17573: Availability and Time to Data – How to Improve Your Resiliency and Meet Your SLAs

Ros Schulman – Hitachi Data Systems
Rebecca Levesque – 21st Century Software
August 13, 2015
10-11:00 am
Southern Hemisphere 5 – Disney Dolphin Hotel
About the Speakers

Roger Schulman is Director, Data Protection at Hitachi Data Systems with over 35 years experience in the IT business both on the vendor and customer side including systems programming, operations, technical support and sales support. Ms. Schulman has worked at Hitachi Data Systems for over 22 years. She currently works in the Global Solutions Strategy and Development organization with responsibility for Data Protection Software and Mainframe Management software including disaster recovery and backup software. She spends much of her time with customers, discussing their unique Data Protection challenges. She has also co-authored many white papers in the area of Business Continuity.

Rebecca M. Levesque is Chief Executive Officer of 21st Century Software and responsible for shaping the company’s product strategy and vision. She has over 20 years experience helping hundreds of companies establish resiliency and recoverability strategies from any disruptive event. Her knowledge and depth of experience is offered as a speaker at SHARE, IBM Systems Magazine, ACP, and DRJ. She is a published author in trade journals, white papers, and industry forums. Additionally, Rebecca has helped executives, storage managers, and technical architecture professionals leverage their existing storage technology investments while ensuring efficiencies across the enterprise.

About this Session

Whatever type of Data Protection you have in place, this session demystifies long-standing (and often misguided) assumptions made around recoverability, availability and, more importantly, time to data. With an average of 12 to 15 copies of data out there, does your crash consistent point meet your SLA and have you considered all the variables, including batch.

Learn how one company has faced these challenges, and combined storage-based replication and host-based software to improve their SLAs, to deliver a resilient and effective recovery solution.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Mainframe Missed Understandings

• In this 24x7 world, in which customers want to make online transactions at any time they choose, the window for batch processing has closed significantly. Yet the amount of batch work hasn’t shrunk?
  
  (BMC White Paper)

• Most data center outages are caused by a systems or applications programmer, or another staff member creating a localized problem. If not caught promptly, the localized problem may spread, creating an entire systems outage?
  
  (Enterprise Systems)

• It’s common to have an isolated product showing 100% availability when the user is unhappy.
  
  (Enterprise Systems)

• Our DR exercises have been 100% successful – how is success measured?

• Mainframers are open to new processes – are you?
The convergence of backup and disaster recovery technologies has occurred largely because snapshot, replication and virtualization have made it possible to recover from a disaster without the need for a traditional data restoration. The methods involved in this convergence seek to minimize storage cost, while also allowing for instant recovery. (Posey, 2014)
Issues with Backup - Time - Recovery

1. Backup Window

2. Data Recovery Objective

3. RTO

What about the problems interdependencies between apps cause?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
What is your Recovery Point?

And, interdependencies between apps?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Your Business SLA

The pressure is on for business and IT services to offer 100% availability and not some number of nines, even during site disasters. Despite businesses' desire for 100% availability and "availability as a utility," IT is not yet managing service availability like a utility. IT often lacks the necessary standards, the architectures are complex and dependent on many components, and ....

**the people and processes involved in IT service delivery now often increase the risk of downtime more than technology risks do.**

*September, 2014  
Donna Scott - Gartner*
RPO Affects RTO = SLA

• Rapid restore and recovery from any failure is essential
• Fault-tolerant rapid recovery application environments are needed
• With mainframes this includes both transactional and batch processing
  – Applications and databases have advanced transaction recovery features
  – Batch jobs present a different problem
• What is continuous data protection (CDP) and near-CDP?
CDP Definition

- Continuous data protection (CDP) - recovery approach that continuously, or nearly continuously, captures and transmits changes to files or blocks of data while journaling these changes.
- Some CDP solutions can be configured to capture data either continuously (true CDP) or at scheduled times (near-CDP/snapshots).
- Near-CDP is often done every few minutes or hours, minimizing potential data loss.
## Percentage Uptime Achieved Per Year

<table>
<thead>
<tr>
<th>Uptime</th>
<th>Maximum Downtime/Year</th>
<th>% Missed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six nines</td>
<td>99.9999%</td>
<td>31.5 seconds</td>
</tr>
<tr>
<td><strong>Five nines</strong></td>
<td><strong>99.999%</strong></td>
<td><strong>5 minutes 35 sec</strong></td>
</tr>
<tr>
<td>Four nines</td>
<td>99.99%</td>
<td>52 minutes 33 sec</td>
</tr>
<tr>
<td>Three nines</td>
<td>99.9%</td>
<td>8 hours 46 min</td>
</tr>
<tr>
<td>Two nines</td>
<td>99.0%</td>
<td>87 hours 36 min</td>
</tr>
<tr>
<td>One nine</td>
<td>90.0%</td>
<td>36 days 12 hours</td>
</tr>
</tbody>
</table>

*Continuity Software Survey (10/2014)

From [http://www.continuitycentral.com/feature0267.htm](http://www.continuitycentral.com/feature0267.htm)
Operational or DR ... or Both?

