
Randy Ebersole

IBM

ebersole@us.ibm.com

DB2 11 for z/OS Application Functionality

(Check out these New Features)

Please note

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract. The
development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance that any
user will experience will vary depending upon many factors, including considerations
such as the amount of multiprogramming in the user’s job stream, the I/O configuration,
the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve results similar to those stated here.

About This Presentation

 The main intent of this session is to highlight some of the

new application related features of DB2 11. We want to

introduce some of the new application functionality and

get you thinking more about DB2 11!

Topics for Review

Archive Tranparency

The Optimizer and RUNSTATS

Autonomous Transaction Management

Pseudo Deleted Index Entry Cleanup

Further exploitation of RELEASE(DEALLOCATE)

Managing large amounts of data for a table

 Managing tables that contain a large amount of data is a

common problem

performance is a challenge

Many times, a large portion of the data is commonly accessed

 Many times application design / database design has

been done to manage this challenge

Move “old” data to another table

Keep “current” data separate

6

A picture of this …..

 Applications are designed to handle the access to the data

 Still a challenge to manage and control

“Current” data
“OLD” DATA

What is Archive Transparency in DB2 11 ?

• Data archive management from OLTP current table to “old” data

table

• You can include or exclude archive table data access without a

need to change the SQL statement

• Control the scope of the query with a global variable

• archive-enabled table and associated archive table

8

Transparent Archive
High performance,
availability storage

 Applications can query current + archive with no SQL changes

 By default, data is retrieved from base table only, as usual

 Set a new global variable when archive data is desired

 DB2 automatically converts SQL to UNION ALL via dynamic plan switching technique
(high performance)

 Archiving process is user-controlled

 Move_To_Archive global variable allows DELETEs to be automatically archived

 Leverages DB2 10 temporal constructs for archiving use cases

 Future potential for more IDAA synergy

Current data

Archive data

Cheaper storage

Optimizer input for RUNSTATS

• The better the RUNSTATS, the more effective the

optimizer

• The standard or default statistics are commonly used

– RUNSTATS TABLE(ALL) INDEX(ALL) KEYCARD

• Additional statistics will typically help queries perform

better

• The challenge is in determining what RUNSTATS to

collect

The flow of Optimizer input for RUNSTATS

BIND
REBIND
PREPARE

DB2 Optimizer

DB2 Catalog
Statistics

Chosen
Access Path

Missing or
conflicting statistics SYSTATFEEDBACK

Format for RUNSTATS

RUNSTATS
with additional options

DB2 11 and DB2 Optimizer Feedback

• During access path selection process, the optimizer identifies missing or

conflicting statistics

– Every BIND, REBIND or PREPARE

• Writes recommendations to SYSIBM.SYSSTATFEEDBACK asynchronously

– DB2 also provides statistics recommendations on EXPLAIN

• Populates DSN_STAT_FEEDBACK synchronously

• Information from SYSSTATFEEDBACK or DSN_STAT_FEEDBACK can be

used to generate input to RUNSTATS

– Contents must be interpreted, not directly used by RUNSTATS

– Requires DBA or tooling to convert to RUNSTATS input

•Useful for event logging, Audit data, special data

management

•DB2 executes native SQL procedure in a unit of work that

is independent of the calling program

• May perform SQL, COMMITs, and ROLLBACK

• No uncommitted changes from it’s caller are available

• Autonomous SP and caller of SP do not share locks

•COMMIT is done when autonomous SP completes

successfully, (SQLCODE >=0)

Autonomous Transactions

Definition of Autonomous Transactions

–Specify AUTONOMOUS keyword on ALTER or CREATE

PROCEDURE:

• DYNAMIC RESULT SETS 0 must be in effect.

• Stored procedure parameters must not be defined as:

– A LOB type

– The XML data type

– A distinct data type that is based on a LOB or XML value

– An array type that is defined with array elements that are a

LOB type

– A value must not be assigned to a global variable when an

autonomous procedure is executing.

