database with a lot of stored procedures that does parallelization
—0-75 runnable processes varying a lot in a “spiky” fashion
—They tried various setups, initially 10, later 4 to 20 real CPU cores
—They didn't achieve their expected target utilization of 85%+ USR

" Question 1: Why was the utilization with 10 CPUs so low at an average
of ~45% despite up to 75 runnable processes?

28 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling / Utilization — Combo Quiz

" Question 1: why was the utilization so low at ~45%7?

" Eventually one can never get >100%, but easily less
— Could the scheduler do anything about it? — No
—Would it be different with a single queue scheduler? — No

CPU Utilization of spiky applications
10 CPUs - 0-75 Processes - oversimplified for illustarional purposes
120.00%
100.00%

80.00%
== Utilization

60.00% —— Mean (Utilization)

Utilization

40.00%
20.00%

0.00%
1 37065605020 3 1 0 0 2 46757452 3 2 01

of runnable processes

29 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling / Utilization — Combo Quiz

" Question 2: Why did they achieve the following by changing cpu count?
—low # of CPUs: fully utilized, but now with a lot of SYS overhead
—high # of CPUs: even more underutilized but with almost no SYS overhead

CPU Utilization of spiky applications
10 CPUs - 0-75 Processes - oversimplified for illustarional purposes
120.00%
100.00%

80.00%
== Utilization

60.00% —— Mean (Utilization)

Utilization

40.00%
20.00%

0.00%
1 37065605020 3 1 0 0 2 46757452 3 2 0 1
of runnable processes

30 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Scheduling / Utilization — Combo Quiz

" Question 2: Why did they achieve the following by changing cpu count?
—low # of CPUs: fully utilized, but now with a lot of SYS overhead
* Context switch overhead
—high # of CPUs: even more underutilized but with almost no SYS overhead
* Even more times of #runnable << #CPUs
CPU Utilization of spiky applications

10 CPUs - 0.75 Processes - oversimplified for illustrational purposes

120.00%
100.00%
80.00% == Utilization
c — Mean (Utilization)
% 60.00% ,\ ’\ —o— SYS
= 2 £ USR
° 40.00% \. ./ \/
[}

20.00%

\rﬁ

1 37065605020 3 1 0 0 2 46757452 3 2 01

I

0.00%

of runnable processes

31 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

32

Scheduling / Utilization — Combo Quiz

" Based on a real customer case
—Database with a lot of stored procedures that does parallelization
—Runnable processes varied a lot in a “spiky” fashion (range 0-75)
—They tried various setups, initially 10, later 4 to 20 CPU cores
—They didn't achieve their expected target utilization of 85%+ USR

" Eventually one can never get >100%, but easily less

" Question 3: Real fix approaches?
—Application design (recommended)

—Try to let the Hypervisor make underutilized resources otherwise
usable (needs lower priority workload)

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Page Cache

" Keeping disk data available in memory is caching

— Certain strategies take place
* What should be cached
* Read ahead of data that will likely be used
* Coalesce writes to issue a single disk write for several memory writes

—Proper management of caches can be complex (read cpu intensive)

" Imagine processes are kids
—There is obviously some privileged person (kernel) watching
—If | learned something they surely will make a mess over time (dirty pages)
—As long as the kids just watch all their toys (read) things stay clean
—But when they really play with things (write) the room gets messy (dirty)
—How are things cleaned up?

33 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Page Cache — Cleaning |

" |f things stay relatively clean nobody cleans anything
Linux tunable: (% dirty pages < dirty_background_ratio)

—Only long unused items are put back where they belong
Linux tunable: (dirty expire_centisecs)

All pages
~dirty_ratio

dirty_background_ratio

Dirty pages (I

34 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Page Cache — Cleaning Il

" As long as the amount of dirtiness is in a sane range it is likely that the
parents will clean a bit in background
Linux tunable: (dirty pages in % > dirty_background_ratio)
— Cleaning of dirty pages consumes CPU, done by the kernel
—Run by the kswap thread(s) and accounted as SYS

—Kernel tries to be nice and stay in background
(as you don't bother the kids too much the kernel tries not to take away cpu)

All pages

L __dirty_ratio

Dirty pages {.7 _dirty_background_ratio

© 2015 IBM Corporation

35 March 3, 2015 Linux-Performance-know it all series

Linux on System z Performance Evaluation

Page Cache — Cleaning Il

" |If the amount of dirtiness rises too a really high level the parents will force
the kids to help cleaning up
Linux tunable: (dirty pages in % > dirty_ratio)
—Now writing processes have to contribute parts of their time slices to the kernel
—No more nice, but trying to stall those who make pages dirty

All pages

__dirty_ratio
Dirty pages
dirty_background_ratio

36 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

37

Page Cache — further details

" Another complex topic is the “proper” size of cache
—Ever realized your flat/house is always too small except for cleaning it

—If you use the kids room as office from 9am-6pm obviously toys have to be
moved aside (cache shrink due to other workload)

—On the other hand if you organize a party it is likely that they will consume more
than just the kids room (cache grow due to more |/O)

" Even cleaning up before going to bed exists in IT
—for actions like hibernate cache has to be cleaned up before going to sleep

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

38

Paging/Swapping

" Spending more memory than available is overcommitment

" |n case the accessed memory exceeds the real memory paging has to
take place

—Paging (z/VM) is the same as swapping (Linux)

" As metaphor imagine a notebook page to be your memory ...

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Paging/Swapping

Writing
Application

Memory Page

" Initially a page is empty, so a process might write onto it

39 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Paging/Swapping

_ Reading
Application

Memory Page

" Later on the process (or someone else) might read from it

40 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Paging/Swapping

Application wants
to write

Memory has no
free page left

" later the process might have something in mind that he wants to write
to the next page

" But all pages the OS could provide are full
— This now requires swapping (OS level)
—Or paging (z/VM level)

41 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Paging/Swapping

Kernel takes over

Swapping can push memory
pages to disk (floor) or
from disk into memory

" The kernel takes over
—Swaps out a page (based on least recently used plus some extras)
—This makes room for a clean new page in real memory
—Impact high, due to the orders of magnitude between disk and memory

" As you see this burden can literally break the back of your system :-)

42 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Top

" Characteristics: Easy to use

" Objective: Shows resource usage on process level

"Usage: top -b -d [interval in sec] > [outfile]
" Package: RHEL: procps SLES: procps

" Shows
— CPU utilization
—Detailed memory usage

" Hints
—Parameter -b enables to write the output for each interval into a file
—Use -p [pid1, pid2,...] to reduce the output to the processes of interest
— Configure displayed columns using 'f' key on the running top program

—Use the 'W' key to write current configuration to ~/.toprc
— becomes the default

43 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

top (cont.)

= Qutput
top - 11:12:52 up 1:.1, 3 users, load average: L1.4L1, L1.0l, 4.U5
Tasks: 53 total, 5/ running, 48 slecning, 0 stooped. 0 “zombie
Cpu(s):! 3.0%us, 5.9%sy, | 0.0%ni,|79.2%id,| 9.9%wa, [0.0%hi, 1.0%si, | 1.0%st
Mem: 5138052k total, 801100k used, 4336952k free, 447868k buffers
Swap: 88k total, Ok used, 88k free, 271436k cached
PID USER PR NI VIRT RES SHR S %$CPU %MEM TIME+ P SWAP DATA WCHAN COMMAND
3224 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
3226 root 18 0 1820 604 444 R 2.0 0.0 0:00.56 0 1216 252 - dbench
2737 root 16 0 9512 3228 2540 R 1.0 0.1 0:00.46 0 6284 868 - sshd
3225 root 18 0 1820 604 444 R 1.0 0.0 0:00.56 0 1216 252 - dbench
3230 root 16 0 2652 1264 980 R 1.0 0.0 0:00.01 0 1388 344 - top
1 root 16 0 848 304 256 S 0.0 0.0 0:00.54 0 544 232 select init
2 root RT 0 0 0 0s 0.0 0.0 0:00.00 O 0 0 migration migration/0
3 root 34 19 0 0 0s 0.0 0.0 0:00.00 O 0 0 ksoftirgd ksoftirgd/O0
4 root 10 -5 0 0 0s 0.0 0.0 0:00.13 0 0 0 worker_th events/0
5 root 20 -5 0 0 0s 0.0 0.0 0:00.00 O 0 0 worker_th khelper
= Hints
—virtual memory: VIRT = SWAP + RES unit KB
—physical memory used: RES = CODE + DATA unit KB
—shared memory SHR unit KB

44

March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Linux ps command

» Characteristics: very comprehensive, statistics data on process level
= Objective: reports a snapshot of the current processes

» Usage: “ps axlf”

» Package: RHEL: procps SLES: procps

= Shows
—IDs: Pid, Tid, User, ...
— Status: stat and wchan
—Details: command, memory consumption andjaccumulated cpu time

PID TID NLWP POL USER TTY NI PRI PSR P/ STAT WCHAN START, TIME %CPU '$MEM VSZ SZ RSS - COMMAND
871 871 1 TS root ? -5 29 0 * S< kauditd_thre/ 10:01 00:00:00 0.0 0.0 0 0 0 - [kauditd]
2835 2835 1 TS root pts/2 0 23 0 * Ss+ read_chan 10:38 00:00:00 0.0 0.0 5140 824 2644 - -bash
3437 3437 1 TS root pts/l 0 23 0 * S+ waitd 11:39 00:00:00 0.0 0.0 1816 248 644 - dbench 3
3438 3438 1 TS root pts/l 0 20 0 0L R+ - 11:39°.00:00:24 33.1 0.0 1820 252 604 /- dbench 3
= Hints

— Do not specify blanks inside the -0 format string
— Status is a one time shot, most interactive or I/O bound processes might sleep

45 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

vmstat

* Characteristics: Easy to use, high-level information

* Objective: First and fast impression of the current state
» Usage: vmstat [interval in sec]

» Package: RHEL: sysstat.s390x SLES: sysstat

= Qutput sample:

vmstat 1

Proc-s ------f---- memory---------- ﬂTEWEETT\ ————— io---- -systemn-- ----- cput - - -
r b SWpPC free buff cache si S0 bi bo in cs us sy 1d wa st
212 C 4415152 64068 554100 0 0 4 63144 35) 55 29 64 0 3 4
310 C 4417632 64832 551272 0 0 988 125 60 32 67 0 0 1
310 C 4411804 72188 549592 0 0 0 8984 23D 42 32 67 0 0 1
310 0,4405232 72896 555592\ _ O ¥ 0 16 105 52 32 68 0 0 O

= Shows
—Data per time interval
— CPU utilization
—Disk 1/0
—Memory usage/Swapping

" Hints
—Shared memory usage is listed under 'cache’

46 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Thanks (and complaints) go to

Christian
Ehrhardt

System z Performance Evaluation

End of Part |

Linux on

Linux on System z Performance Evaluation

Agenda

Basic Intermediate Advanced Master Elite

— Utilization —General — Strace —Perf —Cachestat
—Scheduling thoughts —Ltrace —slabtop —Smem
—Page Cache —Sysstat —Lsof —Blktrace —Valgrind
—Swapping ~ —Dasdstat —Lsluns —Ziomon —Irgstats

—3csi 110 —Multipath —Tcpdump —Wireshark
—top §tatistics —hyptop —Java Health Center —Kernel
—ps ~lotop —Dstat —Java Garbage Tracepoints
—vmstat —Lszcrpt —Htop Collection and — Systemtap

—icastats _ Netstat Memory visualizer

—Lsqgeth _Socket —Jinsight

— Ethtool Statistics \

—Preparation —|ptraf %

49 March 3, 2015 Linux-Performance-know it all series ‘//

Linux on System z Performance Evaluation

50

Non-legal Disclaimer

" This is an introduction and cheat sheet
—Know what is out there
—What could be useful in which case
—How could | debug even further

" These descriptions are not full explanations
—Most tools could get at least 1-2 presentations on their own
—Don't start using them without reading howtos / man pages

" This is not about monitoring

—Some tools used to start performance analysis CAN be monitors, but thats
not part of the presentation

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

General thoughts on performance tools

" Things that are always to consider
—Monitoring can impact the system

—Most data gathering averages over a certain period of time
— this flattens peaks

— Start with defining the problem
» which parameter(s) from the application/system indicates the problem
* which range is considered as bad, what is considered as good

—monitor the good case and save the results
« comparisons when a problem occurs can save days and weeks

= Staged approach saves a lot of work
— Try to use general tools to isolate the area of the issue
— Create theories and try to quickly verify/falsify them
—Use advanced tools to debug the identified area

= Work with the tools before an issue occurs
—Learn what should be normal on your system

51 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Orientation - where to go if something is broken

X X
X X X X
X X X
X X
X
X
X X
X X X
X
X
X
X X X X X X
X X
X
X X
X
X
X X
X X X X
X
X
X
X
X X X X X X X

52 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Sysstat - sadc/sar

* Characteristics: Very comprehensive, statistics data on device level
* Objective: Suitable for permanent system monitoring and detailed analysis
* Usage (recommended):
—monitor /usr/1ib64/sa/sadc [-S XALL] [interval in sec] [outfile]
—View sar -A -f [outfile]
» Package: RHEL.: sysstat.s390x SLES: sysstat
= Shows
— CPU utilization
—Disk 1/0O overview and on device level
—Network I/O and errors on device level
—Memory usage/Swapping
— ... and much more
—Reports statistics data over time and creates average values for each item
" Hints
—sadc parameter “-S XALL” enables the gathering of further optional data
—Shared memory is listed under 'cache’

—[outfile] is a binary file, which contains all values. It is formatted using sar
» enables the creation of item specific reports, e.g. network only
» enables the specification of a start and end time — time of interest

53 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Processes created

54

root@hd2ip42 o
File Edit View Terminal Help
inux 2.6.16.60-0.59.1-default (h421p42) 23/082/10 A
14:14:55 proc/s
14:15:05 2.69
14:15:15 0.40
14:15:25 0.10
14:15:35 6.30
14:15:45 0.00
Average: B.78

March 3, 2015

Processes created per second usually small except during startup.
If constantly at a high rate your application likely has an issue.
Be aware — the numbers scale with your system size and setup.

Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Context Switch Rate

55

(=] root@h42ip27:~ BEER
File Edit View Terminal Tabs Help
B9:24:14 PM cswch/s

89:24:24 PM 586.13

89:24:34 PM 548.35

89:24:44 PM 53.61

B89:24:54 PM 74.16

B89:25:04 PM 188.51

B89:25:14 PM 601.49

B89:25:24 PM 521.81

@9:25:34 PM 92.06

89:25:44 PM 73.63

Average: 295.43

March 3, 2015

Linux-Performance-know it all series

Context switches per second usually < 1000 per cpu
except during startup or while running a benchmark
if > 10000 your application might have an issue.

© 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - CPU utilization

Per CPU values:
watch out for
system time (kernel)
user (applications)
irg/soft (kernel, interrupt handling)
idle (nothing to do)
iowait time (runnable but waiting for I/O)
steal time (runnable but utilized somewhere else)

root@h42lp42

File Edit View Terminal Help

14:14:55 CPU %user %nice %system %lowait %steal %idle -
14:15:05 all 20.04 b.00 12.63 25.92 b.24 29.16
14:15:05 o 43.81 B.08 5.49 23.25 4.99 22.4b
14:15:05 1 4.360 .00 10.19 28.67 9.89 46.95
14:15:05 2 11.81 b.00 28.683 45.15 5.01 16.081
14:15:05 3 46.01 B.08 4.49 0.79 4.99 37.13
14:15:15 all 27.19 0.0 11.93 25.11 1.75 28.01
14:15:15 B 90.68 0.00 3.70 B.80 5.76 0.0
14:15:15 1 9.24 B.08 22.49 41.57 9.24 17.47
14:15:15 2 5.98 0.0 14.64 46.71 9.086 23.61
14:15:15 3 2.960 0.00 6.99 12.09 7.89 70.93

56 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Network traffic

File Edit View Terminal

14:
15:
15:
15:
15:
15:
15:

14:
14:
14:
14:
14:
14:
14:

57

March 3, 2015

55
85
85
85
15
15
15

IFACE
lo
51t
ethe
lo
5ite
ethe

Help

rxpck/s
6.00
6.00
4587.92
0.00
0.00
4206.460

root@h42lp4d2
txpck/s rxkB/s
6.00 8.00
6.00 8.00
5278.34 387.53
g.006 B.06
g.006 B.06
4527.18 281.43

txkB/s
0.00
0.00
482 .56
a.08
a.08
441.17

rxcmp/s

8.
.00
.0e
.0e
.0e
.0e

oo o a d

ee

txcmp/s

B.
.00
.0B
.0B
.0B
.0B

oo o a d

0o

rxmcst/s

.
.00
.Be
.Be
.Be
.Be

o0 oo

ee

Per interface statistic of packets/bytes
You can easily derive average packet sizes from that.

Sometimes people expect - and planned for — different sizes.

Has another panel for errors, drops and such events.

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR — Disk I/O | — overall

58

14:14:55
14:15:85
14:15:15

root@h42lp42
File Edit View Terminal Help
tps rtps wtps bread/s bwrin/s
445.71 B6l.38 384.33 J715.77 55529.74
192.20 32.90 159.30 7308.80 ©08233.00
171.76 1.20 178.506 9.00 7TO798.40

14:15:25
14:15:35
14:15:45
Average:

March 3, 2015

327.25 174.95
444 .74 318.51
316.35 116.15

Linux-Performance-know it all series

152.38 1399.60 68261.88
134.22 2484.88 59784.50
2008.20 3784.61 64504.50

Overview of
- operations per second
- transferred amount

© 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR — Disk I/O Il — per device

59

File Edit View Terminal Help

14:
14:
14:
14:
14:
14:
14:

March 3, 2015

18:14
18:24
18:24
18:24
18:34
18:34
18:34

DEV
dev94-0
devad-4
dev94-8
deva4-0
devad-4
dev94-8

ips
7.41
403.20
547.15
8.30
284.39
549.51

rd sec/s

260,26
46784 .38
22830.83

557.31
35453.75
160832.41

root@h42lp42

Wr sec/s avgrq-sz avgqu-sz

37.64
13756.96
21249.25

10.28
35618.18
41554.94

40.22
138.15
80.56
68.38
249.91
164 .80

0.01
5.06
3.42
0.01
1.82
25.23

Is your I/O balanced across devices?
Imbalances can indicate issues wit a LV setup.

tps and avgrg-sz combined can be important.
Do they match your sizing assumptions?

Await shows the time the application has to wait.

Linux-Performance-know it all series

await
1.35
12.56
6.25
1.31
23.45
40.35

svctm
0.95
2.03
1.39
8.71
2.97
1.42

util

8.70
81.88
76.18

0.59
84.58
78.06

© 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Memory statistics - the false friend

60

File Edit View Terminal Help
kbmemfree kbmemused %memused kbbuffers

14:18:14
14:18:24
14:18:34
14:18:44
14:18:54
14:19:04
Average:

March 3, 2015

9616
8624
7024
7308
1876
8090

Linux-Performance-know it all series

2045284
2046276
2047876
2047592
2047024
2046810

99.53
99.58
99.66
99.64
99.62
99.61

root@h42ip42

27172
2936
5400
4556
1800
4693

kbcached kbswpfree kbswpused %swpused

90328
154636
240140
348796
333844
233549

1621184
1443732
1132356
1201988
1201988
1320256

182792
960244
1271620
1201988
1201988
1083726

32.56
39.94
52.90
50.00
50.00
45.08

kbswpcad
616916
129948
953644
178752
180656
771983

Be aware that high %memused and low kbmemfree
is no indication of a memory shortage (common mistake).

Same for swap — to use swap is actually good,

but to access it (swapin/-out) all the time is bad.

© 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Memory pressure - Swap

root@h42lp42 = FEn[F
File Edit View Terminal Help
:18:14 pswpin/s pswpout/s

14:18:24 2853.95 2658.26

14:18:34 2003.26 5399.80

14:18:44 88.59 9921.92

14:18:54 3199.30 53.15

14:19:04 4057.46 .00

Average: 2443.91 3598.50
The percentage seen before can be high,
But the swap rate shown here should be low.
Ideally it is near zero after a rampup time.
High rates can indicate memory shortages.

61 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - Memory pressure — faults and reclaim

root

File Edit Wiew Scrollback Bookmarks Settings Help

pPgpginss pgpgoutss faultss majfltss pgfreerss pgscankss pgscandss pgstealss Ssvmetf
109. 45 3236.32 634,83 1.99 4710.95 Q.00 Q.00 Q.00 Q.00
174.00 12.00 109. 00 1.00 TE. 50 Q.00 Q.00 0. 00 .00

0. 00 12.00 35.00 0.00 71.00 Q.00 Q.00 0. 00 0.00
826.00 3227910.00 1697.00 2.50 G45359.00 GG06G6.350 S424.50 4285, 50 89,92
SF7.11 F153932.03 4z. 28 1.49 178377.61 110505. 47 95352.24 178305.97 B86. 20
S88.12 &79320.79 42,07 1.49 169312.87 101317.82 94495, 54 189250, 00 285.43
1040, 00 S88822.00 62.00 2.50 171417.50 99329.50 100065.50 171355.50 85.94
G928, 04 S63082. 35 45,359 2.45 165792.6% 93984.80 9353946.57 165715, 69 87 .25
1212.12 52404E8. 48 84.34 4.55 155524.75 [0932. 32 B7934.85 155378. 28 B86.87
595,07 215950.74 58. 47 2.48 S4027.09 27919.70 32992.81 S3003. 45 28. 49
S558.00 159790.00 43.50 1.50 323I\1832.00 18968.50 21232.00 38122.50 94 .83
1569.85 21949.75 102.51 4.02 2976, 38 32144.72 2990, 95 SBG6E. B4 95.65
1081 .55 S27207 .77 21=2.59 1.45 134243, 20 65822 .33 Q02532.40 134170.87 85.97
17128.59 70293&5.88 52,31 2.51 176172.27 B6268.34 118320.10 175107.54 25.08
1237 .44 883623.65 42,86 1.428 171228.57 B83524.14 114011.332 171166.01 86.61
1269, 39 699144,.90 44,39 1.52 173979.08 B8918l1.63 112045.41 173909.69 86,42
1591 .54 &677327.36 62.19 2.49 171114.93 B9499 .00 104974.132 171048.26 87.95
1979.70 285857.87 1432.15 4.57 689777.16 37740.81 44834 .01 69590 . 86 84,28
458, 00 20.00 S7.00 1.00 156. 50 Q8. 00 Q.00 Q5. 00 97 .96
433751 .72 S944, 83 1818.23 24.14 109168.97 3466, 01 210573.89 108376.85 =0.63
924042 . 00 3236.00 248.50 25.50 221500.50 2384 .50 4514432.00 231027.50 49. 81
SR6810. 00 214.00 225.00 25.00 226950.50 2117.00 447010.00 226805.50 S0. 45
917504 . 00 1280.00 206.00 38.00 220020.50 2225.00 450268. 00 229486, 50 49.62
2865062, 00 3248.00 454, 00 SB.00 216892.50 FE7T7 .00 419680.50 215976, 00 =0. 349
12.06 20.10 42.21 o. o0 267 .84 160. 280 15.08 17s.88 100.00
F70.15 123.38 201.99 9.95 266.17 131.34 .00 130.85 99,62
484 . 42 20.10 64, 32 2.51 263.82 192.96 Q.00 192. 98 100.00
16,00 20.00 38.50 o.50 96, 00 @.00 Q.00 Q.00 ©.00
Q.00 20.00 35. 00 o. o0 95.50 Q.00 Q.00 Q.00 Q.00
2700, 00 318.00 698. 00 Q.00 2234300 3201 .00 .00 287 .00 95.35
2.00 20.00 35.00 0.00 60, 50 Q.00 Q.00 0. 00 0.00

Q.00 20.00 36.00 0.0 61 .50 @.00 Q.00 Q.00 ©.00

Smmo 1 msnsTa =D oo 10 0 Os 1ATIES 17 FTeAT 0 naADSa 3D 1 AsTOT 20 o=

Don't trust pgpgin/-out absolute values

Faults populate memory

Major faults need I/0

Scank/s 1s background reclaim by kswap/flush (modern)
Scand/s is reclaim with a “waiting” allocation

Steal is the amount reclaimed by those scans

62 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

SAR - System Load

root@h42lp42

File Edit View Terminal Help

fl4:14:55 rung-sz plist-sz ldavg-1 ldavg-5 ldavg-15
14:15:05 3 a7 3.76 3.69 3.76
14:15:15 4 a7 4.10 3.76 3.72
14:15:25 3 88 4.54 3.87 3.76
14:15:35 2 89 4.45 3.87 3.76
14:15:45 2 a7 4.760 3.94 3.78
Average: 3 88 4.31 3.83 3.74

Runqueue size are the currently runnable programs.

It's not bad to have many, but if they exceed the amount
of CPUs you could do more work in parallel.

Plist-sz is the overall number of programs, if that is always

growing you have likely a process starvation or connection issue.

Load average is a runqueue length average for 1/5/15 minutes.

63

March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Sysstat - iostat

» Characteristics: Easy to use, information on disk device level
= Objective: Detailed input/output disk statistics

» Usage: iostat -xtdk [interval in sec]

» Package: RHEL: sysstat.s390x SLES: sysstat

= Shows
— Throughput
—Request merging
—Device queue information
—Service times

" Hints
—Most critical parameter often is await

 average time (in milliseconds) for I/O requests issued to the device to be served.
* includes the time spent by the requests in queue and the time spent servicing them.

