
IBM Java 8 and z13 - Hardware and
Software Co-Design at Its Finest
Iris Baron – IBM Java JIT Compiler Development

Session 17635
Thursday, August 13, 2015: 08:30 AM - 09:30 AM
Dolphin, Asia 3

08/13/15 2

Follow on twitter @JavaOnZ

08/13/15 3

Evolving Java as a Workload Optimized System on Z

• Portable and consumable
– First-class IBM Java SDK for z/OS and Linux on z
– Providing seamless portability across platforms

• Pervasive and integrated across the z eco-system
– Java business logic with all z middleware (IMS, CICS, WAS, etc.)
– Inter-operability with legacy batch and OLTP assets

• Deep z Systems exploitation
– SDK extensions enabled z QoS for full integration with z/OS
– zAAP/zIIP specialty engines provide low-cost Java capacity

• Performance
– A decade of hardware/software innovations and optimizations
– Industry leading performance with IBM J9 Virtual Machine
– Enabling tight data locality for high-performance and simplified

systems

Enable integration of Java-based applications with core Z environment for high performance,
reliability, availability, security, and lower total cost of ownership

08/13/15 4

IBM Java Runtime Environment

• IBM’s implementations of Java 5, 6, 7, 8 are built with IBM J9 Virtual
Machine and IBM Testarossa JIT Compiler technologies
– Independent clean-room JVM runtime & JIT compiler

• Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!
– Lightweight flexible/scalable technology
– World class garbage collection – gencon, balanced GC policies
– Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation
– 64-bit performance - Compressed references & Large Pages
– Deep z Systems exploitation – z13/zEC12/z196/z10/z9/z990 exploitation
– Cost-effective for z - zIIP Ready!

• Millions of instances of J9/TR compiler

08/13/15 5

Reasons to Love IBM Java and WAS on z Systems
HCSC – 14.5 million health insurance members
WebSphere on z/OS has been selected at HCSC
as a preferred platform to support development
and deployment of mission-critical Java
applications for the following reasons:

Co-location:
WASz minimizes physical tiers
3-4x improvement for one of HCSC’s largest WAS
applications when moving from distributed to zOS

High Volume Transaction Rates:
Could not meet business needs with distributed

Qualities of Service
Horizontal scaling
Continuous availability and fail-over
www.slideshare.net/elenan3403/reasons-to-love-ibm-java-and-web-sphere-application-server-on-z-system

IBM JVM Performance Dividends

30% improvement with Java601

10% improvement with Java7.1

08/13/15 6

Reasons to Love IBM Java and WAS on z Systems
HCSC – 14.5 million health insurance members
WebSphere on z/OS has been selected at HCSC
as a preferred platform to support development
and deployment of mission-critical Java
applications for the following reasons:

Co-location:
WASz minimizes physical tiers
3-4x improvement for one of HCSC’s largest WAS
applications when moving from distributed to zOS

High Volume Transaction Rates:
Could not meet business needs with distributed

Qualities of Service
Horizontal scaling
Continuous availability and fail-over
www.slideshare.net/elenan3403/reasons-to-love-ibm-java-and-web-sphere-application-server-on-z-system

IBM JVM Performance Dividends

30% improvement with Java601

10% improvement with Java7.1

08/13/15 7

zEC12 – More Hardware for Java
Continued aggressive investment in Java on Z
Significant set of new hardware features tailored and

co-designed with Java

Hardware Transaction Memory (HTM)
Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (RI)
Innovation new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames
Improved performance targeting 64-bit heaps

Pageable 1M large pages with Flash Express
Better versatility of managing memory

Shared-Memory-Communication
RDMA over Converged Ethernet

zEnterprise Data Compression accelerator
gzip accelerator

New software hints/directives/traps
Branch preload improves branch prediction
Reduce overhead of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip

Large caches to optimize data serving

Second generation OOO design

Up-to 60% improvement in throughput amongst Java
workloads measured with zEC12 and IBM Java 7

Engineered Together—IBM Java and zEC12 Boost Workload Performance
http://www.ibmsystemsmag.com/mainframe/trends/whatsnew/java_compiler/

08/13/15 8

IBM SDK for z/OS, Java Tech. Edition, Version 7 Release 1
(IBM Java 7R1)

• Expand zEC12/zBC12 exploitation
– More TX, instruction scheduler, traps, branch preload
– Runtime instrumentation exploitation
– zEDC exploitation through java/util/zip
– Integration of SMC-R

• Improved native data binding - Data Access Accelerator
– Integrated with JZOS native record binding framework