- Continuous availability enables 24/7 access to IT-enabled business functions, processes and applications.
- Involves two strategies: high availability (minimizing unplanned downtime) and continuous operations (minimizing planned downtime).
- Sometimes, continuous availability architectures embody disaster recovery strategies:
  - IT service processing continues despite disaster events.
  - Gartner refers to this as "multisite continuous availability."

*(Gartner, Donna Scott - 2014)*
Recovery Classes and Performance

- **Operational Recovery (restore a file, folder, volume, system)**
  
  - RPO: 0 Secs
  - RTO: Disk, Virtual Tape, Tape

- **Disaster Recovery (restore operations at/from another location)**
  
  - RPO: 0 Secs
  - RTO: Disk, Virtual Tape, Tape

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
IT Resiliency – Where, Why, How Long

Operational Restore

- Production
- Restore Process

DR

- Recovery/Secondary Site
- Restore Process

Operational Resilience

Disruptive Event

SLAs do not care whether primary or secondary site is affected. Any failures due to corruption, deletion, and other possible reasons require restoration/recovery and affects Time to Data.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

RML/RS
SLA Tiers – Tie Solutions to SLA

• Determine SLA per application
  - Tier 1 - continuous availability requirement, maximum four minutes downtime a year
  - Tier 2 - high availability, maximum of one outage per year, maximum four hours outage per year
  - Tier 3 - recovery essential within 24 hours, maximum three outages per year
  - Tier 4 - recovery required within three days, maximum four outages per year
  - Tier 5 - delayed recovery, all other services

(Hiles, Continuity Central, 2015)
<table>
<thead>
<tr>
<th>Technology</th>
<th>RPO Range</th>
<th>RTO Range</th>
<th>MAX Downtime per year</th>
<th>SLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>Static</td>
<td>Depends</td>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>Traditional Backup to Tape/Disk including VTL or PBBA</td>
<td>24-168 hours</td>
<td>1-24 hours</td>
<td>1d 19h 49m 44.8s</td>
<td>Hours 99.5%</td>
</tr>
<tr>
<td>Snapshot, near-CDP With or without Application Awareness</td>
<td>Minutes – 36 hours</td>
<td>15 mins – 12 hours</td>
<td>4 Hours 22 minutes</td>
<td>Minutes 99.95%</td>
</tr>
<tr>
<td>Synchronous Replication</td>
<td>0-2 mins</td>
<td>1-4 hours</td>
<td>4 Hours 22 minutes</td>
<td>99.95%</td>
</tr>
<tr>
<td>Synchronous Replication with Failover</td>
<td>0-2 mins</td>
<td>5-60 mins</td>
<td>52 mins – 5 mins</td>
<td>99.99%-99.9999%</td>
</tr>
<tr>
<td>Asynchronous Replication</td>
<td>0-60 mins</td>
<td>1 – 8 hours</td>
<td>4 hours 22 mins</td>
<td>99.95%</td>
</tr>
<tr>
<td>Asynchronous Replication with Failover</td>
<td>0-60 mins</td>
<td>30 mins – 4 hours</td>
<td>52 mins</td>
<td>99.99%</td>
</tr>
<tr>
<td>3 DC (Sync/HA and Async)</td>
<td>0-60 mins</td>
<td>5 mins – 4 hours</td>
<td>4 hours 22 mins -5 mins</td>
<td>99.95%-99.999%</td>
</tr>
</tbody>
</table>
Batch Application Crash Consistency Problem

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Establish Problem and Appropriate Solution

- Square expenditure and focus with expectation
  - Too much focus on DR and not enough on resiliency
  - Does not solve operational recovery issues
  - Suitable solutions for smaller, local failures

- High availability does not solve everything

- Establish SLA’s to meet business, not rely on RTO/RPOs
  - Use the right technology
  - Application uptime is the name of the game

- Most replication technologies cannot create crash consistent data
  - May be ok for databases
  - What about open or stranded datasets
  - Non-database application recoverability requires different approach for both operational recovery and DR
Other Considerations

- Storage replication, software replication alone doesn’t automate and guarantee failover
- Failover waits for “go ahead” – or automate and roll the dice
- Corruption
- Tape/DASD speed differential
- SLA achieved through approach
- What about GDPS?
  - Batch has to be restarted even with GDPS
  - Potential for transactions to have been stranded in the failed site

“Attempts to apply the stranded changes to the data in the active site may result in an exception or conflict, as the before image of the update that is stranded will no longer match the updated value in the active site.”