— Also suitable for network file systems

64 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

lostat

= Qutput sample:

Time: 10:56:35 AM

Device: rrgm/s wram/s
dasda 0.19 1.45
dasdb 0.02 232.93
Time: 10:56:36 AM

Device: rrgm/s wram/s
dasda 0.00 0.00
dasdb 0.00 1981.55
Time: 10:56:37 AM

Device: rrgm/s wram/s
dasda 0.00 0.00
dasdb 0.00 2055.00

65 March 3, 2015

r/s
1.23
0.03

r/s
0.00
0.00

r/s
0.00
0.00

w/s
0.74
9.83

w/s
0.00
339.81

w/s
0.00
344.00

rkB/s
64 .43
0.18

rkB/s
0.00
0.00

rkB/s
0.00
0.00

wkB/s
9.29
975.17

wkB/s
0.00
9495.15

wkB/s
0.00
9628.00

avgrg-sz
74 .88
197.84

avgrg-sz
0.00
55.89

avgrg-sz
0.00
55.98

avgqu- sz
0.01
0.98

avgqu- sz
0.00
0.91

avgqu- sz
0.00
1.01

await
2.65
99.80

await
0.00
2.69

await
0.00
2.88

Recent versions are improved by reporting
reads/writes separately which is great as
they have vastly different characteristics

Linux-Performance-know it all series

svetm %util
0.80 0.16
1.34 1.33
svetm %util
0.00 0.00
1.14 38.83
svetm %util
0.00 0.00
1.19 41.00

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Sysstat - PIDSTAT

* Characteristics: Easy to use extended per process statistics
= Objective: Identify processes with peak activity

» Usage: pidstat [-w]|-r]|-d]

» Package: RHEL: sysstat SLES: sysstat

= Shows
— #-w" context switching activity and if it was voluntary
— -y memory statistics, especially minor/major faults per process
—#-d” disk throughput per process

" Hints
— Also useful if run as background log due to its low overhead
» Good extension to sadc in systems running different applications/services

—“-p <pid>" can be useful to track activity of a specific process

66 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Pidstat examples

12
12
12
12

12
12
12
12

12
12
12
12

67

:46:
:46:
:46:
:46:

247
: 47
247
: 47

:49:
:49:
:49:
:49:

March 3, 2015

18
18
18
18

:51
:51
:51
:51

18
18
18
18

PM
PM
PM
PM

PM
PM
PM
PM

PID cswch/s nveswch/s
3 2.39 0.00
4 0.04 0.00
1073 123.42 180.18

Y

Voluntarily / Involuntary

PID minflt/s majflt/s

985 0.06 0.00
992 0.04 0.00
1073 526.41 0.00

Faults per process

PID kB rd/s kB _wr/s

330 0.00 1.15
2899 4.35 0.09
3045 23.43 0.01

\

Command
smbd
sshd
Xorg

VSZ RSS %$MEM Command
15328 3948 0.10 smbd
5592 2152 0.05 sshd
1044240 321512 7.89 Xorg

kB _ccwr/s Command
0.00 sshd
0.04 notes2
0.00 audacious2

How much KB disk I/O per process

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Sysstat - mpstat

* Characteristics: Show statistics per processor

* Objective: ldentify imbalanced utilization or interrupt peaks
» Usage: mpstat -A <interval>

» Package: RHEL.: sysstat SLES: sysstat

= Shows
— -u utilization
— -1 <CPU|SCPU|ALL> Interrupts

" Hints
—Can be restricted to selected processor(s) (- P)

68 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Sysstat — mpstat example

" As one can see there are plenty of different (s)irg sources these days

*" IRQs

— Ordered horizontally per type and vertically per cpu

10:40:12 CPU EXT/s I/0/s AIO/s CLK/s EXC/s EMS/s TMR/s TAL/s
PFL/s DSD/s VRT/s SCP/s IUC/s CMS/s CMC/s CMR/s CIO/s QAI/s
DAS/s Cl15/s C70/s TAP/s VMR/s LCS/s CLW/s CTC/s APB/s ADM/s
CsC/s PCI/s MSI/s VIR/s VAI/s NMI/s RST/s
10:40:17 2.40 0.00 0.00 0.20 0.20 0.00 0.00
0.00 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.0Q 0.00 0.00 0.00 0.00
10:40:17 1.40 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00
[...]
— CPU IRQ type Rate per second

» SoftIRQs N
10:40:26 CPU HI/s TIMER/s NET_TX/s NET_RX/s BLOCK/s BLOCK_IOPOLL/s TASKLET/s SCHED
HRTIMER/s RC
10:40:31 0 0.00 0.60 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.
10:40:31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.

69

[...]

March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

DASD statistics

» Characteristics: Easy to use, very detailed
= Objective: Collects statistics of I/O operations on DASD devices
= Usage:

—enable: echo on > /proc/dasd/statistics

| Tool “dasdstat” available
—show: to handle that all-in-one

e Overall cat /proc/dasd/statistics e
e for individual DASDs tunedasd -P /dev/dasda

» Package: n/a for kernel interface, s390-tools for dasdstat

= Shows:
—various processing times:
Histogram of 1/0 between Histogram between
< Histogram of I/O till ssch _, ssch and IRQ . /O and End ‘ E d
Start ‘Build channel program | Processing data transfer Tell block dev layer n
wait till subchannel is from/to storage server Data has arrived
free
‘T Histogram of I/O times }i

70 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

DASD statistics — report

= Sample:
8"512b = 4KB <= request size < 16*512b =8KB

29432 dasd I/O requests
with 6227424 sectors(512B each)

<4 8 __16 32 _ 64 128 256 512 1k
_256 512 1M _2M __4M _ 8M _16M _32M _64M
Histogram of sizes¥(512B secs)
0 0 9925 3605 1866 4050 4102 933 2700
0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
0 0 0 0 0 0 0 1283 1249
0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch « look here for subchannel busy
2314 283 98 34 13 5 16 275 497
(0] 0 0 0 0 (0] 0 0 0
Histogram of I/O time between ssch and irq « look here for slow SAN
(V] 0 (o] 0 (V] (V] 0 14018 7189
(0] 0 0 0 0 (0] 0 0 0
Histogram of I/O time between irg and end
2733 6 5702 9376 5781 940 1113 3781 0
0 0 0 0 0 0 0 0 0
of req in chang at enqueuing (1..32)
0 2740 628 1711 1328 23024 0 0 0
0 0 0 0 0 0 0 0 0

* Hints

1ms <= response time <2 ms

2k 4k 8k 16k 32k 64k 128k
128M 256M 512 16 _ 26 _ 4G _>4G
2251 0 0 0 0 0 0
0 0 0 0 0 0 0
6351 7496 3658 8583 805 7 0
0 0 0 0 0 0 0
8917 5567 4232 7117 60 4 0
0 0 0 0 0 0 0
2402 1031 4758 27 4 3 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

—Also shows data per sector which usually is only confusing

71 March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

DASD statistics — look for subchannel busy issues

_ <4 8 __ 16 __ 32 __ 64 _128 _256 _512 _ 1k _ 2k _ 4k __8k _1l6k _32k _64k 128k
_ 256 _ 512 _ 1M __2M __4M __8M _leM _32M _64M 128M 256M 512M __1cG __2G __ 4G _>4G
Iiz:.ét-:]ogram of I/O time till ssch
2314 283 98 34 13 5 16 275 497 8917 5567 4232 7117 60 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= Time consists of
—“Build subchannel program (usually very fast)
—wait for a free subchannel (can be long without or too few HPAV)
—Please be aware that the x axis is scaling by 2"
1/0 time till ssch Number of
requests before
10000 the current one
9000
8000
7000 2+
o 6000
§ 5000
g 4000 O
ks 3000
* 2000 1-2
1000
0 N ~~
SOPFIPES T E S
time in us (in buckets)
72 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

FCP statistics

* Characteristics: Detailed latency information for FCP I/O
* Objective: Collect details of I/O operations on FCP devices
» Package: n/a (Kernel interface)

» Usage:
—enable

* CONFIG_STATISTICS=y must be set in the kernel config file

» debugfs is mounted at /sys/kernel/debug/

* For a certain LUN in directory
/sys/kernel/debug/statistics/zfcp-<device-bus-1id>-<WWPN>-<LUN>
issue echo on=1 > definition (turn off with on=0, reset with data=reset)

—view

e cat /sys/kernel/debug/statistics/zfcp-<device-bus-id>-<WWPN>-

<LUN>/data

= Hint
—FCP and DASD statistics are not directly comparable, because in the FCP case many

I/O requests can be sent to the same LUN before the first response is given. There is
a queue at FCP driver entry and in the storage server

73 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

FCP statistics

= Shows:

74

—Request sizes

in bytes (hexadecimal)

— Channel latency in ns Time spent on the FCP channel (internal transfer)

—Fabric latency in ns
— (Overall) latencies

Time spent in the FCP fabric (outside transfer)
whole time spent entry/exit of the zFCP layer in ms

SCSI stack| zfcp |1/O passes through| I/0 queued Eabric Completion |IRQ handlingl Completion
preps I/O |preps I/O| QDIO and z/VM | for transm. handling by zfcp |handled by SCSI
s o = & Y
o |® 8 = o S o2)
-7} & < = < = <[° 3 »|Z 9
28 2 28 Q2 N < 08 oJE
32 5 S D 2 23 ® D¢ 0o
= 7] Q< oo a @ = n 1< -
Q» — ® o < A 2 |o 0 =
n | » ~ o (o) [®)] [WIoX E)" ()]
el O Q Qo 3la
o3 < = o
o | =<
e __ Channel > Fabric | Channel _
_Seenin | Overall Latency . een in
blktrace blktrace
March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

FCP statistics

* On popular request — the “where to complain” color coding
— Linux developers / Distributor in general

— zfcp/qdio (optional also z/\VVM) developers
— FCP card HW/FW stack

75

SCSI stack| zfcp |1/O passes through| I/0 queued Eabric Completion |IRQ handling] Completion
preps I/O |preps I/O| QDIO and z/VM | for transm. handling by zfcp |handled by SCSI
Il % N _ Py
o|® X3) o) = 2 1
o g3 g9 gs 3 P 0|3
o | 7 o8 o @ o3 < 03 3
S 88 8% g2 5 & 3 o
gl 3 3|z 3| 3|o — -~ < ==
Q» — ® o < A @0 0 =
ge 3 = 2 o 29 58
QD ~2 Lo
o | =<
e __ Channel > Fabric | Channel _
_Seenin | Overall Latency . een in
blktrace blktrace
March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

FCP statistics example — rather unreadable

cat /sys/kernel/debug/statistics/zfcp-0.0.1700-0x5005076303010482-0x4014400500000000/data

request_sizes_scsi_read 0x1000 1163 <@ request size 4KB, 1163 occurrences
request_sizes_scsi_read 0x80000 805

request_sizes_scsi_read 0x54000 47
request_sizes_scsi_read 0x2d000 44
request_sizes scsi_read 0x2a000 26
request_sizes_scsi_read 0x57000 25
request_sizes scsi_read 0x1e000 25

i:cl'tencies_scsi_read <=11076 - response tlme <= lms

latencies scsi_read <=2 205
latencies scsi_read <=4 575
latencies scsi read <=8 368
latencies scsi read <=16 0

channel_latency_read <=16000 0 Channel response time <= 32Us
channel latency read <=32000 983 -« .
channel_latency_read <=64000 99 = all below driver

channel latency read <=128000 115
channel latency read <=256000 753
channel latency read <=512000 106
channel latency read <=1024000 141
channel latency read <=2048000 27
channel latency read <=4096000 0O

Fabric response time <= lms
= once leaving the card

fabric_latency read <=1000000 1238 -
fabric_latency read <=2000000 328
fabric_latency read <=4000000 522
fabric_latency read <=8000000 136
fabric_latency read <=16000000 0

76 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

FCP statistics example

= Some statistics are per device

= Some per adapter
— Adapter statistics can not be reset

* Example beautifying the same data with a little script (not public yet)

per device latency statistics (f - fabric; ¢ - channel)

disk rd-fmin rd-fmax rd-fsum rd-favg rd-cmin rd-cmax rd-csum
sda 92 130 1386 126.00 7 10 98
sdb 127 131 2072 129.50 7 10 140
sdc 126 140 2075 129.69 7 14 145
sdd 126 132 1160 128.89 7 8 74
[...]

sdbd n/a n/a 0 0.00 n/a n/a 0
sdbe n/a n/a 0 0.00 n/a n/a 0
per adapter statistics

adapter (subch/dev) rd-cnt rd-mb rd-avgsz wr-cnt
0.0.0004/0.0.1700 4899 18 3.76 11572
0.0.000c/0.0.1800 4901 16 3.34 11564
0.0.0046/0.0.5100 4765 16 3.44 11595
0.0.00e2/0.0.5b00 1888 5 2.71 0

77 March 3, 2015 Linux-Performance-know it all series

rd-cavg

wr -mb
1249
1265
1254
0

8

.91
8.75
9.

8.22

06

.00
.00

rd-cnt

Wr-avgsz

110.
112.

110

52
02

.75
0.

00

11
16
16

9

| wr-*

[..wr/cmd]

cmd-cnt sec-active

240
236
239
160

17324
17325
17318
17309

© 2015 IBM Corporation

Linux on System z Performance Evaluation

lotop

* Characteristics: simple, top like I1/O monitor

* Objective: Check which processes are doing 1/O
» Usage: iotop

» Package: RHEL.: iotop SLES: iotop

= Shows
—Read/Write per thread
—Can accumulate (-a) for updating summaries instead of live views
» Useful for Disk I/O tests that don't account on their own

— Separate accounting for swap

* Hints
—Can be restricted to certain processes via (-p)
—Has a batch mode like top

78 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

lotop - examples

= Example [: disk 1/0O can be spread other than expected System wide
totals
Total DISK READ: 24,05 M/s | Total DISK WRITE: 31.19 K/s
TID PRIO USER JISK READ DISK WRITE N\SWAPIN 10> COMMAND
7204 be/4 qemu 378.16 K/s 0.00 B/s 1.00 % 6.16 % gemu-system-s390x -machine accel=kvm -name pl035002 -5 -me
7231 be/4 qemu 350.87 K/s 0.00 B/s 1.00 % 6.08 % gemu-system-s390x -machine accel=kvm -name pl035002 -5 -me
7225 be/4 qemu 343.08 K/s 19.49 K/s 1).00 % 6.00 % gemu-system-s390x -machine accel=kvm -name p1035002 -5 -me
7228 be/4 qemu 346.97 K/s 0.00 B/s 1.00 % 6.00 % gemu-system-s390x -machine accel=kvm -name pl035002 -5 -me
7174 be/4 qemu 362.57 K/s 0.00 B/s 1.00 % 5.96 % qemu-system-s390x -machine accel=kvm -name pl035002 -5 -me
7203 be/4 qemu 393.76 K/s 0.00 B/s .00 % 5.94 % gemu-system-s390x -machine accel=kvm -name pl035002 -S -me
Read / Write

per process

= Example Il: even interesting for memory bound (overcommitted) loads

08:13:16 Total DISK READ: 971957.16 K/s | Total DISK WRITE: 180500 41 K/s

TIME TID PRIO USER DISK READ DISK WRITE [SWAPIN T0 | COMMAND
08:13:16 8950 be/4 root 7732.35 K/s 0.00 K/s 35.54 % 2.99 % | /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8953 be/4 root 4057.11 K/s 0.00 K/s/23.10 % 2.98 % | /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8947 be/4 root 6496.12 K/s 0.00 K/s|28.59 %| 2.86 % | /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8891 be/4 root 6563.95 K/s 0.00 K/s|42.70 %| 2.78 % | /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8945 be/4 root 6790.11 K/s 0.00 K/s 30.59 % 2.76 % /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8958 be/4 root 7033.54 K/s 0.00 K/s 30.03 % 2.74 % /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
08:13:16 8960 be/4 root 5374.43 K/s 0.00 K/5.24.38 % 2.71 % , /mempighd-pf2 -s 2240 -d 1200 -p 32 -w 32 -x |
% of time while % of time waiting
swapping in for I/O