• Improved general performance/throughput
– Up-to 19% improvement to throughput (ODM)
– Up-to 2.4x savings in CPU-time for record parsing batch application

• Improved WLM capabilities

• Improved SAF and cryptography support

• Additional reliability, availability, and serviceability (RAS)
enhancements

• Enhanced monitoring and diagnostics

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS213-498&appname=USN

08/13/15 9

1.0
1.6

2.2

3.1
3.9

5.2
6.0

6.6

9.3

10.8

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Version 6.1
on z9

Version 6.1
on z10

Version 7.0
on z10

Version 7.0
on z196

Version 8.5
on z196

Version 8.5
on EC12

Version 8.5
on EC12

Version
8.5.5.2 on

EC12

Version
8.5.5.5 on

z13 wo/SMT

Version
8.5.5.5 on

z13 w/SMT

Ag
gr

eg
at

e
Pe

rfo
rm

an
ce

 E
st

im
at

e

History of WAS on z/OS Hardware/Software Performance

+16%t

+40%t

+25%t

+10%*

+43%t

+57%t

+32%t

+41%z
+16%z

Hardware Improvement

Software Improvement

Java
7.1
SR2

Java
7.1
SR2

Java
7.1
SR1

Java
7

SR4

Java
601

Java
601

Java
6

Java
6Java

5Java 5

z zIIPs DayTrader 3
* DayTrader3
t DayTrader2

WAS on z/OS – DayTrader
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5 (IBM Java 7R1) on zEC12

(Controlled measurement environment, results may vary)

10.8x aggregate hardware and software improvement comparing
WAS 6.1 IBM Java5 on z9 to WAS 8.5.5.2 IBM Java7R1 on z13 w/SMT

08/13/15 10

Java Road Map
Language Updates

Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance Improvements
• Client WebServices Support

• Support for dynamic languages
• Improve ease of use for SWING
• New IO APIs (NIO2)
• Java persistence API
• JMX 2.x and WS connection for

JMX agents
• Language Changes

Java 7.0

IBM Java Runtimes
IBM Java 5.0 (J9 R23)
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT technology

• First Failure Data Capture
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 6.0 (J9 R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for BigDecimal
• Large Pages
• New ISA features

5.0

6.0

2005 2009

SE
 5

.0

18
 p

la
tfo

rm
s

SE
 6

.0
20

 p
la

tfo
rm

s

EE 5

WAS
6.1

WAS
7.0

2006 2008

WAS
6.0

200704

EE 6.x

2010 2011

IBM Java 6.0.1/Java 7
(J9 R26)

• Improvements in
• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

• JZOS/Security Enhancements

WAS
8.5

2012 2013 2014

7.0

• Language improvements
• Closures for simplified fork/join

Java 8.0

SE
60

1/
 7

.x
>=

 2
0

pl
at

fo
rm

s

IBM Java 7 (J9 R26 SR3)
• Improvements in

• Performance
• zEC12™ Exploitation

• Transactional Execution
• Flash 1Meg pageable LPs
• 2G large pages
• Hints/traps

IBM Java 7R1 (J9 R27)
• Improvements in

• Performance
• RAS
• Monitoring

• zEC12™ Exploitation
• zEDC for zip acceleration
• SMC-R integration
• Transactional Execution
• Runtime instrumentation
• Hints/traps

• Data Access Accelerator

SE
60

1/
 7

.x
>=

 2
0

pl
at

fo
rm

s

2015

IBM Java 8 (J9 R28)
• Improvements in

• Performance
• RAS
• Monitoring

• z13™ Exploitation
• SIMD
• SMT
• Crypto acceleration

SE
8

>=
 2

0
pl

at
fo

rm
s

08/13/15 11

IBM z13 – Taking Java Performance to the Next Level
Continued aggressive investment in Java on Z
Significant set of new hardware features tailored

and co-designed with Java
Simultaneous Multi-Threading (SMT)

– 2x hardware threads/core for improved throughput
– Available on zIIPs and IFLs

Single Instruction Multiple Data (SIMD)
– Vector processing unit
– Accelerates loops and string operations

Cryptographic Function (CPACF)
– Improved performance of crypto co-processors

New Instructions
– Packed Decimal Decimal Floating Point
– Load Immediate on Condition
– Load Logical and Zero Rightmost Byte

