
8/12/2015

1

z/OS UNIX Security Overview

Session 17618

August 10, 2015

Eric Rosenfeld

rosenfel@us.ibm.com

1

2

The information contained in this document is distributed on as "as is" basis,

without any warranty either express or implied. The customer is responsible

for use of this information and/or implementation of any techniques

mentioned. IBM has reviewed the information for accuracy, but there is no

guarantee that a customer using the information or techniques will obtain the

same or similar results in its own operational environment.

In this document, any references made to an IBM licensed program are not

intended to state or imply that only IBM's licensed program may be used.

Functionally equivalent programs that do not infringe IBM's intellectual

property rights may be used instead. Any performance data contained in this

document was determined in a controlled environment and therefore, the

results which may be obtained in other operating environments may vary

significantly. Users of this document should verify the applicable data for their

specific environment.

It is possible that this material may contain references to, or information

about, IBM products (machines and programs), programming, or services that

are not announced in your country. Such references or information must not

be construed to mean that IBM intends to announce such IBM Products,

programming or services in your country.

IBM retains the title to the copyright in this paper as well as title to the

copyright in all underlying works. IBM retains the right to make derivative

works and to republish and distribute this paper to whomever it chooses.

Disclaimer

8/12/2015

2

3

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•z/OS

•RACF

•AIX

SOLARIS is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries

Mac OS is a trademark of Apple Inc.

Agenda

• What is UNIX?

• What is a “UNIX user” on z/OS?

• UNIX identity uniqueness

• Creating UNIX users

• The UNIX file system

• File permissions and access control lists

• UNIX superusers

• UNIX daemons

4

8/12/2015

3

What is UNIX?

5

•File system

•Shell and utilities

(commands)

•APIs

z/OS

AIX

Solaris

HP/UX

Mac OS X

open(/u/bruce/file)

cd /usr/lpp/tivoli
???

UNIX User and Group Registry:
AKA RACF!

6

BASE

TSO

OMVS

CICS

…

UID

HOME

PROGRAM

CPUTIMEMAX

FILEPROCMAX

…

USER Profile GROUP Profile

BASE

DFP

OMVS

…

GID

8/12/2015

4

7

UNIX identity
User Security Packet (USP)

UID�real

�effective

�saved

GID

Supplemental Groups

From user's OMVS segment

or a default mechanism

From OMVS segment of

user's default group or from

a default mechanism

From OMVS segments of

user's list of groups

�USP created when first UNIX service is invoked

�use the id command to show user's UNIX identity

�real

�effective

�saved

ACEE

MVS user ID
USP Address

id pierce

uid=34(PIERCE) gid=521(HOOPS) groups=4(KANSAS),16(CELTICS)

LOGON TSO

OMVS

8

UNIX identity

�When accessing MVS data sets and other

RACF-protected resources:

�8-character MVS user ID (and group names) is
checked against RACF profile

�When accessing UNIX files and directories:
�Numeric UID and GIDs are checked against file
owner and permissions

SYS1.PARMLIB

MVS
Data Sets

ACEE

USP Address

USP

UID
GID

Suppl. GIDs

MVS user ID

zFS

/u/brwells/myfile

8/12/2015

5

How do I create a UNIX user?

• Option 0 – Do nothing. User cannot use UNIX.

• Option 1 – Using ALTUSER/ALTGROUP, assign OMVS
segments and explicit UID/GID values

– ALTUSER MARK OMVS(UID(88) HOME(…) …)

– ALTGROUP HISDFLT OMVS(GID(300))

• Option 2 - Use the default (BPX.DEFAULT.USER)

– Not recommended – No longer supported after z/OS V1R13!

• Option 3 – Tell RACF to generate the xID

– ALTUSER MARK OMVS(AUTOUID HOME(…) …)

– ALTGROUP MARKGRP OMVS(AUTOGID)

• Option 4 – Let the system generate the xID without you asking

– BPX.UNIQUE.USER

9

But before we show you the mechanics

• A brief word on doing it securely

• By default, z/OS does not require or enforce that UIDs and

GIDs be unique

• But you should

10

8/12/2015

6

11

Keep UIDs/GIDs unique – Why?