79 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Lszcrypt / icastats

* Characteristics: overview of s390 crypto HW and libica usage
* Objective: am | really using my crypto hardware

» Usage: “1szcrypt -VV[V]”“cat /proc/icastats’

* Package: RHEL: s390utils-base SLES: s390-tools

lszcrypt -VV Cat/proc/icastats
card02: CEX3C online hwtype=9 depth=8 function | # hardware | # software
request_count=443 —--------- + +
card03: CEX3A offline hwtype=8 depth=8 SHA-1 | |
request_count=0 SHA-224 | |
SHA-256 | |
SHA-384 | |
SHA-512 | |
RANDOM | 187109 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

MOD EXPO
RSA CRT
DES ENC
DES DEC

3DES ENC

3DES DEC
AES ENC
AES DEC
CMAC GEN
CMAC VER

* Never assume your HW correctly is used until you confirmed it
—If not going via libica (e.g. Java pkcs#11 you won't see it in icastat)

2574106
2075854
0
0

O O O O OO OO0 O OO oo oo

80 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Isqeth

* Characteristics: overview of network devices

* Objective: check your network devices basic setup
» Usage: “1sgeth -p’

» Package: RHEL: s390-utils-base SLES: s390-tools

lsgeth -p

devices CHPID interface cardtype port chksum prio-g'ing rtr4 rtré6 lay'2 cnt
0.0.e000/0.0.e001/0.0.e002 x84 ethl OSD_10GIG 0 SW always_g 2 n/a n/a 1 64
0.0.e100/0.0.e101/0.0.e102 x85 eth? OSD_10GIG 0 SW always_g 2 n/a n/a 1 64
0.0.£200/0.0.£201/0.0.£202 x6B ethO0 0sD_1000 0 hw always_g 2 no no 0 64

= Check for layer, offload, and buffer counts

—More buffers are usually better especially for massive amounts of concurrent
connections

81 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Ethtool |

* Characteristics: overview of network device capabilities / offload settings

* Objective: check your network device (offload) settings
» Usage: “ethtool <dev>", “ethtool -k <dev>"
* Package: RHEL.: ethtool SLES: ethtool

ethtool ethl
Settings for ethl:

Supported ports: [FIBRE]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full
10000baseT/Full

Supported pause frame use: No

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full
10000baseT/Full

Advertised pause frame use: No

Advertised auto-negotiation: Yes

Speed: 10000Mb/s

Duplex: Full

Port: FIBRE

PHYAD: O

Transceiver: internal

Auto-negotiation: on

Link detected: yes

* Check e.g. announced speeds

82 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Ethtool Il

» Offload Settings via “ethtool -k <dev>"

* Changes via upper case “-K”

ethtool -k ethl
Features for ethl:
rx-checksumming: off [fixed]
tx-checksumming: off
tx-checksum-ipvd: off [fixed]
tx-checksum-ip-generic: off [fixed]
tx-checksum-ipv6: off [fixed]
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]
scatter-gather: off
tx-scatter-gather: off [fixed]
tx-scatter-gather-fraglist: off [fixed]
tcp-segmentation-offload: off
tx-tcp-segmentation: off [fixed]
tx-tcp-ecn-segmentation: off [fixed]
tx-tcpb-segmentation: off [fixed]
udp-fragmentation-offload: off [fixed]
generic-segmentation-offload: off [requested on]
generic-receive-offload: on
large-receive-offload: off [fixed]
rx-vlan-offload: off [fixed]
tx-vlan-offload: off [fixed]
[...]

[...]

ntuple-filters: off [fixed]
receive-hashing: off [fixed]
highdma: off [fixed]
rx-vlan-filter: on [fixed]
vlan-challenged: off [fixed]
tx-lockless: off [fixed]
netns-local: off [fixed]
tx-gso-robust: off [fixed]
tx-fcoe-segmentation: off [fixed]
tx-gre-segmentation: off [fixed]
tx-udp_tnl-segmentation: off [fixed]
fcoe-mtu: off [fixed]
tx-nocache-copy: off

loopback: off [fixed]

rx-fcs: off [fixed]

rx-all: off [fixed]
tx-vlan-stag-hw-insert: off [fixed]
rx-vlan-stag-hw-parse: off [fixed]
rx-vlan-stag-filter: off [fixed]

" |n some cases external influences like OSA-layer2 prevent most offloads

(the example here)

83 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

84

Don't miss preparation

= Of all tools preparation is clearly
—The most important
—The most effective

" Prepare
— System and Workload descriptions Prepare
— Healthy system data for comparison

H Gather

A

- 1
Gather lessons learned |
—In case of emergency :

problem occurs
need assistance

" Report
—How to report a Problem Description Solve
* Solve

analysis
H Report

—Tools to start an analysis

March 3, 2015 Linux-Performance-know it all series

‘more info

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Don't miss preparation

This is like “Heisenbergs uncertainty principle”
The more time you put into preparation,
the less time you'll need to solve issues
They fundamentally are never both huge,
What do you prefer?

= Of all tools preparation is clearly
—The most important
—The most effective

T
S B

" Prepare
— System and Workload descriptions
— Healthy system data for comparison
= Gather Prepare
—In case of emergency
" Report

—How to report a Problem Description \\ @/

" Solve JA L y

—Tools to start an analysis more info (

ce

e

85 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Don't miss preparation

This is like “Heisenbergs uncertainty principle”
The more time you put into preparation,
the less time you'll need to solve issues
They fundamentally are never both huge,
What do you prefer?

" Of all tools preparation is clearly
—The most important
—The most effective

—— \)

" Prepare / \
— System and Workload descriptions
—Healthy system data for comparison >

" Gather tepate e

—In case of emergency

" Report \ %
—How to report a Problem Description “A &/
N L

|
Solve . Q ;;;;; moremfo(
—Tools to start an analysis -~

.. combined with Murphy: there is always a bug

86 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Don't miss preparation

This is like “Heisenbergs uncertainty principle”
The more time you put into preparation,
the less time you'll need to solve issues
They fundamentally are never both huge,
What do you prefer?

" Of all tools preparation is clearly
—The most important
—The most effective

T N
" Prepare
— System and Workload descriptions @ @

—Healthy system data for comparison
" Gather Prepare e

—In case of emergency @

" Report 4
—How to report a Problem Description \A &/
O /

|
Solve . S T
—Tools to start an analysis — >

.. combined with Murphy: there is always a bug
That means with enough preparation you'll
surely get a bug that no one can fix, so you least get
famous for finding the final bug

87 March 3, 2015 Linux-Performance-know it all series BM Corporation

Linux on System z Performance Evaluation

88

Share: Your chance to win ... some love

" Thanks for staying with me, now your final test

" When should you start using all those tools?

" Valid answers:
— prior to error
—tomorrow
—in preparation
—better soon
—with any new hire
—immediately y
—“silence” as you are already busy planning to work with it

March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Thanks (and complaints) go to

Christian
Ehrhardt

Linux on System z Performance Evaluation

End of Part |l

Linux on System z Performance Evaluation

Agenda

Basic Intermediate Advanced Master Elite

— Utilization —General — Strace —Perf —Cachestat
—Scheduling thoughts —Ltrace —slabtop —Smem
—Page Cache —Sysstat —Lsof —Blktrace —Valgrind
—Swapping ~ —Dasdstat —Lsluns —Ziomon —Irgstats

—3csi 110 —Multipath —Tcpdump —Wireshark
—top §tatistics —hyptop —Java Health Center —Kernel
—ps ~lotop —Dstat —Java Garbage Tracepoints
—vmstat —Lszcrpt —Htop Collection and — Systemtap

—icastats _ Netstat Memory visualizer

—Lsqgeth _Socket —Jinsight

— Ethtool Statistics \

—Preparation —|ptraf %

91 March 3, 2015 Linux-Performance-know it all series ‘//

Linux on System z Performance Evaluation

STRACE

* Characteristics: High overhead, high detail tool

* Objective: Get insights about the ongoing system calls of a program
» Usage: strace -p [pid of target program]

» Package: RHEL.: strace SLES: strace

= Shows

— Identify kernel entries called more often or taking too long
» Can be useful if you search for increased system time

—Time in call (-T)
—Relative timestamp (- r)

" Hints

—The option ~-c” allows medium overhead by just tracking counters and
durations

92 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

strace - example

calls?

strace -cf -p 26802
Process 26802 atta
AProcess 26802 detlached

% time seconds usecs/call calls
58.43 0.007430 17 450 read
24 .33 0.003094 4 850 210 access
5.53 0.000703 4 190 10 open
4.16 0.000529 3 175 write
2.97 0.000377 2 180 munmap
1.95 0.000248 1 180 close
1.01 0.000128 1 180 mmap
0.69 0.000088 18 5 fdatasync
0.61 0.000078 0 180 fstat
0.13 0.000017 3 5 pause
100.00 0.012715 2415 225 total

93 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

LTRACE

» Characteristics: High overhead, high detail tool

» Objective: Get insights about the ongoing library calls of a program
» Usage: 1trace -p [pid of target program]

» Package: RHEL: Itrace SLES: Itrace

= Shows

— |ldentify library calls that are too often or take too long
» Good if you search for additional user time
» Good if things changed after upgrading libs

—Time in call (-T)
—Relative timestamp (- r)

= Hints

—The option “-c” allows medium overhead by just tracking counters and durations
—The option “- s~ allows to combine Itrace and strace

94 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Itrace - example

-cf -p 268
seconds usecs/call
46.765660 5845707 8 pause
0.445621 10 42669 strncmp
0.209839 25 8253 fgets
0.037737 11 3168 _ isoc99_sscanf
0.031786 20 1530 access
0.016757 10 1611 strchr
0.016479 10 1530 snprintf
0.010467 1163 9 fdatasync
0.008899 27 324 fclose
0.007218 21 342 fopen
0.006239 19 315 write
0.000565 10 54 strncpy
100.00 47.560161 59948 total

95 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Strace / Ltrace — full trace

" Without -c both tools produce a full detail log
—Via -f child processes can be traced as well

—Extra options “-Tr” are useful to search for latencies
follow time in call / relative timestamp

—Useful to “read” what exactly goes on when

Example strace'ing a sadc data gatherer

0.000028 write(3, "\0\0\0\0\O\O\O\17\0\0\O\O\O\O\O"..., 680) = 680 <0.000007>
0.000027 write(3, "\0\0\0\0\O\O\O\17\0\0\O\O\O\O\O"..., 680) = 680 <0.000007>
0.000026 fdatasync(3) = 0 <0.002673>
0.002688 pause() = 0 <3.972935>
3.972957 --- SIGALRM (Alarm clock) @ 0 (0)
0.000051 rt_sigaction (SIGALRM, {0x8000314c, [ALRM], SA_RESTART}, 8) = 0 <0.000005>
0.000038 alarm(4) = 0 <0.000005>
0.000031 sigreturn() = ? (mask now []) <0.000005>
0.000024 stat("/etc/localtime", {st_mode=S_IFREG|0644, st _size=2309, ...}) = 0 <0.000007>
0.000034 open("/proc/uptime", O_RDONLY) = 4 <0.000009>
0.000024 fstat(4, {st_mode=S_TIFREG|0444, st _size=0, ...}) = 0 <0.000005>
0.000029 mmap (NULL, 4096, PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x3fffd20a000 <0.000006>
0.000028 read(4, "11687.70 24836.04\n", 1024) = 18 <0.000010>
0.000027 close(4) = 0 <0.000006>
0.000020 munmap (0x3£££d20a000, 4096) = 0 <0.000009>
96 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

|sof

» Characteristics: list of open files plus extra details

= Objective: which process accesses which file in which mode
» Usage: 1sof +fg

* Package: RHEL: Isof SLES: Isof

= Shows
—List of files including sockets, directories, pipes
—User, Command, Pid, Size, Device
—File Type and File Flags

" Hints
—+fg reports file flags which can provide a good cross check opportunity

97 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Isof - example

COMMAND PID
crond 16129
/usr/1lib64/1d-2
crond 16129
crond 16129
crond 16129
crond 16129
crond 16129
dd 17617
dd 17617
dd 17617
dd 17617
/usr/lib64/14-2
dd 17617
dd 17617
dd 17617

TID

.16.s0

.16.s0

USER
root

root
root
root
root
root
root
root
root
root

root
root
root

FD
mem

Or
lu
2u
4r

cwd
rtd
txt
mem

Or
1w
2u

TYPE
REG

CHR
unix
unix

a_inode
unix

DIR

DIR

REG

REG

CHR
REG
CHR

FILE-FLAG

LG

RW

RW

0x80000
RW, 0x80000

LG
W,DIR, LG
RW, LG

DEVICE
94,1

1,3
0x0000001£1ba02000
0x0000001£1ba02000

0,9
0x0000001£5d3ad000

94,1
94,1
94,1
94,1

1,9
94,1
136,2

" You can filter that per application or per file
—Fd holds fdnumber, type, characteristic and lock information

* File descriptors can help to read strace/ltrace output
—Flags can be good to confirm e.g. direct 10, async 10
—Size (e.g. mem) or offset (fds), name, ...