Up to 2X
improvement in
throughput per core
for security enabled
applications

Up to 50%
improvement in
throughput for
generic applications

New 5.0 GHz 8-Core Processor Chip

480Mb L4 cache to optimize for data serving

 z13 toleration for Linux on z:
– Java 7.1 SR2
– Java 7 SR8
– Java 6.1 SR8 FP2
– Java6 SR16 FP2

 z13 toleration for z/OS is transparent

08/13/15 12

IBM z13: SMT – Simultaneous Multi-Threading

• Double the number of hardware threads per core
– Independent threads can be more effective utilizing

pipeline

• Threads share resources – may impact single
thread perf

– Pipeline (eg. physical registers, fxu, fpu, lsu etc)
– Cache

• Throughput improvement is workload dependent

Two zIIP lanes handle
more traffic overall

08/13/15 13

1.0
1.6

2.2

3.1
3.9

5.2
6.0

6.6

9.3

10.8

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Version 6.1
on z9

Version 6.1
on z10

Version 7.0
on z10

Version 7.0
on z196

Version 8.5
on z196

Version 8.5
on EC12

Version 8.5
on EC12

Version
8.5.5.2 on

EC12

Version
8.5.5.5 on

z13 wo/SMT

Version
8.5.5.5 on
z13 w/SMT

Ag
gr

eg
at

e
Pe

rfo
rm

an
ce

 E
st

im
at

e

History of WAS on z/OS Hardware/Software Performance

+16%t

+40%t

+25%t

+10%*

+43%t

+57%t

+32%t

+41%z
+16%z

Hardware Improvement

Software Improvement

Java
7.1
SR2

Java
7.1
SR2

Java
7.1
SR1

Java
7

SR4

Java
601

Java
601

Java
6

Java
6Java

5Java 5

z zIIPs DayTrader 3
* DayTrader3
t DayTrader2

WAS on z/OS – DayTrader
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5.5.5 (IBM Java 7R1) on z13

(Controlled measurement environment, results may vary)

10.8x aggregate hardware and software improvement comparing
WAS 6.1 IBM Java5 on z9 to WAS 8.5.5.2 IBM Java7R1 on z13 w/SMT

08/13/15 14

Between 1.36x to 1.66x improved throughput for a virtualized WAS cluster
running DayTrader 3.0 on IBM z13 when compared to zEC12

۰.۰۰
۰.۲۰
۰.۴۰
۰.۶۰
۰.۸۰
۱.۰۰
۱.۲۰
۱.۴۰
۱.۶۰
۱.۸۰

zEC۱۲ z۱۳ SMT vs zEC۱۲

Linux on z - SLES ۱۱ SP۳, WAS ۸.۵.۵
Java ۷.۱, DayTrader۳

۸ CP - ۱۶ guests

۰.۰۰
۰.۲۰
۰.۴۰
۰.۶۰
۰.۸۰
۱.۰۰
۱.۲۰
۱.۴۰
۱.۶۰
۱.۸۰

zEC۱۲ z۱۳ SMT vs zEC۱۲

Linux on z - SLES ۱۱ SP۳, WAS ۸.۵.۵
Java ۷.۱, DayTrader۳

۳۲ CP - ۶۴ guests

WebSphere – Linux on z Virtualized Cluster

(Controlled measurement environment, results may vary)

08/13/15 15

IBM z13: SIMD – Single Instruction Multiple Data

• Hardware for exploiting data-
parallelism
– Large uniform data-set that needs

the same operation performed on
each element

– Can offer dramatic speedup to
data-parallel operations (matrix
ops, string processing, etc)

08/13/15 16(Controlled measurement environment, results may vary)

Primitive operations are between 1.6x and 60x faster with SIMD

IBM Java 8 - String, Character Conversion and Loop
Acceleration with SIMD

IBM z13 running Java 8 on zOS
Single Instruction Multiple Data (SIMD) vector engine exploitation

• java/lang/String
• compareTo
• compareToIgnoreCase
• contains
• contentEquals
• equals
• indexOf
• lastIndexOf
• regionMatches
• toLowerCase
• toUpperCase
• getBytes

• java/util/Arrays
• equals (primitive types)

• String encoding converters
• ISO8859-1
• ASCII
• UTF-8 / UTF-16

• Auto-SIMD
• Simple loops
• (e.g. Matrix Multiplication)

08/13/15 17

SMT and SIMD Availability

z/OS z/VM Linux on z - native

SMT z/OS 2.1 with
PTFs on zIIPs

on IFLs (Linux on z)
z/VM V6.3 and up

–Future RHEL7.1 and
SLES12 update
*Plan 3Q2015

SIMD z/OS 2.1 with
PTFs

–Not yet supported –Future RHEL7.1 and
SLES12 update
*Plan 3Q2015

08/13/15 18

IBM SDK Java Tech. Edition, Version 8 (IBM Java 8)