ADDUSER BILLB OMVS(UID(44))

ALTUSER TOMC OMVS(UID(44))

Top Secret File

Owner = 44

Perms = rwx------

create

12

Prevention of shared IDs ...

SHARED.IDS

�RDEFINE UNIXPRIV SHARED.IDS

UACC(NONE)

�SETROPTS RACLIST(UNIXPRIV)

REFRESH

�ADDUSER MARCY OMVS(UID(12))

�ADDGROUP ADK OMVS(GID(46))

BRADY

OMVS
UID=12

RACF DB

PATS

OMVS
GID=46

IRR52174I Incorrect UID 12. This value is already in use by BRADY.

IRR52174I Incorrect GID 46. This value is already in use by PATS.

8/12/2015

7

Back to the mechanics

• We’ve already shown options 0 and 1

• Now on to option 2, which you should not be using

• To be followed by some better options

13

14

Default UNIX User and Group identity

�BPX.DEFAULT.USER in the FACILITY class can be used to

assign default OMVS segment data

�RDEFINE FACILITY BPX.DEFAULT.USER
APPLDATA('DFTUSER/DFTGROUP')

�ADDUSER DFTUSER OMVS(...) NOPASSWORD

�ADDGROUP DFTGROUP OMVS(GID(nnn))

�Assigned when user/group doesn't have an OMVS segment

�Can be overridden on a per-user basis

�ALTUSER BOB OMVS(NOUID)

�Use of default identity is always audited

�Should have only limited use

�TCP/IP from MVS to MVS, or, just getting your feet wet with
UNIX System Services

Don't
use

UID(0)
!!!!

8/12/2015

8

15

Automatic UID/GID Assignment

�AUTOUID keyword in the OMVS keyword of the

ADDUSER and ALTUSER commands

�AUTOGID keyword in the OMVS keyword of the

ADDGROUP and ALTGROUP commands

�Derived values are guaranteed to be unique

ADDUSER MELVILLE OMVS(HOME(/u/melville) AUTOUID)

ADDGROUP WHALES OMVS(AUTOGID)

IRR52177I User MELVILLE was assigned an OMVS UID value of 4646.

IRR52177I Group WHALES was assigned an OMVS GID value of 105.

16

Automatic UID/GID Assignment ...

BPX.NEXT.USER

�Uses APPLDATA of BPX.NEXT.USER profile in the FACILITY class
to derive candidate UID/GID values

�APPLDATA consists of 2 qualifiers separated by a forward slash ('/')

�left qualifier specifies starting UID value, or range

�right qualifier specifies starting GID value, or range

�qualifiers can be null, or specified as 'NOAUTO', to prevent
automatic assignment of UIDs or GIDs

RDEFINE FACILITY BPX.NEXT.USER APPLDATA(‘10000-100000/500-50000')

8/12/2015

9

Automatic OMVS segment assignment
– BPX.UNIQUE.USER

• Define FACILITY profile BPX.UNIQUE.USER, and optionally a user
profile in APPLDATA field:

RDEFINE FACILITY BPX.UNIQUE.USER
[APPLDATA(’USER01’)]

• If this profile exists, the BPX.DEFAULT.USER profile is not
considered.

• For a user or group without an OMVS segment, the service will
create one and store a unique UID or GID in it for permanent use.

• If a user name is specified in APPLDATA, its other OMVS fields are
copied to the target user when the new UID is saved.

• Uses BPX.NEXT.USER along with AUTOxID (and also requires
SHARED.IDS)

17

Guidelines

• If you only want to allow UNIX functions to users you bless

– Use AUTOUID/AUTOGID

• If you want to open up the system so any user can use

UNIX

– Use system-assigned OMVS segments

18

8/12/2015

10

And now an abrupt transition

• Into file system security

• We’re not quite done with identity-related issues though

• We’ll come back to superusers and daemons in a little bit

19

Files and directories

Name inode

File1

Dir1

Dir2

File2

Dir3

20

Dear Sir,

Blah blah blah,

Yada yada

yada, etc.