98 March 3, 2015

Linux-Performance-know it all series

SIZE/OFF
165000

0to0
0to0
0to0

0

0to0
4096
4096
70568
165000

0to0
5103616
0to0

NODE
881893

2051
106645
106645

6675

68545
16321

2
1053994
881893

2055
16423
5

NAME

/dev/null
socket
socket
inotify
socket
/root

/
/usr/bin/dd

/dev/urandom
/root/test
/dev/pts/2

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Isluns

* Characteristics: overview of multipathing

» Objective: check your multipath setup hierarchy
» Usage: “1sluns -a’

» Package: RHEL: s390utils-base SLES: s390-tools

lsluns -a

adapter = 0.0.1700
port = 0x500507630900c7cl

lun
lun
lun
lun
lun
lun

adapter = 0.0.1780
port = 0x500507630903c7cl

[...1]

lun
lun
lun
lun
lun

lun =

0x4020402100000000
0x4020402200000000
0x4020402300000000
0x4021402100000000
0x4021402200000000
0x4021402300000000

0x4020402100000000
0x4020402200000000
0x4020402300000000
0x4021402100000000
0x4021402200000000

0x4021402300000000

/dev/sg0
/dev/sgl
/dev/sg2
/dev/sg3
/dev/sgd
/dev/sg5

/dev/sgl7
/dev/sg23
/dev/sg32
/dev/sg39
/dev/sg43

/dev/sg4d6

Disk
Disk
Disk
Disk
Disk
Disk

Disk
Disk
Disk
Disk
Disk

Disk

IBM:
IBM:
IBM:
IBM:
IBM:
IBM:

IBM:
IBM:
IBM:
IBM:
IBM:

IBM:2107900

2107900
2107900
2107900
2107900
2107900
2107900

2107900
2107900
2107900
2107900
2107900

" | sluns provides a hierarchical view which often easily identifies missing paths,

99

adapters or similar imbalances

= Adapter to WWPN associations can have concurring targets
—Low overhead, max fallback capability, best performance, ...

March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Multipath -I|

» Characteristics: overview of multipathing

» Objective: check your multipath setup configuration

» Usage: ‘mutlipath -11"

» Package: RHEL: device-mapper-multipath SLES: mutlipath-tools

multipath -11

swap-30f6

(36005076309f£c7c10000000000002022)

size=256G features='0"

"-+- policy='service-time 0°'
- 0:

" This also reports multipath.conf inconsitencies

* Check all reported parameters are what you thought them to be
—For example (in)famous rr_min_io renaming

'
AU W N

0:

O O O O O o o

20:
122
:0:21:
:20:
:26:
:0:19
:25:
:0:24:

100 March 3, 2015

1075986464
1075986464
1075986464
1075986464
1075986464

:1075986464

1075986464
1075986464

sdb
sdx
sdh
sdn
sdz
sdy
sdac
sdad

hwhandler='0' wp=rw

dm-2 IBM

prio=0 status=active
8:16

65:

112

8:112
8:208

65:
65:
65:
65:

144
128
192
208

active
active
active
active
active
active
active
active

Linux-Performance-know it all series

ready
ready
ready
ready
ready
ready
ready
ready

running
running
running
running
running
running
running
running

, 2107900

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Hyptop

* Characteristics: Easy to use Guest/LPAR overview

* Objective: Check CPU and overhead statistics of your and sibling images
» Usage: hyptop

* Package: RHEL: s390utils-base SLES: s390-tools

= Shows
—CPU load & Management overhead
—Memory usage (only under zZVM)
— Can show image overview or single image details

" Hints
— Good “first view” tool for linux admins that want to look “out of their linux”
—Requirements:

* For z/VVM the Guest needs Class B
» For LPAR “Global performance data control” checkbox in HMC

101 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

~ Why are exactly 4 CPUs used ' S RISTEN
“in all 6 CPU guests #opu cpu Cpur Online nenuse Memmax weur
‘ : (%) (hn)) _(C18) (Gi5)

Al these do not fully
 utilize their 2 CPUs

102 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

DSTAT

» Characteristics: Live easy to use full system information
» Objective: Flexible set of statistics
» Usage: dstat -tv —aio —disk-util -n —net-packets -i —ipc
. -D total,[diskname] —top-io [...] [interval]
» Short: dstat -vtin
» Package: RHEL: dstat SLES: n/a WWW: http://dag.wieers.com/home-made/dstat/
= Shows
— Throughput
— Utilization
—Summarized and per Device queue information
—Much more ... it more or less combines several classic tools like iostat and vmstat

" Hints
— Powerful plug-in concept
e “--top-1i0” for example identifies the application causing the most I/Os

— Colorization allows fast identification of deviations

103 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Dstat — the limit is your screen width

Report nice bugs to bug-coreutils@gnu.org

GNU coreutils home page: <http://www.gnhu.org/software/coreutils/>

General help using GNU software: <http://www.gnu.org/gethelp/>

For complete documentation, run: info coreutils 'nice invocation'

[root@r3729001 ~]# nice -n 1 dstat -tv --aio --disk-util -n --net-packets -i --ipc -D total,sda --top-io --noupdate 5

4137
1708
1626
1325
1258
1601

- similar to iostat
(also per device)

o000 ets -i --ipc -D total,sda --top-io --noupdate 5

sshd

postgres:
postgres:
postgres:
postgres:
postgres:
postgres:

0D O T OTTTOTOT

104 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

HTOP

» Characteristics: Process overview with extra features
* Objective: Get a understanding about your running processes
» Usage: htop
* Package: RHEL: n/a SLES: n/a WWW: http://htop.sourceforge.net/
=" Shows

—Running processes

— CPU and memory utilization

—Accumulated times

—1/O rates
— System utilization visualization

" Hints
—Htop can display more uncommon fields (in menu)
—Able to send signals out of its Ul for administration purposes
—Processes can be sorted/filtered for a more condensed view

105 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

106

51981
51921
51953
51934
51923
51933
51942
51946
51979

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

20
20
20
20
20
20
20
20
20

[oNoNoNoNoNoNoNoNoNol

3264M
3264M
3264M
3264M
3264M
3264M
3264M
3264M
3264M

170M
164M
169M
174M
156M
154M
178M
139M
128M

168M
162M
166M
172M
153M
151M
175M
136M
126M

March 3, 2015

Linux-Performance-know it all series

nxxxoxwn=xxo>IO=IIOD

= WN W W
[cRoNoNoRoNoNoNoNo ol

e e e e e e

[cNoNoNoNoNoNoNoNoNo]

Tasks:

1

thr;

running

Load average: 42.03 16.67 6.24
Uptime:

:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.

61
57
62
64
55
55
68
47
38

[cNoNoNoNoNoNoNoNoNo]

:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.

26
25
27
27
26
26
31
22
21

424
398
280
269
269
251
205
200
187

[cNoNoNoNoNoNoNoNoNo]
[cNoNoNoNoNoNoNoNoNo]

:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.
:00.

87
83
89
91
81
81
99
69
59

© 2015 IBM Corporation

Linux on System z Performance Evaluation

netstat

* Characteristics: Easy to use, connection information
= Objective: Lists connections
» Usage: netstat -eeapn

* Package: RHEL: net-tools SLES: net-tools

= Shows
— Information about each connection
—\Various connection states

" Hints
—Inodes and program names are useful to reverse-map ports to applications

107 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

netstat -s

» Characteristics: Easy to use, very detailed information
= Objective: Display summary statistics for each protocol
» Usage: netstat -s

" Shows
—Information to each protocol
—Amount of incoming and outgoing packages
—Various error states, for example TCP segments retransmitted!

" Hints
—Shows accumulated values since system start, therefore mostly the differences
between two snapshots are needed
—There is always a low amount of packets in error or resets

— Retransmits occurring only when the system is sending data
When the system is not able to receive, then the sender shows retransmits

— Use sadc/sar to identify the device

108 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

netstat -s

= Qutput sample:

Tcp:
15813 active connections openings
35547 passive connection openings
305 failed connection attempts
0 connection resets received
6117 connections established
81606342 segments received
127803327 segments send out
288729 segments retransmitted
0 bad segments received.
6 resets sent

109 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Socket statistics

= Characteristics: Information on socket level

» Objective: Check socket options and weird connection states

» Usage: ss -aempi
* Package: RHEL: iproute-2 SLES: iproute2
= Shows

— Socket options

— Socket receive and send queues
—Inode, socket identifiers

= Sample output
ss -aempi
State Recv-Q Send-Q Local Address:Port
LISTEN 0 128 :::88h

users: (("sshd",959,4)) ino:7851 sk:ef858000
= Hints
—Inode numbers can assist reading strace logs
— Check long outstanding queue elements

110 March 3, 2015 Linux-Performance-know it all series

Peer Address:Port

. %

mem: (rO,w0,£0,t0)

© 2015 IBM Corporation

Linux on System z Performance Evaluation

IPTRAF

= Characteristics: Live information on network devices / connections

» Objective: Filter and format network statistics
» Usage: iptraf
» Package: RHEL.: iptraf / iptraf-ng SLES: iptraf

= Shows
— Details per Connection / Interface
— Statistical breakdown of ports / packet sizes
—LAN station monitor

= Hints
— Can be used for background logging as well
» Use SIGUSR1 and logrotate to handle the growing amount of data
—Knowledge of packet sizes important for the right tuning

—There are various other tools: iftop, bmon, ...
* like with net benchmarks no one seem to fit all

111 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

iptraf

" Questions that usually can be addressed
— Connection behavior overview
—Do you have peaks in your workload characteristic
—Who does your host really communicate with

" Comparison to wireshark
—Not as powerful, but much easier and faster to use
—Lower overhead and no sniffing needed (often prohibited)

IPTraf

Packet size brackets for interface etho al: 4 11089
10473

4120

i 6353

ICHP: 0 €]
Other IP: i]
Non-IP: 0 0

1to 75: 227! 751 to 825:
76 to 150: 3 826 to 900:
151 to 225: 25 901 to 975:
226 to 300: B4 976 to 1050:
301 to 375: 0 1651 to 1125:
376 to 450: 2 1126 to 1200:
451 to 525: i] 1201 to 1275:
526 to 600: 38 1276 to 1350:
601 to 675: 5 1351 to 1425:
676 to 750: 4 1426 to 1500+:

o

3
1
6

Total rates: 1.0 kbits/sec Broadcast packets:
1.2 packets/sec Broadcast bytes:

[
=]
=
LR S

Incoming rates: 0.7 kbits/sec
0.6 packets/sec
Interface HTU is 1500 bytes, not counting the data-link header IP checksum errors:
Haximum packet size is the HTU plus the data-link header length Outgoing rates: 0.3 kbits/sec
Packet size computations include data-link headers, if any 0.6 packets/sec

112 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

End of Part Il

113 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Agenda

Basic Intermediate Advanced Master Elite

— Utilization —General — Strace —Perf —Cachestat
—Scheduling thoughts —Ltrace —slabtop —Smem
—Page Cache —Sysstat —Lsof —Blktrace —Valgrind
—Swapping ~ —Dasdstat —Lsluns —Ziomon —Irgstats

—3csi 110 —Multipath —Tcpdump —Wireshark
—top §tatistics —hyptop —Java Health Center —Kernel
—ps ~lotop —Dstat —Java Garbage Tracepoints
—vmstat —Lszcrpt —Htop Collection and — Systemtap

—icastats _ Netstat Memory visualizer

—Lsqgeth _Socket —Jinsight

— Ethtool Statistics \

—Preparation —|ptraf %

114 March 3, 2015 Linux-Performance-know it all series ‘//

Linux on System z Performance Evaluation

Perf

» Characteristics: Easy to use profiling and kernel tracing

* Objective: Get detailed information where & why CPU is consumed
» Usage: perf (to begin with)

» Package: RHEL: perf SLES: perf

= Shows

—Sampling for CPU hotspots

» Annotated source code along hotspots
— CPU event counters
— Further integrated non-sampling tools

" Hints
—Without HW support only userspace can be reasonably profiled
—“successor” of oprofile that is available with HW support (SLES11-SP2)
—Perf HW support upstream, wait for next distribution releases

115 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

116

Perf

" What profiling can and what it can't
Search hotspots of CPU consumption worth to optimize
List functions according to their usage
- Search where time is lost (I/O, Stalls)

" Perf is not just a sampling tool
—Integrated tools to evaluate tracepoints like

EE I 11

“perf sched”, “perf timechart’, ...
* Other than real “sampling” this can help to search for stalls

— Counters provide even lower overhead and report HW and Software events

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

117

Perf profiling

" Perf example how-to

—Needs proper HW support to work well for the kernel (not yet in the field)
* Ignore and kernel profiling data until this is available!

—We had a case where new code caused cpus to scale badly

—perf record “workload”
* Creates a file called perf.data that can be analyzes

—We used “perf diff” on both data files to get a comparison

" “Myriad” of further options/modules
—Live view with perf top
—Perf sched for an integrated analysis of scheduler tracepoints
—Perf annotate to see samples alongside code
—Perf stat for a counter based analysis

—[..]

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Perf profiling

" Perf example (perf diff)

—found a locking issue causing increased cpu consumption

Baseline

12.

118 March 3, 2015

w W W O ©

.22%
.10%
.17%
.56%
.04%

Delta

+8.07%
+5.50%
+0.38%
+0.41%
+2.49%
+0.38%
-0.37%
-0.38%

[kernel.kallsyms]
[kernel.kallsyms]
reaim

reaim

[kernel .kallsyms]
libc-2.11.3.s0
reaim

libc-2.11.3.s80

Linux-Performance-know it all series

lock _acquire
lock _release
add_long
add_int
lock_acquired
msort_with_tmp
string rtns_1

strncat

© 2015 IBM Corporation

Linux on System z Performance Evaluation

RS, LMXHMCZ: Customize/Delete Activation Profiles - Mozilla Fir
. & https://Inxhmc2 boeblingen.de.ibm.com/hmec/content ?taskid=1902 &refresh=46€
Pe rf Stat = p re pa ratl O n El Customize Image Profiles: R37:R37LP01 : R37LP01 : Security
B R37.R37LP01 — Partition Security Options
= Ra7LPO1 ~ Global performance data control
General

~ Input/output (VO) configuration control
Processor

Securi + Cross partition authority

* Activate the cpu measurement facility Strsce

Options — Counter Facility Security Options
Load

—_— If not you'” encounter this Crypto (¥/Basic counter set authorization centrol

¥ Problem state counter set authorization control

~ Crypto activity counter set authorization control

Error: You may not have permission to collect stats.