Autonomous Transaction Basic Flow

Application Program

SQL INSERT CUST_TAB

CALL AUDIT_SP
(autonomous SP)

“ROLLBACK”

AUDIT_SP;
SQL INSERT AUDIT_TAB
END

DB2DBM1 address space

Data inserted to
CUST_TAB not visible to

Autonomous SP

Data is committed in
AUDIT_TAB

Regardless of what
happens in calling

program

Monitoring Autonomous Transactions

-DISPLAY THREAD(*) command

12.34.56 DB2P DISPLAY THREAD(*)

12.34.56 STC00090 DSNV401I DB2P DISPLAY THREAD REPORT

FOLLOWS -

12.34.56 STC00090 DSNV402I DB2P ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN

BATCH SP * 1 APPL USERA PLANA 0022 31

AT * 641 APPL USERA PLANA 002A 13

Pseudo deleted index entries

• When table rows are deleted, a pseudo delete operation

is done for the index RIDs

– Index RIDS are “flagged” as deleted

– unless the delete process has locked the entire table

• Impact of pseudo deleted index entries

– Index size grows with increasing number of pseudo-deleted

index entries

– More getpages and lock requests required

– Increased CPU cost and possibly longer elapsed times for

access via index search

Pseudo deleted index entry clean up

• Prior to DB2 11, clean up of pseudo deleted index entries
were part of main line processing and does impact
application with increased costs

– REORG INDEX takes care of pseudo-empty index pages
and pseudo-deleted entries

• DB2 11 introduces additional action in the clean up of the
pseudo deleted index entries

• Clean up pseudo-empty index pages and pseudo deleted
index entries

 Could reduce the size of indexes

 Could improve SQL performance

 Could reduce the need to run the REORG INDEX utility

DB2 11 Pseudo deleted index entry Process

• In Conversion Mode

• Automated cleanup of pseudo-deleted index entries in

index leaf pages and of pseudo-empty index pages

• Mainline processing continues to do cleanup

• System tasks, running as enclave SRBs and are zIIP

eligible are utilized

• Utilizes RTS information to identify indexes for cleanup

• Clean up work is only down for an index that is already

open for “update”

• Page consistency is maintained

DB2 11 Pseudo deleted index management

• Cleanup threads are controlled

– System parameter INDEX_CLEANUP_THREADS (0-128)

– 0 disables index cleanup

– Default is 10

– Child clean up threads CORRELATION ID = 014.IDAEMKxx

• Specific index clean is done via SYSIBM.SYSINDEXCLEANUP
table

– indexes can be enabled or disabled for cleanup

– Can specify:

• Name of databases and indexes

• Cleanup enabled or disabled

• Day of week or day of month

• Start time and end time

DB2 11 Pseudo deleted index monitoring

• IFCID 377 - tracks cleanup at the index page level

– DBID, PSID, partition number, page number

– pseudo empty page OR pseudo-deleted entries

– Includes count of pseudo-deleted entries cleaned up

• Not included in any trace class

• RECORD TRACE used for reporting

Thread Management – Breaking in

DB2 10 provided a performance alternative with the use of
RELEASE(DEALLOCATE)

This creates a challenge in executing DDL, REORG, BIND)

DB2 11 delivers a break-in mechanism for persistent
RELEASE(DEALLOCATE) threads

Persistent thread automatically detects operations that would like to break in

 If detected, then RELEASE(DEALLOCATE) will behave like RELEASE(COMMIT)

zPARM PKGREL_COMMIT=YES must be set (parameter is online changeable)
 Default is YES

The release of the resources after COMMIT/ROLLBACK occurs only if other
DB2 operations (e.g. Bind, DDL, online REORG) are waiting for exclusive
control to this package.

Packages resume normal RELEASE(DEALLOCATE) behavior after the break-
in operation completes

Summary

DB2 11 once again provides a wealth of new application

functionality features

Many features provide performance benefits like CPU reduction

Many features provide options to handle application design

Randy Ebersole – IBM - ebersole@us.ibm.com

2323

Typical Utilization for Servers

Windows: 5-10% Unix: 10-20% System z: 85-100%

System z can help reduce your floor space up to
75%-85% in the data center

System z can lower your total cost of ownership, requiring as little as 30% of the
power of a distributed server farm running equivalent workloads

The cost of storage is typically three times more in
distributed environments

Questions