File Directory

zFS

8/12/2015

11

Directory Search (a.k.a. lookup)

Name inode

u

etc

bin

usr

tmp

21

/ (root)

zFS

u

Name inode

gumby

pokey

cartman

brwells

tmp

gumby

Name inode

MyFile1

MyFile2

MyDir1

SAF RACF

/u/gumby/MyFile2

22

Default file permissions and the

umask command

�Files are created with different permission settings,

depending on the command or application

�file mode creation mask (umask) defends user against

permissive defaults

�Display umask

�octal format: umask 0077

�symbolic format: umask -S u=rwx,g=,o=

�Set umask so group and other write bits cannot be set

during file creation

�umask g-w,o-w

�usually done from /etc/profile, and .profile

Command Permissions

OPUT 600

touch 666

redirection
('>')

666

oedit 700

mkdir 777

8/12/2015

12

23

rwx rwx rwx

/

bin tmp etc usr u

brwells gumby

MyDir1 MyFile1 MyDir2

Initialization during file creation

UID GID Perms

50 100 rwx r-x ---100

UID GID Perms

mkdir /u/gumby/MyDir2

UID GID

75 20075

umask: 000 010 111

rwx r-x ---

24

Access Control Lists (ACLs)

�Each entry (max 1024) specifies a user (UID)
or group (GID) and its allowable permissions

•Displayed/modified with getfacl/setfacl cmds

•Enabled with SETROPTS CLASSACT(FSSEC)
•Support inheritance

Top Secret

Superbowl Pool

User Bob r--

User Boss ---

Group Admins rw-

Group Execs rwx

Group Progs rwx

8/12/2015

13

25

File Access Control with ACLs

OWNER

rwx

OTHER

rwx

Permission Bits

User1

rwx

User2

rwx

Usern

rwx

GROUP

rwx

A

c

c

e

s

s

C

o

n

t

r

o

l

L

i

s

t
Group2

rwx

Groupn

rwx

GROUP

User1

rwx

User2

rwx

Usern

rwx

Group1

rwx

IF no access, check

SUPERUSER.FILESYSUsern

rwx

IF FSSEC class active

See z/OS RACF Security Administrator's Guide Appendix F for detailed list of steps

26

ACL Inheritance

�Can establish default (or 'model') ACLs on a
directory

�Get automatically applied to new
files/directories created within the directory

�Separate default used for files and
subdirectories

�Reduces administrative overhead

8/12/2015

14

27

ACL Inheritance ...

/u

anne george bruce

access

ACL

directory

default

ACL

file

default

ACL

oedit /u/bruce/projectX/status access

ACL
- status

file

default

ACL

access

ACLprojectX
directory

default

ACL
mkdir /u/bruce/projectX

28

/

bin tmp etc usr u

brwells cartmangumby

MyFile1 MyFile2 MyDir1

Using search permission to hide

subdirectories

rw-

rwx

rwxrwxrwx

rwxrwx

Denying search (lookup) authority on a

given directory prevents traversal through

that directory, and thus prevents access to

sub-objects, regardless of their permission

settings.

8/12/2015

15

Using the FSACCESS class

� Allow Security Administrator to control access to a zFS file system container (data set)
using RACF profiles

� Provides very coarse-grained control without needing to use UNIX semantics

� Works sort of like the search permission example on the previous slide, but only on file system

boundaries

� Introduced in z/OS V1R13 with:

� RACF APAR OA35973

� SAF APAR OA35974

� USS APAR OA35970

� Not documented in R13 publications. See APAR documentation:

� ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/pdf/oa35973.pdf

29

Using the FSACCESS class

� Mount point traversal triggers one-time check to the container

– Access failure prevents any operation within file system, regardless of permission bits, acls, file

ownership, or UID(0)

– Successful access (or no covering profile) simply continues with existing UNIX-style checks

which may or may not allow access to file system object

– RACF AUDITOR attribute bypasses FSACCESS check

� UPDATE access required to (new) FSACCESS class resource name which equals the
containing data set name