*(IBM Share - August, 2012)*
One Customer’s SLA Challenge

- Credit card processing
- Interlocking dependencies
- 24/7 operation
- Payment Card Industry (PCI) standards
- RTO = 15 minutes
- Current manual processes unable to meet RTO
- Production control system programmer to handle issues
One Customer’s Approach

- Individual failure inevitable
- Fault tolerant storage
- Remote replication with multi-site DC operations
- Snapshot and recovery system for application state, data checkpoints, and recovery (point-in-time or PIT)
  - Batch journal-like database
  - Open datasets identified
  - Restore via panel

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Mainframe Environment Example

TimeLiner, InstaRestore & InstaSnap are patent pending technologies

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Mainframe Environment Example

TimeLiner, InstaRestore & InstaSnap are patent pending technologies

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
On restart, TimeLiner and InstaSnap recognize that all of the FC data is not available for the third PiT. It will then roll back to the second PiT for job recovery.

TimeLiner, InstaRestore & InstaSnap are patent pending technologies

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Time to Data…

… is the ultimate determinant of SLA effectiveness

The amount of **TIME** required to restore application access to a business is what separates a temporary **Operational Restore** from a full-blown **DISASTER**

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Questions to Ponder

• SLA’s
  – Are business SLAs achievable currently and do they match RTO/RPO’s?
  – Do you have the right technology to map to your SLA’s?

• What do you test from a recovery standpoint
  – DR – unplanned failover
  – Data corruption
  – Mid-batch cycle
  – Deletions
# Hitachi Mainframe Business Continuity Portfolio

## In-System Replication Solutions
- **ShadowImage® In-System Replication**
  - For full volume clones of business data with consistency (ATTIME split with HUR)

## Remote Replication Solutions
- **Hitachi TrueCopy**
  - Synchronous, consistent clones at remote location up to 300km (~180 miles)

## Replication Management Solutions
- **Hitachi Business Continuity Manager (BCM)**
  - Replication management in z/OS environments

<table>
<thead>
<tr>
<th>In-System Replication Solutions</th>
<th>Remote Replication Solutions</th>
<th>Replication Management Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShadowImage® In-System Replication</td>
<td>Hitachi TrueCopy</td>
<td>Hitachi Business Continuity Manager (BCM)</td>
</tr>
<tr>
<td>For full volume clones of business data with consistency (ATTIME split with HUR)</td>
<td>Synchronous, consistent clones at remote location up to 300km (~180 miles)</td>
<td>Replication management in z/OS environments</td>
</tr>
<tr>
<td>IBM-Compatible FlashCopy Point-in-time volumes and datasets via IBM command set in z/OS environment</td>
<td>Hitachi Universal Replicator (HUR) Any distance, unique use of ‘Pull’ technology and Journal Volumes to accommodate link outages or interruptions</td>
<td>Hitachi Replication Manager with mainframe BCM “Enterprise-wide” GUI replication management and monitoring for mainframe and open systems</td>
</tr>
<tr>
<td>IBM-Compatible FlashCopy/SE Point In Time volumes with virtual volume pool as target vs. whole volumes</td>
<td>IBM-Compatible XRC* Asynchronous remote replication via compatible with IBM XRC in z/OS environment * Note: Only available as a migration tool to HUR</td>
<td>IBM Basic HyperSwap, GDPS HyperSwap certification and/or integration High-availability storage for z/OS environments</td>
</tr>
</tbody>
</table>

## Replication Assessment, Migration and Implementation Services
- Best practice designs that ensure results and lower risks in implementation

## Replication Score Card (Health Check) Services
- Periodic checkups that ensure continued solution value

Complete your session evaluations online at [www.SHARE.org/Orlando-Eval](http://www.SHARE.org/Orlando-Eval)
## Data Resiliency

**VFI**
- Slashes recovery time objectives and assures SLAs
- Erases recoverability gaps, ensures resiliency, and reduces storage
- Enables recovery to job/dataset level through real-time architecture and patent pending software code (InstaSnap, InstaRestore, and Timeliner)
- Focuses on intricate, application-level dependencies
- Protects InFlight data and maximizes snap copies sync’ed to application backups
- Cross-application dependencies

## Storage Management & Usage

**Total Storage**
- True knowledge for storage and management class
- Insightful reporting for JCL coding to avoid policies
- Tier data based upon usage, reference, and criticality (from VFI)
- Data modeling for new purchase or improving allocation and utilization

**SpaceFinder**
- Intelligent resource management tools

## Tape Migration

**Tape/Assist Migration in Place**
- Reduces cost of managing tape resources while providing continuous availability
- Director and high speed copy utilities
- Backend utility processes assure referential data
- Portability, disaster recovery, and backup copies for data resiliency
- Consolidation of data
- Expertise to assist in migration management
Questions?

Thank you!
Thank You!

For additional Hitachi information, please contact:

Ros Schulman
Data Protection Technologies
Global Solutions Strategy and Development
Hitachi Data Systems
973 207 4138 (cell)
Ros.Schulman@hds.com

For additional 21st Century Software information, please contact:

Rebecca Levesque
21st Century Software, Inc.
940 West Valley Road
Suite 1604
Wayne PA 19087
U.S.A.
610 971 9946 x 200
610 659 6521 (cell)
RebeccaL@21csww.com

Complete your session evaluations online at www.SHARE.org/Orlando-Eval