• New Java8 Language Features
– Lambdas, virtual extension methods

• IBM z13 exploitation
– Vector exploitation and other new instructions
– Instruction scheduling

• General throughput improvements
– Up-to 17% better application throughput
– Significant improvements to ORB

• Improved crypto performance for IBMJCE
– Block ciphering, secure hashing and public key

• Up-to 4x improvement to Public Key using ECC
• CPACF instructions: AES, 3DES, SHA1, SHA2, etc

• Significantly improved application ramp-up
– Up-to 50% less CPU to ramp-up to steady-state
– Improved perf of ahead-of-time compiled code

• Improved Monitoring
– JMX beans for precise CPU-time monitoring

• Enhancements to JZOS Toolkit for Java batch

08/13/15 19

Java 8 – Lambdas
New syntax to allow for concise and expressive code snippets

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

Lambda expression:
(argument List) → Body

C ollec tions .s ort(people , new C omparator<Pers on>() {
public int c ompare(Pers on x , Pers on y) {

return x .getL as tName().c ompareTo(y.getL as tName());
 }
});

C ollec tions .s ort(people , (Pers on x , Pers on y) ->x.getL as tName().c ompareTo(y.getL as tName()));

Compiler can often infer parameter types in a lambda expression
C ollec tions .s ort(people , (x , y) ->x.getL as tName().c ompareT o(y.getL as tName()));

*Can be thought of as ‘anonymous functions’

08/13/15 20

Java 8 – Lambdas for Streaming Operations

• Lambdas can be pipelined to enable data stream
operations
– Intermediate operations on streams produce new streams
– Terminal operations produce results

• Enables exploitation of parallelism and supports multi-core
programming

int totalWeight = widgets.stream()
 .filter(w->w.getColor() == RED)
 .mapToInt(w->w.getWeight())
 .SUM();

08/13/15 21

Java 8 – Virtual Extension Methods

• Extend well established data structures while retaining compatibility
• Language enhancement to provide default implementations in

interfaces
– Interface declarations run if classes do not provide an

implementation

public interface Iterator,E> {
public boolean hasNext();
public E next();
...
public default skip(int i){

for(; i > 0 && hasNext(); i--)
next();

 }
}

08/13/15 22

 ECDHE and ECDSA (ECC)
– NIST P256 curve

Key Agreement
(public key) Cipher Message Digest

(hashing)
 Cipher: AES, 3DES, DES

 Mode: CBC,CFB, OFB, ECB

 SHA1

 SHA2

CPACF exploitation

Crypto acceleration across the entire SSL connection

• Java 8 exploitation of CPACF is the default for z9 and above on both z/OS and zLinux

• Crypto acceleration is used in IBMJCE provider (clear key), default in the IBM JDK
• e.g. EF transparently leverages the new acceleration by using IBMJCE

Encryption of text files and SVC dumps completed in half the elapsed time and one third the
CPU time.

Crypto Acceleration (SSL)

WAS Liberty and z13

(Controlled measurement environment, results may vary)

2.6X improvement in throughput
for SSL-enabled DayTrader 3.0
with WAS Liberty 8.5.5.5 on z/OS
using Java 8 and z13 with SMT2,
compared with Java 7 SR4 on
zEC12

2.6X improvement in throughput
for SSL-enabled Day Trader 3.0 and
IBM Java 8 under z/VM Linux on z
on a z13 compared with zEC12

08/13/15 24

zOS Liberty Ramp-up with IBM Java 8

DayTrader 3 Throughput
zOS 64-bit, 4 zEC12 cores, Liberty 8.5.5.5

Java 8
Java 7.1
Java 8 -Xtune:virt (warm)
Java 7.1 -Xtune:virt (warm)Elapsed Time (sec)

Th
ro

ug
hp

ut
 (p

g/
se

c)

(Controlled measurement environment, results may vary)

• IBM Java 8 with –Xtune:virtualized improves DayTrader3/Liberty 8.5.5.5 ramp-up by 88%

• Default IBM Java8 vs IBM Java7.1 ramp-up improved by 22%

08/13/15 25

Aggregate 2.27x improvement from IBM Java 8 and IBM z13

Business Rules Processing with IBM Java 8 and z13

(Controlled measurement environment, results may vary)

08/13/15 26

Business Rules Processing – IBM z13 vs Intel Xeon E5-26xx v3

IBM z13 up-to 1.5x better throughput/core processing business
rules than Intel Xeon E5-26xx v3 (Haswell)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Haswell - Linux - Java8 z13 - zOS - Java8