~ Extended counter set authorization control

Consider tweaking /proc/sys/kernel/perf_event_paranoid ~Coprocessor group counter sets authorization conirol

B Sampling Facility Security Options |

Fatal: Not all events could be opened.

—Check if its activated
* separate for counter and sampling
* Basic and/or Diagnostic mode

lscpumf -1

CPU-measurement counter facility

[...]

Sampling facility information for cpum sf

[...]

Authorized sampling modes:
basic (sample size: 32 bytes)
diagnostic (sample size: 85 bytes)

[...]

119 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Perf stat - usage

perf stat
"*foobar*"

-B --event=cycles,instructions,r20,r21,r3,r5,sched:sched_wakeup

Performance counter stats for 'find / -iname *foobar*':

3,623,
1,515,
1,446,
757,
705,
576,

031,
404,
545,
589,
740,
226,

40

935
340
776
098
759
424
, 675

6.156288957

" Events

cycles # 0.000 GHz
instructions # 0.42 1insns per cycle
PROBLEM_STATE_CPU_CYCLES

PROBLEM_STATE_INSTRUCTIONS
L1I PENALTY CYCLES

L1D PENALTY CYCLES
sched:sched wakeup

seconds time elapsed

— Cycles/Instructions globally

—Note: counters are now readable, but aliases can still be used
* e.9.r20 = PROBLEM_STATE_CPU_CYCLES
* List of all existing events 1scpumf -C
* counters available to you 1scpumf -c

—Not only HW events, you can use any of the currently 163 tracepoints

120 March 3, 2015

Linux-Performance-know it all series

find / -iname

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Slabtop

* Characteristics: live profiling of kernel memory pools

= Objective: Analyze kernel memory consumption
» Usage: slabtop
* Package: RHEL: procps SLES: procps

= Shows
— Active / Total object number/size
— Objects per Slab
— Object Name and Size
— Objects per Slab

" Hints
—-0 is one time output e.g. to gather debug data
—Despite slab/slob/slub in kernel its always slabtop

121 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Slabtop - example

Active / Total Objects
Active / Total Slabs (
Active / Total Caches

Active / Total Size (%

Minimum / Average / Maximum Object

OBJS
578172
458316
368784
113685
113448
111872

54688
40272
39882
38505
37674

ACTIVE
578172
458316
368784
113685
113448
44251
50382
40239
39882
36966
37674

USE
100%
100%
100%
100%
100%

39%

92%

99%
100%

96%
100%

o)
)

(

(% used)
used)
% used)

used)

OBJ SIZE
.19K
.11K
.61K
.10K
.55K
.06K
. 25K
.00K
. 04K
.62K
.41K

O OO O OO OO o O

2436408 / 2522983
57999 / 57999
75 / 93
793128.19K / 806103.80K

(96.6%)

(100.0%)
(80.6%)

(98.4%)

0.01K / 0.32K / 8.00K

SLABS OBJ/SLAB CACHE SIZE

13766
12731
7092
2915
1956
1748
1709
5034
391
755
966

42
36
52
39
58
64
32
8
102
51
39

110128K
50924K
226944K
11660K
62592K
6992K
13672K
161088K
1564K
24160K
15456K

NAME

dentry

sysfs_dir cache
proc_inode_cache
buffer head
inode_cache
kmalloc-64
kmalloc-256
kmalloc-4096

ksm stable node
shmem inode cache
dm_rg_ target_io

" How is kernel memory managed by the sl[auo]b allocator used
—Named memory pools or Generic kmalloc pools
— Active/total objects and their size

—growth/shrinks of caches due to workload adaption

122 March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

BLKTRACE

* Characteristics: High detail info of the block device layer actions
* Objective: Understand whats going with your I/O in the kernel and devices
* Usage: blktrace -d [device(s)]
* Then: blkparse -st [commontracefilepart]
* Package: RHEL.: blktrace SLES: blktrace
= Shows
— Events like merging, request creation, 1/0O submission, I/O completion, ...
— Timestamps and disk offsets for each event

— Associated task and executing CPU
— Application and CPU summaries

" Hints
—Filter masks allow lower overhead if only specific events are of interest

—Has an integrated client/server mode to stream data away
* Avoids extra disk 1/0 on a system with disk I/O issues

123 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Blktrace — when is it useful

" Often its easy to identify that I/O is slow, but
— Where?
— Because of what?

" Blocktrace allows to
—Analyze Disk I/O characteristics like sizes and offsets
* Maybe your /O is split in a layer below
—Analyze the timing with details about all involved Linux layers
* Often useful to decide if HW or SW causes stalls

—Summaries per CPU / application can identify imbalances

124 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

The “blktrace” tool — block device events (simplified)

Merge with an
existing request

~ Need to Generate
anew request

S - Unplug on upper limit,
- Plug queue and wait for | | time reached or
follow-on request task switch

Dispatch from block
device layer to
device driver

dasdstat or scsi sysfs
statistics required to get
the complete picture

e — | Time from Dispatch
to Complete

125 March 3, 2015 Linux-Performance-know it all series

— O Mo O W »

X Cc 40 1T L

remap
bounced
complete
iIssued

front merge
get request
inserted
back merge
plug

queued
timer unplug
unplug

split

© 2015 IBM Corporation

Linux on System z Performance Evaluation

126

blktrace

" Example Case

—The snippet shows a lot of 4k requests (8x512 byte sectors)

* We expected the 1/O to be 32k

—Each one is dispatched separately (no merges)

* This caused unnecessary overhead and slow |/O

Maj/Min CPU

94,4
94,4
94,4
94,4
94,4
94,4
94,4
94,4
94,4
94,4

March 3, 2015

27
27
27
27
27
27
27
27
27
27

Seq-nr
21
22
23
24
25
26
27
28
29
30

O O O O O O oo oo

sec.nsec

.059363692
.059364630
.059365286
.059365598
.059366255
.059370223
.059370442
.059370880
.059371067
.059371473

Linux-Performance-know it all series

pid Action RWBS

18994
18994
18994
18994
18994
18994
18994
18994
18994
18994

A

OH QO » UOH QO

ZU e R e B B B B e

sect + size map source / task

20472832
20472832
20472832
20472832
20472832
20472840
20472840
20472840
20472840
20472840

+

+ + + + + + 4+ + o+

0O OO 0O GO G0 0 O O 0 0o

<

- (9415)

- (94,5)

20472640

[gemu - kvm]
[gemu - kvm]
20472648

© 2015 IBM Corporation

Linux on System z Performance Evaluation

blktrace

" Example Case

— Analysis turned out that the /O was from the swap code
« Same offsets were written by kswapd

— A recent code change there disabled the ability to merge 1/O
—The summary below shows the difference after a fix

Total initially

Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB
Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB
Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB
IO unplugs: 149,614 Timer unplugs: 2,940

Total after Fix

Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB
Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB
Reads Requeued: 0 Writes Requeued: 0
Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB
Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB
I0 unplugs: 337,130 Timer unplugs: 11,184

127 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

ziomon

» Characteristics: in depth zfcp based I/O analysis
" Objective: Analyze your FCP based I/O

» Usage: “ziomon” — “ziorep™”

» Package: RHEL: s390utils(-ziomon) SLES: s390-tools

ziomon Tools .]
ziorep _config

Collect data Generate reports
using ziomon using ziorep * ziorep_traffic }
T ziorep_utilization] ------ :

Target l

system Data Data

o

* Be aware that ziomon can be memory greedy if you have very memory constrained systems
* The has many extra functions please check out the live virtual class of Stephan Raspl
—PDF: http://www.vm.ibm.com/education/lvc/LVC0425.pdf
—Replay: http://ibmstg.adobeconnect.com/p7zvdjz0yye/

128 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

http://www.vm.ibm.com/education/lvc/LVC0425.pdf
http://ibmstg.adobeconnect.com/p7zvdjz0yye/

Linux on System z Performance Evaluation

TCPDump

* Characteristics: dumps network traffic to console/file
* Objective: analyze packets of applications manually
» Usage: “tcpdump ...”

* Package: RHEL: tcpdump SLES: tcpdump

tcpdump host pserverl

tecpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

13:30:00.326581 IP pserverl.boeblingen.de.ibm.com.38620 > plOlp35.boeblingen.de.ibm.com.ssh: Flags [.], ack 3142, win
102, options [nop,nop,TS val 972996696 ecr 346994], length 0

13:30:00.338239 IP pl0lp35.boeblingen.de.ibm.com.ssh > pserverl.boeblingen.de.ibm.com.38620: Flags [P.], seqg 3142:3222,
ack 2262, win 2790, options [nop,nop,TS val 346996 ecr 972996696], length 80
13:30:00.375491 IP pserverl.boeblingen.de.ibm.com.38620 > plOlp35.boeblingen.de.ibm.com.ssh: Flags [.], ack 3222, win

102, options [nop,nop,TS val 972996709 ecr 346996], length 0
[...]

AC

31 packets captured

31 packets received by filter

0 packets dropped by kernel

* Not all devices support dumping packets in older distribution releases
— Also often no promiscuous mode

* Check flags or even content if your expectations are met

= -w flag exports captured unparsed data to a file for later analysis in libpcap format
—Also supported by wireshark

= Usually you have to know what you want to look for

129 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Java Performance in general

* “Too” many choices
— There are many Java performance tools out there

* Be aware of common Java myths often clouding perception
= Differences

—Profiling a JVM might hide the Java methods
—Memory allocation of the JVM isn't the allocation of the Application

130 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Java - Health Center

» Characteristics: Lightweight Java Virtual Machine Overview
* Objective: Find out where memory is leaked, sub-optimally cached, ...
» Usage: IBM Support Assistant (Eclipse)

» Package: RHEL: n/a SLES: n/a WWW: ibm.com/developerworks/javal/jdk/tools/healthcenter
Java Agents integrated V5SR10+, V6SR3+, usually no target install required

= Shows
—Memory usage
—Method Profiling
—1/O Statistics
—Class loading
—Locking

" Hints
—Low overhead, therefore even suitable for monitoring
—Agent activation -Xhealthcenter:port=12345
— Can trigger dumps or verbosegc for in-depth memory analysis

131 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Health Center - example

[Method profike - 1BM Support Assistant Workbench

File Administration

Update Data Window

Help

|d|E|eed s mmy
E_\Statusm} “Ew =0
® Classes ® Filter methods: |
@ Environment @ ~ Samples Self (%) | Self
co .tmec.den omputingResourcesConsumer.gen
@ Garbage Collection & 94 0.35 0.78 org.apache.xml.dtm.ref.dom2dtm.DOM2DTM. addNodei{org.w3c.dom.Node, int, in
g 77 0.29 1.37 org.apache.xml.dtm.ref.dom2dtm.DOM2DTM.nextNode()
<o 9 44 016 0.49 org.apache.xml.dtm.ref.dom2dtm.DOM2DTM.processNamespacesAndAttributes (i
) Lodking Py 42 016 1.53 org.apache.xml.dtm.ref.dom2dtm.DOM2DTM. getHandleFromMNode (org.w3c.dom.!
42 016 0.16 org.apache.xml.dtm.ref. ExtendedType . equals(org.apache.xml.dtm.ref.ExtendedTy)
Memory @ 39 0.15 0.18 Jjava.lang.ClassLoader.defineClasslmpl(java.lang. String, byte[], int, int, java.lang.(
34 013 0.13 org.apache.xml.dtm.ref. DTMDefaultBase.ensureSizeOfindex(int, int)
o] Profiling & 25 0.093 0.26 org.apache.xml.dtm.ref. ExpandedNameTable.getExpandedTypelD(java.lang. String
24 0.089 0.19 java.lang.ClassLoaderloadClass(java.lang.String, hoolean)
4 Connection 22 =8 20 0.074 0.0 java.lang.Object.wait(long, int)
17 0.063 0.25 java.lang.J9VMIintemals.initialize(java.lang.Class)
16 0.06 0.06 java.lang.String.indexOf(int, int)
13 0.048 0.048 org.apache.xml.dtm.ref.dom2dtm.DOM2DTMFChainedHashMap.get(java.lang.Ob
_ ézzh;ll;izf\]\;elzjfast updated 13:04:32 12 0.045 1.65 org.apache.xml.dtm.ref. DTMManagerDefault. getDTMHandleFromNode(org.w3c.dc
&# Seme data was dropped because it was produced 12 0.045 0.045 sun.nio.cs.|SO_8859_13Encoder.encodeArrayLoopijava.nio.CharBuffer, java.nio.E
faster than the client could cansume it. Around 9% of 12 0.045 0.15 java.lang.J9VMIntemals.verifylmpl(java.lang.Class)
the data was ost 1 0.041 0.067 com.ibm.cds. CDSBundleFile. getEntry Gava.lang. String)
11 0.041 017 org.apache.xml.dtm.ref. DTMDefaultBase.indexNode(int, int) [+l
< oz \ bl
O Analysis and Recommendations &2 = B | @ Invocation paths 3 I 4 Called meﬂmds| (") ﬁmeline‘ =0
® The method [+] Methods that call C ResourcesC puLoad()
ComputingResourcesConsumer.generateCpul oad() is O ComputingResourcesConsumer.generateCpul oad
consuming approximately 96% of the CPU cydles. It may ¥ @ TMCCDemoServiet.handleHttpRequest (100%)
be a good candidate for optimization. ~ @ TMCCDemoServlet.doGet (100%)
s I @ HupServlet.service (100%)
-

= Example of method

profilinsgries

132 Linux-Performance-know it all

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Java - Garbage Collection and Memory Visualizer

* Characteristics: in-depth Garbage Collection analysis
* Objective: Analyze JVM memory management
» Usage: IBM Support Assistant (Eclipse)

* Package: RHEL: n/a SLES: n/a WWW: ibm.com/developerworks/javal/jdk/tools/gcmv
reads common verbosegc output, so usually no target install required