– Only performed if FSACCESS class is active

� Example:

� RDEFINE FSACCESS OMVS.ETC.HFS UACC(NONE)

� PERMIT OMVS.ETC.HFS CLASS(FSACCESS) ID(SYSPROGS) ACCESS(UPDATE)

� SETROPTS CLASSACT(FSACCESS) RACLIST(FSACCESS)

30

8/12/2015

16

Now that we’ve seen UNIX files

• Let’s talk about highly privileged UNIX users

• They can do almost anything with those files

31

32

UNIX Superuser

�A superuser is defined as

�UID 0, any GID

�Trusted or privileged, any UID, any GID

�A superuser can (by default):

�Pass all z/OS UNIX security checks

�Affect any UNIX process on the system

�Use setrlimit to increase system limits

�Change his identity to another user

•Do anything!

8/12/2015

17

Just to drive home the point

• A UID(0) user can:

33

#define _POSIX_SOURCE

#include <unistd.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

FILE *stream;

int c;

setuid(295); /* Known UID of powerful z/OS user */

stream = fopen("//'PAYROLL.DATA'", "r")

printf("The contents of 'PAYROLL.DATA' are:\n");

while ((c=getc(stream)) != EOF)

putc(c, stdout);

fclose(stream);

return;

}

Limit Superuser Privilege By

• Not assigning UID(0) to humans. Instead

• Use BPX.SUPERUSER (not good enough)

OR

• Use UNIXPRIV resources (preferred)

• But if you must assign UID(0), define

BPX.DAEMON to prevent unauthenticated

identity switches

34

8/12/2015

18

35

UNIXPRIV Class Resources

�Used to assign subset of SUPERUSER

authority to a user

�Goal: principle of least privilege

�Partial list of functions you can grant:

�ability to read or write any HFS file

�ability to change file ownership

�ability to change file permissions/ACLs

�ability to send signals to any process

�ability to mount/unmount file systems

See z/OS UNIX System Services Planning for complete list of UNIXPRIV resources

36

�Activated by defining FACILITY BPX.DAEMON

�Restricts the use of unauthenticated identity changing

services

�Only trusted daemons should be given authority

�The daemon address space must be kept clean

�If a program that is NOT a controlled program

is loaded, the address space is marked dirty

and cannot perform daemon activities

�Clean environment ensures daemons

perform their intended function

Controlling Daemons ...

z/OS UNIX-Level Security

8/12/2015

19

37

Controlling Daemons ...

z/OS UNIX-Level Security

�All programs loaded must be controlled

�PROGRAM profiles covering all programs from MVS
libraries (UACC READ is OK)

�‘sticky’ bit on file executable defers to MVS

�Controlled attribute for programs from the HFS

�Set with extattr +p

�Issuer needs authority to BPX.FILEATTR.PROGCTL

(UID 0 does not grant authorization for extattr!)

�Turned off automatically if file is changed

�Ignored if HFS mounted with nosetuid or nosecurity

38

Good Sources of Information: UNIX

�UNIX System Services web site, at http://www-

03.ibm.com/servers/eserver/zseries/zos/unix/

�UNIX System Services Planning manual (for

your release)

�Available online at http://www-

03.ibm.com/systems/z/os/zos/library/bkserv/v2r1pdf/#B

PX

�mvs-oe mailing list (see the Forums link at the

UNIX web site above for information)

�Check program product documentation

for daemon or server security setup

8/12/2015

20

39

Good Sources of Information: RACF

�RACF Auditor’s Guide

�UNIX auditing classes

�RACF Macros and Interfaces

�SMF 80 formats and SMF Unload mappings

�RACF Security Administrator’s Guide

�Chapter on z/OS UNIX security
http://www-03.ibm.com/systems/z/os/zos/library/bkserv/v2r1pdf/#ICH