Business Rules Processing with IBM z13
with Java8 - Small Ruleset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Haswell - Linux - Java8 z13 - zOS - Java8

Business Rules Processing with IBM z13
with Java8 - Large Ruleset

(Controlled measurement environment, results may vary)

08/13/15 27

1.77x improvement in throughput with IBM Java 8 and IBM z13

Java Store, Inventory and Point-of-Sale App with IBM
Java 8 and IBM z13

(Controlled measurement environment, results may vary)

08/13/15 28

Mobile on z – z/OS Connect on IBM Java 8 and zEC12

(Controlled measurement environment, results may vary)

5-16.4% throughput improvement from IBM Java 8 and IBM zEC12

08/13/15 29

z/OS Connect with CICS

35% increase
in ITR between
zEC12 and z13

Disclaimer Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user
will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here. Some measurements were
obtained used beta developmental code.

• CICS TS V5.3 open beta developmental code with Liberty V8.5.5.3
• Java V7.1 with IBMJCECCA support enabled
• Measurements on both IBM z13 and zEC12 obtained using 3 GPs and 1 zIIP

08/13/15 30(Controlled measurement environment, results may vary)

IMS Mobile Feature Pack 73%
aggregate improvement in
throughput from z13 and IBM Java8

z/OS Connect with IMS (Mobile Feature Pack)

08/13/15 31

JMX Beans for Precise CPU Monitoring
New JMX Beans for reporting CPU usage categorized by:

1. JVM System threads (JIT, GC, etc)
2. Application threads
3. Monitoring threads (to be able to excluded from monitoring overhead)

Intended use-cases
– Reporting transaction cpu usage
– Identifying "expensive" transactions
– Reporting JVM overhead over specific intervals
– Foundation for future work on tracking idle behaviour

New classes
– com.ibm.lang.management.JVMCpuMonitorMXBean (Bean to request Data)

• getThreadsCpuUsage()
• setThreadCategory()/getThreadCategory()

– com.ibm.lang.management.JVMCpuMonitorInfo (Object with Data)

Overhead may be visible on some platforms
Option to trade-off more precise GC-time reporting vs. reduced overhead

-XX:+ReduceCPUMonitorOverhead(default.)/-XX:-ReduceCPUMonitorOverhead
(z/OS cannot enable more precise GC-time reporting today)

08/13/15 32

JZOS – SMF Logging

SMF Logging to Record type 121 subtype 1
JZOS_JVM_SMF_LOGGING environment variable to enable

Captures JVM runtime information
– Uptime, number of live threads and GC statistics

Record is logged during JVM shutdown

FUTURE function being considered**
SMF records to include breakdown of Application, JVM system, GC and JIT CPU-time

Information available on a per-thread basis

Captured periodically at user-defined intervals

**Timelines and deliveries are subject to change.

08/13/15 33

Thank You!

• Please complete your session
evaluations!

 Session 17635:
 IBM Java 8 and z13 - Hardware and Software
 Co-Design at Its Finest

• www.share.org/Orlando-Eval

Iris Baron
Email: ibaron@ca.ibm.com

http://www.share.org/Seattle-Eval
http://www.share.org/Seattle-Eval
http://www.share.org/Seattle-Eval

08/13/15 34

Important references

• IBM Java for Linux website
– http://www.ibm.com/developerworks/java/jdk/linux

• z/OS Java website
– http://www.ibm.com/systems/z/os/zos/tools/java

• IBM SDK Java Technology Edition Documentation
– http://www.ibm.com/developerworks/java/jdk/docs.html

• JZOS Batch Launcher and Toolkit Installation and User’s Guide (SA38-
0696-00)
– For JZOS function included in IBM Java SE 7 SDKs for z/OS
– http://publibz.boulder.ibm.com/epubs/pdf/ajvc0110.pdf

• JZOS Batch Launcher and Toolkit Installation and User’s Guide (SA23-
2245-03)
– For JZOS function included in IBM Java SE 6 and SE 5 SDKs for z/OS
– http://publibfi.boulder.ibm.com/epubs/pdf/ajvc0103.pdf

http://www.ibm.com/developerworks/java/jdk/linux
http://www.ibm.com/developerworks/java/jdk/linux
http://www.ibm.com/systems/z/os/zos/tools/java
http://www.ibm.com/developerworks/java/jdk/docs.html
http://www.ibm.com/developerworks/java/jdk/docs.html
http://publibz.boulder.ibm.com/epubs/pdf/ajvc0110.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/ajvc0103.pdf