= Shows
—Memory usage
— Garbage Collection activities
—Pauses
—Memory Leaks by stale references

" Hints
—GCMV can also compare output of two runs
—Activate verbose logs -verbose:gc -Xverbosegclog:<log_file>

133 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Garbage Collection and Memory Visualizer

Data set 5 - IBM Support Assistant Workbench

Eile VGC Heap Data VGC Pause Data VGC Data Administration Update Views Window Help

Support Assistant

& Templates 5 M-c
(D Un-paused Time

(1) Performance

~ Object Sizes

yNative Memory

,Memory

,LOA and SOA Sizes

,Generational Heap

,Fragmentation
® Compaction Pauses

I&Kevzz =

Variants

[O

=

—gc.log (5)

Data

Eleal SOA (after collection

EIF!E& LOA (before collectio

Elm ratio

@Fme LOA (after collection)

@Fme tenured heap (before

El Heap size

EIF!E& SOA (after collectior|
-

[——za— bl

[1BM Monitoring and Diagnostic Tools... x

Tl Dataset5 & =
Tuning Tuning recommendation
recommendation
‘ @Your application appears to be leaking mermory. This is indicated by the used
Version heap increasing at a greater rate than the application workload (measured by
the amount of data freed). To investigate further see Guided debugging for Java
Summary
@The mean occupancy in the nursery Is 0%, This is low, so the gencon policy Is
Total S0A (after h 1 i '
collection probably an optimal policy for this workload,
i The mean occupancy in the tenured area is 0%. This is low, so you have
Free LOA (before
collection some room to shrink the heap if required.
Tit ratlo Version
Free LOA (after 1 IBM .9 200811_07
collection
eolection] Summary
Free tenured heap
before collection] | Allocation failure count 348
Heap size Concurrent collection count 0
Forced collection count 0
Free SOA (after
Solaction GC Mode gencon
Global collections - Mean garbage collection pause (ms) 0
Used LOA (before | glopal collections - Mean interval between collections (minutes) |0
collection - -
Global collections - Number of collections 0
Exclusive access | Global collections - Total amount tenured {MB) 0.0
times
Largest memory request [bytes) 48.0
Intervals between Minor collections - Mean garbage collection pause (ms) 0.95
marb:rse callection Minor collections - Mean interval between collections (ms) 178
Minor collections - Mumber of collections 343
w Minor collections - Total amount flipped (MB) 43
before collection - -
Minor collections - Total amount tenured (MB) 03
G scopes [NUISer Proportion of time spent in garbage collection pauses (%) 0.58
or_global ’ . o,
Froportion of time spent unpaused [%) 9947
Used LOA (after |Rate of garbage collection (MB/minutes) 76913
~allaction

Report Table data Line plot Structured data gc.log (5)

== O

[<]

data-

-

heap

= |

region

|
|
|

age

number of f

-

* Most important values / indicators are:

134

Linux-Performance-know it all series

—Proportion of time spent in gc pauses (should be less than 5%)
—For gencon: global collections << minor collections

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Java - Jinsight

* Characteristics: zoomable call stack
= Objective: Analyze method call frequency and duration

. Usage: jinsight_ trace -tracemethods <yourProgram> <yourProgramArgs>

* Package: RHEL: n/a SLES: n/a WWW: IBM alphaworks

= Shows
—Call Stack and time

" Hints
— Significant slowdown, not applicable to production systems
—No more maintained, but so far still working

135 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Jinsight Executlon Vlew

Options Zoom Selected Help Threads

pd

Threads

HostConfigllocalhost] Thread-19 Thread-26 Thread-27 Thread-28 Thread-30 Thread-31 Thread-32 Thread-5

e

[Thread-19] at time [51.13sec]

L [x

m Threads in columns, select one to zoom In

L|nux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Jinsight Execution View, continued
Method Call Stack —

ecution [Coloring by type] [Workspace 1]

Options Zoom Selected Help Threads

S (time) L
U< SIS TR RCHTE MexeCute eceCite ‘:.\ > [l po pure [SOLG etCof e CKEntr sUbAppenformat format comvert seflime format getTime expandCaget =
e e A T T DT SO
TOSETee Satute execute execute teini- 5o pom SQLCetCof heciEntt subAppenformat setlengihconvert sefTime Tormat getTine expandCaget
= = TR ———getT ransi getTransi

parser] —
narserIparse0)

Exec Updatelhaetriol —_— = — Time _expandCaget
executs texecute ucinit- getlevel checkEntrsubAppenformat format convert setTime format getTir
Topural SalGetCol P B
= — i T
FXECHT X ecule tex Ut [EoLCarCof (T SDARD N Tormat _convert _setlime Tarmat GetTT
SERWGrTSECom e E_iow ———
SendE puAa] —
parse [Wparseo s —
(G B TET parse0 parseF pa\ieo e Opee

| |Torcedlog TN AppenTsDTsable append TwT- doRppendgetlevel checkEntrsubApyenformat SeTLengTheamver sefTme Tarma append expandCagel
HEJW"“‘ getTranst XPANICager

doActifiereaTy
Gotoragly erReq o ctReq Mboap |
i e e e e evce [con 01 0t == = oo
= equals
sEIw(E sew\ce TJepser ;‘ — e T
———
o v doscle QoS ele Qi Goselec oo e
=
—= ——
Tohed, | > CEEEE R T o oo T
B oTeled deselec duselee o DN ——
rea execut|execute ueinit> Bire
————— = oA
=
calcutat calculat calcu 2l setorl JTSECOM_getDrv_fos eie] ToorT Wweeree
calculal, | calculfifdebug il Torced biealnsignealnstgpielease Cotlose |

lﬂ =] b b | thread named hread-19) at time 46 S4sec]

WL], UOIINIIX

* Many horizontal stages mean deep call stacks
* Long vertical areas mean long method execution
* Rectangles full of horizontal lines can be an issue

137 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

End of Part IV

138 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Agenda

Basic Intermediate Advanced Master Elite

— Utilization —General — Strace —Perf —Cachestat
—Scheduling thoughts —Ltrace —slabtop —Smem
—Page Cache —Sysstat —Lsof —Blktrace —Valgrind
—Swapping ~ —Dasdstat —Lsluns —Ziomon —Irgstats

—3csi 110 —Multipath —Tcpdump —Wireshark
—top §tatistics —hyptop —Java Health Center —Kernel
—ps ~lotop —Dstat —Java Garbage Tracepoints
—vmstat —Lszcrpt —Htop Collection and — Systemtap

—icastats _ Netstat Memory visualizer

—Lsqgeth _Socket —Jinsight

— Ethtool Statistics \

—Preparation —|ptraf %

139 March 3, 2015 Linux-Performance-know it all series ‘//

Linux on System z Performance Evaluation

140

Cachestat

* Characteristics: Simple per page views of caching

= Objective: Detect what parts of a file are in page cache
= Usage: Write — or search for example code

» Package: n/a (pure code around the mincore system call)

= Shows
—How much of a file is in cache

=" Hints
—We are now going from unsupported to non existent packages
— Still the insight can be so useful, it is good to know

March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Cachestat usage

./cachestat -v ../Music/mysong.flac
pages in cache: 445/12626 (3.5%) [filesize=50501.0K, pagesize=4K]

cache map:

0: |x]|x|x|x]|x|x]|x]|x]|
32: |x]|x|x|x]|x|x|x]|x|x]|x]|
64: |x|x|x|x|x|x|x|x|x|x|x]|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x]|x]|x|x]|x]
[«..]
320: |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x]|x|x]|x|x|x|x|x|x|x]|x|x]|x]|x]|
352: | x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x]|x|x]|x|x|x]|x|x|x|x|x|x]|x]|x]|
384: |x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x]|x|x|x|x|x|x|x|x|x|x|x]|x]|x]|
416: |x|[x|x| | | | |
2 I Y O
<V T O Y O
[oo.]
125765 | L0 L 0L LT T it
12608: | | {11 LT T 101101 Ix

* Here | show how much of a file is in cache while playing a song
—You'll see readahead here
—You'll also see the last block is almost always read in this case

141 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

smem

* Characteristics: Memory usage details per process/mapping

* Objective: Where is userspace memory really used

» Usage: smem -tk -c "pid user command swap VvSS uss pss rss”

" smem -m -tk -c "map count pids swap vsSs uss rss pss avgrss avgpss"

* Package: RHEL: n/a SLES: n/fa WWW http://www.selenic.com/smem/
" Shows

—Pid, user, Command or Mapping, Count, Pid

—Memory usage in categories vss, uss, rss, pss and swap

" Hints

—Has visual output (pie charts) and filtering options as well
—No support for huge pages or transparent huge pages (kernel interface missing)

142 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

smem — process overview

smem -tk -c¢ "pid user command swap vss uss pss rss”

PID
1860
1861

493
1882
1843

514

524
2171
1906
2196
1884

1
2203

User
root
root
root
root
root
root
root
root
root
root
root
root
root

Command

/sbin/agetty -s sclp_line0
/sbin/agetty -s ttysclp0 11
/usr/sbin/atd -f
/sbin/udevd

/usr/sbin/crond -n
/bin/dbus-daemon --system -
/sbin/rsyslogd -n -c¢ 5
./hhhptest

-bash

./hhhptest

sshd: root@pts/0

/sbin/init

/usr/bin/python /usr/bin/sm

" How much of a process is:
—Swap - Swapped out
—VSS - Virtually allocated
—USS - Really unique
—RSS - Resident
— PSS - Resident accounting a proportional part of shared memory

143 March 3, 2015

Linux-Performance-know it all series

0w
g,

o

o

O O O O O OO OO o o o o

= N}
= o (A
U WoWwUulowwhNN N

109.

VSS
1M
1M
.5M
. 8M
.4M
.2M
.TM
L71G
. 8M
.2G
.4M
. 8M
5M

92.

92.
172.
128.
628.
700.
992.

aANRE NP

Uss
0K
0K
0K
0K
0K
0K
0K
.0M
.4M
. 0M
.4M
.9M
1M

143.
143.
235.
267.
693.
771.

AW NN R

PSS
0K
0K
0K
0K
0K
0K
1M
.2M
.5M
.2M
.4M
. 0M
.2M

656.
656.
912.
764 .

[

O Wk w N wR

RSS
0K
0K
0K
0K
.4M
.5M
.9M
.2M
1M
.9M
.2M
.9M
.9M

© 2015 IBM Corporation

Linux on System z Performance Evaluation

smem — mappings overview

smem -m -tk -c¢ "map count pids swap vss uss rss pss avgrss avgpss"

Map Count PIDs Swap VSS Uss RSS PSS AVGRSS AVGPSS
[stack:531] 1 1 0 8.0M 0 0 0 0 0
[vdsol] 25 25 0 200.0K 0 132.0K 0 5.0K 0
/dev/zero 2 1 0 2.5M 4.0K 4.0K 4.0K 4.0K 4.0K
/usr/1ib64/sasl2/libsasldb.s0.2.0.23 2 1 0 28.0K 4.0K 4.0K 4.0K 4.0K 4.0K
/bin/dbus-daemon 3 1 0 404.0K 324.0K 324.0K 324.0K 324.0K 324.0K
/usr/sbin/sshd 6 2 0 1.2M 248.0K 728.0K 488.0K 364.0K 244 .0K
/bin/systemd 2 1 0 768.0K 564.0K 564.0K 564.0K 564.0K 564.0K
/bin/bash 2 1 0 1.0M 792.0K 792.0K 792.0K 792.0K 792.0K
[stack] 25 25 0 4.1M 908.0K 976.0K 918.0K 39.0K 36.0K
/1ib64/1ibc-2.14.1.s0 75 25 0 40.8M 440.0K 9.3M 1.2M 382.0K 48.0K
/1ib64/libcrypto.so.1.0.0j 8 4 0 7.0M 572.0K 2.0M 1.3M 501.0K 321.0K
[heap] 16 16 0 8.3M 6.4M 6.9M 6.6M 444 .0K 422.0K
<anonymous> 241 25 0 55.7G 20.6M 36.2M 22.3M 1.4M 913.0K

" How much of a mapping is:
—Swap - Swapped out
—VSS - Virtually allocated
—USS - Really unique
—RSS - Resident
— PSS - Resident accounting a proportional part of shared memory
—Averages as there can be multiple mappers

144 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

smem - visualizations

name by rss

unused

other

424852 2011072
Inotes

soffice.bin
clementine

firefox
plasma-desktop

* Example of a memory distribution Visualization (many options)

* But before thinking of monitoring be aware that the proc/#pid/smaps
interface is an expensive one

145 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Valgrind

* Characteristics: in-depth memory analysis

* Objective: Find out where memory is leaked, sub-optimally cached, ...
» Usage: valgrind [program]

* Package: RHEL.: valgrind SLES: valgrind

= Shows
—Memory leaks
— Cache profiling
—Heap profiling

" Hints
—Runs on binaries, therefore easy to use
—Debug Info not required but makes output more useful

146 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Valgrind Overview

* Technology is based on a JIT (Just-in-Time Compiler)
" |ntermediate language allows debugging instrumentation

valgrind . :
crnec
translation
Replace :
sonrie of into IR
) New
The library y o »Syv;fzg;giﬂ

cal.ls by instrumentation

Using a

preload \/

library translation

libraries To machine code
147 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Valgrind — sample output of “memcheck”

valgrind buggy program
==2799== Memcheck, a memory error detector

==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info

==2799== Command: buggy program

==2799==

==2799== HEAP SUMMARY:

==2799== in use at exit: 200 bytes in 2 blocks
==2799== total heap usage: 2 allocs, 0 frees, 200 bytes allocated
==2799==

==2799== LEAK SUMMARY:

==2799== definitely lost: 100 bytes in 1 blocks
==2799== indirectly lost: 0 bytes in 0 blocks
==2799== possibly lost: O bytes in 0 blocks
==2799== still reachable: 100 bytes in 1 blocks
==2799== suppressed: 0 bytes in 0 blocks

==2799== Rerun with --leak-check=full to see details of leaked memory
[...]