�RACF web page – irrhfsu and presentations

http://www-03.ibm.com/servers/eserver/zseries/zos/racf/

Appendix: Supplementary material

40

8/12/2015

21

41

write execute

executewrite

read

read

stickyset-gidset-uid

Other

rwx

Group

rwx

Owner

rwx

chlabel commandSecurity labelSECLABEL of

covering dataset

setfacl commandAccess Control Listcontents of parent's

default ACL

extattr commandExtended attributesSHAREAS bit on for

executable files

chaudit –a commandAUDITOR audit optionsno auditing

chaudit commandOwner audit optionsread, write, and

execute failures

chmod commandFlagsflags specified by

open()

chmod commandPermission bitsvaries by function

(qualified by umask)

chown or chgrpGroup (GID) ownerparent dir's group

chown commandUser (UID) ownereffective UID

initialized to ... File security info changed by ...

write execute

executewrite

read

read

stickyset-gidset-uid

Other

rwx

Group

rwx

Owner

rwx

chlabel commandSecurity labelSECLABEL of

covering dataset

setfacl commandAccess Control Listcontents of parent's

default ACL

extattr commandExtended attributesSHAREAS bit on for

executable files

chaudit –a commandAUDITOR audit optionsno auditing

chaudit commandOwner audit optionsread, write, and

execute failures

chmod commandFlagsflags specified by

open()

chmod commandPermission bitsvaries by function

(qualified by umask)

chown or chgrpGroup (GID) ownerparent dir's group

chown commandUser (UID) ownereffective UID

initialized to ... File security info changed by ...

42

UNIX File Security Packet (FSP) ... who can change what?

Security Field Required authority

Owning UID �UID 0
�File owner if CHOWN.UNRESTRICTED is defined in the UNIXPRIV class
�READ access to UNIXPRIV profile SUPERUSER.FILESYS.CHOWN

Owning GID �UID 0
�Owner, if a member of new group
�File owner if CHOWN.UNRESTRICTED is defined in the UNIXPRIV class
�READ access to UNIXPRIV profile SUPERUSER.FILESYS.CHOWN

File mode (permisions and flags)
and ACL

�UID 0
�File owner
�READ access to UNIXPRIV profile
SUPERUSER.FILESYS.CHANGEPERMS

Owner audit options �UID 0
�File owner

Auditor audit options �RACF AUDITOR

Extended attributes READ access to FACILITY class profile named:
�APF - BPX.FILEATTR.APF
�Program control - BPX.FILEATTR.PROGCTL
�shared library - BPX.FILEATTR.SHARELIB

Security Label �RACF SPECIAL

8/12/2015

22

43

Auditing UNIX Files: compared with data sets

DATASET auditing UNIX file auditing

SETROPTS LOGOPTIONS for DATASET

class controls access logging

SETROPTS LOGOPTIONS for FSOBJ,

DIRACC, and DIRSRCH classes contols access

logging

SETROPTS AUDIT(DATASET) audits profile

creation/deletion

SETROPTS AUDIT(FSOBJ) audits file

creation/deletion

SETROPTS AUDIT(DATASET) audits

changes to RACF profiles

SETROPTS LOGOPTIONS for FSSEC audits

changes to file owner, permission bits and audit

settings

Profile-level auditing can be specified by

profile OWNER (AUDIT option of ALTDSD)

File-level auditing can be specified by file

owner (chaudit command)

Profile-level auditing can be specified by

auditor (GLOBALAUDIT option of ALTDSD)

File-level auditing can be specified by auditor

(chaudit command with -a option)

44

DATASET auditing UNIX file auditing

LOGOPTIONS with ALWAYS and NEVER

overrides profile settings

same for file settings

LOGPTIONS with SUCCESSES or

FAILURES merged with profile-level settings

same for file settings

LOGOPTIONS with DEFAULT uses the

profile-level settings

same for file settings

Default profile setting is READ (implies

UPDATE, CONTROL, and ALTER failures

too) failures for owner options, and no settings

for auditor options

Default is read, write, and execute failures for

owner settings (note that UNIX permissions are

not hierarchical - these are separate settings for

each access type)

Display profile options with LISTDSD Display file options with ls -W

Auditing UNIX Files: compared with data sets …