" [mportant parameters:
— --leak-check=full
—--track-origins=yes

148 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Valgrind - Tools

= Several tools
—Memcheck (default): detects memory and data flow problems
— Cachegrind: cache profiling
—Massif: heap profiling
—Helgrind: thread debugging
—DRD: thread debugging
—None: no debugging (for valgrind JIT testing)
— Callgrind: codeflow and profiling

" Tool can be selected with —tool=xxx
= System z support since version 3.7 (SLES-11-SP2)
= Backports into 3.6 (SLES-10-SP4, RHEL6-U1)

149 March 3, 2015 Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Valgrind - Good to know

* No need to recompile, but
— Better results with debug info

— Gcc option -O0 might result in more findings(the compiler might hide some
errors)

— Gcc option -fno-builtin might result in more findings

» --trace-children=yes will also debug child processes

= Setuid programs might cause trouble
—Valgrind is the process container (— no setuid)

—Possible solution: remove setuid and start as the right user, check
documentation for other ways

" The program will be slower
—5-30 times slower for memcheck

150 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

IRQ Statistics

* Characteristics: Low overhead IRQ information

* Objective: Condensed overview of IRQ activity

» Usage: cat /proc/interrupts and cat /proc/softirgs
= Package: n/a (Kernel interface)

= Shows
—Which interrupts happen on which cpu
—Where softirgs and tasklets take place

" Hints
—Recent Versions (SLES11-SP2) much more useful due to better naming
— If interrupts are unintentionally unbalanced

— If the amount of interrupts matches 1/0O
 This can point to non-working IRQ avoidance

151 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

IRQ Statistics

" Example
—Network focused on CPU zero (in this case unwanted)
— Scheduler covered most of that avoiding idle CPU 1-3
—But caused a lot migrations, IPI's and cache misses

CPUO CPU1 CPU2 CPU3
EXT: 21179 24235 22217 22959
I/0: 1542959 340076 356381 325691
CLK: 15995 16718 15806 16531 [EXT] Clock Comparator
EXC: 255 325 332 227 [EXT] External Call
EMS: 4923 7129 6068 6201 [EXT] Emergency Signal
TMR : 0 0 0 0 [EXT] CPU Timer
TAL: 0 0 0 [EXT] Timing Alert
PFL: 0 0 0 0 [EXT] Pseudo Page Fault
DSD: 0 0 0 0 [EXT] DASD Diag
VRT: 0 0 0 0 [EXT] Virtio
SCP: 6 63 11 0 [EXT] Service Call
TUC: 0 0 0 0 [EXT] IUCV
CPM: 0 0 0 0 [EXT] CPU Measurement
CIO: 163 310 269 213 [I/0] Common I/0 Layer Interrupt
QAT: 1 541 773 338 857 354 728 324 110 [I/0] QODIO Adapter Interrupt
DAS: 1023 909 1384 1368 [I/0] DASD

[..] 3215, 3270, Tape, Unit Record Devices, LCS, CLAW, CTC, AP Bus, Machine Check

152 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

IRQ Statistics Il

" Also softirgs can be tracked which can be useful to

—check if tasklets execute as intended

—See if network, scheduling and I/O behave as expected

CPUO
HI: 498
TIMER: 5640
NET_ TX: 15
NET RX: 18
BLOCK: 0
BLOCK_TOPOLL: 0
TASKLET: 13
SCHED: 8055
HRTIMER: 0
RCU: 5028

153 March 3, 2015 Linux-Performance-know it all series

CpU1
1522
914
16
34

0

0

10
702
0
2906

CPU2
1268
664
52
87

0

0

44
403
0
2794

CPU3
1339
643
32
45

0

0

20
445
0
2564

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Wireshark

» Characteristics: Analyzes captured network traffic
» Objective: In depth analysis of handshakes, missing replies, protocols, ...
» Usage: Dump in libpcap or pcap-ng format (tcpdump, dumpcap)
then analyze on remote system via “wireshark”
» Package: RHEL: wireshark SLES: wireshark

" No “direct” invocation on System z usually
—e.g. on RHG6 there is not even a wireshark binary

= Scrolling huge files on Remote X isn't fun anyway
— Capturing tools are available

= Custom columns and profiles are important to visualize what you want to look for

" For more details you might start at

—The share sessions of Mathias Burkhard
https://share.confex.com/share/121/webprogram/Session13282.html|

— Official documentation http://www.wireshark.org/docs/wsug_html/

154 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

https://share.confex.com/share/121/webprogram/Session13282.html
http://www.wireshark.org/docs/wsug_html/

Linux on System z Performance Evaluation

Wireshark example

= 1. Dump via “tcpdump -w’ or wiresharks “dumpcap”
= 2. analyze on remote system via “wireshark”

tcpdump host pserverl -w traceme

tecpdump: listening on ethO, link-type EN1OMB (Ethernet), capture size 65535 bytes
AC40 packets captured

40 packets received by filter

0 packets dropped by kernel

i traceme [Wireshark 1.6.7] & & &
[écP ;O r}({ly system] File Edit Wiew Go Capture Analyze Statistics Telephony Tools |nternals Help
vreshart TR Bw @ LWKHOeC=E we - LY EHBE 2l @9 ¢4
Filter: Expression.. Clear Apply
.No. i Time : Source : Destination : Protocol: Length @ Info J2
6 0.004263 9.152.140.6 9.152.140.75 SSHvZ 87 Client Protocol: S5H-2.0-OpenSSH 5. 16r
8 0.004487 9.152.140.6 9.152.140.75 SSHvZ 858 Client: Key Exchange Init
S 0.004456 9.152.140.75 9.152.140.6 TCP 66 ssh = 39528 [ACK] Seq=22 Ack=814 Win=15984 Len=0 TSval=508020 TSe
10 0.005904 9.152.140.75 9.152.140.6 SEHvZ2 906 Server: Key Exchange Init
11 0.006115 9.152.140.6 9.152.140.75 SSHvZ 90 Client: Diffie-Hellman GEX Request
12 0.008949 9.152.140.75 9.152.140.6 SSHv2 218 Server: Diffie-Hellman Key Exchange Reply
13 0.010165 9.152.140.6 9.152.140.75 SSHvZ 210 Client: Diffie-Hellman GEX Init
14 0.013127 9.152.140.75 9.152.140.6 SEHvZ 786 Server: Diffie-Hellman GEX Reply
15 0.014771 9.152.140.6 9.152.140.75 SSHvZ 82 Client: New Keys
16 0.054688 9.152.140.75 9.152.140.6 TCP 66 ssh = 39528 [ACK] Seq=1734 Ack=9S8 Win=17568 Len=0 TSval=508025 'l_A

> Frame 7: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

> Ethernet II, Src: Ibm ec:b5:06 (5c:f3:fc:ec:b5:06), Dst: 46:41:4b:45:4c:4c (46:41:4b:45:4c:4c)

Internet Protocol Version 4, Src: 9.152.140.75 (9.152.140.75), Dst: 9.152.140.6 (9.152.140.8)

> Transmission Control Protocol, Src Port: ssh (22), Dst Port: 39528 (39528), Seq: 22, Ack: 22, Len: 0

0000 46 41 4b 45 4c 4c 5c f3 fc ec b5 06 08 00 45 00 FAKELLY. E.

0010 00 34 85 cc 40 00 40 06 B89 76 09 98 Bc 4b 09 98 L@@ v LKL

0020 Bc 06 0D 16 Sa 68 15 91 45 cd &d 16 37 59 80 10 h.. E.m.7Y..

0030 07 08 cb 24 00 00 01 01 08 0Oa 00 OF cO 74 3a 04 R t:.

0040 ed 42 .B

© File: "traceme" 8122 Bytes 00:00:00 : Packets: 40 Displayed: 40 Marked: 0 Load time: 0:00.058 - Profile: Defaulkt

=

155 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

Tracepoints (Events)

» Characteristics: Complex interface, but a vast source of information
* Objective: In kernel latency and activity insights

= Usage: Access debugfs mount point /tracing

» Package: n/a (Kernel interface)

= Shows
— Timestamp and activity name
— Tracepoints can provide event specific context data
— Infrastructure adds extra common context data like cpu, preempts depth, ...

= Hints
—Very powerful and customizable, there are hundreds of tracepoints

» Some tracepoints have tools to be accessed “perf sched”, “blktrace” both base on them
» Others need custom postprocessing

— There are much more things you can handle with tracepoints check out
Kernel Documentation/trace/tracepoint-analysis.txt (via perf stat)

Kernel Documentation/trace/events.txt (custom access)

156 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

157

Tracepoints — example I/l

" Here we use custom access since there was tool
—\We searched for 1.2ms extra latency
* Target is it lost in HW, Userspace, Kernel or all of them
—Workload was a simple 1 connection 1 byte<——1 byte load
—Call “perf 1ist” for a list of currently supported tracepoints

—We used the following tracepoints

Abbreviation Tracepoint

R

P
Q
S

March 3, 2015

netif_ receive_sgkb
napi_poll
net_dev_qgqueue

net _dev_xmit

Linux-Performance-know it all series

Meaning

low level receive

napi work related to receive
engueue in the stack

low level send

© 2015 IBM Corporation

Linux on System z Performance Evaluation

echo

echo net:* >> /sys/kernel/debug/tracing/set_event
echo napi:* >> /sys/kernel/debug/tracing/set_event
echo "name == ${dev}" > /sys/kernel

echo

158

Tracepoints — example I/l

— (Simplified) Script
 # full versions tunes buffer sizes, checks files, ...

BT => CPU#
/ _----- => irgs-off
| / _----=> need-res
|| / _---=> hardirqg/
[l / _--=> preempt-
[/ delay
cmd pid ||||]| time | call
N/ RERE A | /
<...>-24116 0..s. 486183281us+:
<idle>-0 0..s. 486183303us+:
<idle>-0 0.Ns. 486183306us+:
<...>-24116 0..s. 486183311us+:
<...>-24116 0 486183317us+:

latency-format > /sys/kernel/debug/tracing/trace _options

"dev_name == ${dev}i" > /sys/kernel/debug/tracing/events/napi/filter
cat /sys/kernel/debug/tracing/trace >> §${output}
echo !*:%* > /sys/kernel/debug/tracing/set_event

enable tracing type
select specific events

"

set filters

u

/debug/tracing/events/net/filter

synchronous
disable tracing

H H H H H H HF

ched
softirg
depth

er

net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

netif receive skb: dev=eth5 skbaddr=000000007ecc6e00 len=53
napi_poll: napi poll on napi struct 000000007d2479a8 fordevice eth
net_dev_queue: dev=eth5 skbaddr=0000000075b7e3e8 len=67

net dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

159

P20Q:
Q2S:
S2R:
R2P:
SUM:

P2Q:
Q2S:
S2R:
R2P:
SUM:

SUM

8478724
12188675
38562294

4197486
63427179

SUM
7191885
10622270
32078550
3707814
53600519

" Example postprocessed

COUNT
1572635
1572638
1572636
1572633
1572635

COUNT
1300897
1300897
1300898
1300897
1300897

Tracepoints — example I/

AVERAGE

5.39
7.65
24 .42
2.57
40.03

AVERAGE
5.53
8.17

24 .66
2.85
41.20

MIN

=W

MIN

=N W

MAX
2140
71
2158
43

MAX
171

71
286
265

STD-DEV
7.41
4.89
9.08
2.39

STD-DEV
1.31
5.99
5.88
2.59

— Confirmed that ~all of the 1.2 ms were lost inside Linux (not in the fabric)

— Confirmed that it was not at/between specific function tracepoints
* Eventually it was an interrupt locality issue causing bad caching

March 3, 2015

Linux-Performance-know it all series

© 2015 IBM Corporation

Linux on System z Performance Evaluation

Systemtap

* Characteristics: tool to “tap” into the kernel for analysis
» Objective: analyze in kernel values or behavior that otherwise would be
inaccessible or require a modification/recompile cycle
» Usage (mini example): “stap -v -e 'probe vfs.read {printf (“read
performed\n”); exit()}"’
* Package: RHEL: systemtap + systemtap-runtime SLES: systemtap
* Also requires kernel debuginfo and source/devel packages

* Procedural and C-like language based on two main constructs
—Probes — “catching events”
* On functions, syscalls or single statements via file:linenumber
—Functions — “what to do”
» Supports local and global variables
» Program flow statements if, loops, ...

» Tapsets provide pre written probe libraries

* Fore more check out “Using SystemTap on Linux on System z” from Mike O'Reilly
https://share.confex.com/share/118/webprogram/Handout/Session10452/atlanta.pdf

160 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

https://share.confex.com/share/118/webprogram/Handout/Session10452/atlanta.pdf

Linux on System z Performance Evaluation

161

There would be even more tools to cover ...

" Further tools - (no slides yet)
— Collectl — full system monitoring
—Ftrace — kernel function tracing

—Lttng — complex latency tracing infrastructure (packages start to appear
in Fedora 19)

—Nicstat, ktap, stap, ...

March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Linux on System z Performance Evaluation

End of Part V

162 March 3, 2015 Linux-Performance-know it all series © 2015 IBM Corporation

Thanks (and complaints) go to

Christian
Ehrhardt

IBM

Questions?

* Further information is at

— Linux on System z — Tuning hints and tips
http://www.ibm.com/developerworks/linux/linux390/perf/index.html

— Live Virtual Classes for z/VM and Linux
http://www.vm.ibm.com/education/lvc/

Martin Schwidefsky

Linux on System z Development

Schonaicher Strasse 220
71032 Boblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

164

© 2015 IBM Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Health Center
	Slide 133
	Garbage Collection and Memory Visualizer
	Slide 135
	Jinsight Execution View
	Jinsight Execution View, continued
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164

