

Enterprise Data Protection 101

Phil Smith III, HP Security Voltage

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Agenda

- Why we're here
- Data protection basics
- What is "enterprise data protection"?
- Why data protection is difficult and scary
- The five Ws of data protection
- Key management: the "other" gotcha
- A realistic approach to enterprise data protection

Enterprise Data Protection In Sixty Minutes

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Why We're Here

- Data protection is on many folks' minds these days
 - CxOs, CISOs are saying "Gotta protect stuff now!"
- Breaches are in the news
 - Heartland, Target, Home Depot...even RSA!
- Many sites have implemented several point solutions
 - Different platforms, different problems...not interoperable!
- DLP (data leakage prevention) is not foolproof
 - If it's leaked but protected, you care a whole lot less!
- The h4xx0rs are out there...
 - ...and they're getting smarter and more creative
- Internal breaches are increasing
 - Gartner et al. agree: 70%++ breaches are internal

Encryption vs. Tokenization

- **Encryption** we're all (sort of) familiar with:
 - using an algorithm (*cipher*)
 - plus a secret value (<u>key)</u>
 - to transform data (<u>plaintext</u>)
 - into another format (<u>ciphertext</u>)
 - so it is no longer readable without *decryption*
- **Tokenization** is another approach to data protection
 - Replaces values with randomly generated values
 - Values (typically) stored in database, database lookups required

Encryption and Tokenization

- The goal of both encryption and tokenization:
 - Make important data useless to anyone not authorized to read it!
- Note: Data protection tends to talk of data as "messages"
 - Stored data may not go anywhere, but same principles apply

Encryption Types: Symmetric

- Symmetric encryption means same key is used to encrypt and decrypt
 - Means both parties need access to the same keys
- Many varieties (algorithms):

ģģģģ

66,277

はいいい

للتككك

Byte Sub Shift Row

Mix Colum

Add Round Key

- DES, TDES, AES, Twofish, RC4, CAST5, IDEA, Blowfish...

DES

64 bytes

Plaintext

8 bytes

DES

64 bytes

DES

64 bytes

Encoded text

8 bytes

- Can be strong and also fairly high-performance
 - "Strength" determined by key length in bits as well as algorithmic integrity

विविवि

66,255

Stream vs. Block Stream Encryption

- Symmetric encryption comes in two flavors:
 - <u>Stream</u> ciphers transform the key as they progress, processing one chunk (bit, byte, whatever) at a time
 - *Block* ciphers use fixed keys every block (blocksize=keysize)
- Difference matters little in practice
 - Stream generally faster, but requires more key complexity
 - Many block ciphers have modes that effectively operate like stream ciphers
 - Most data protection products use block ciphers

Stream Cipher

8 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Asymmetric aka Public Key Encryption

- Asymmetric encryption means what it sounds like:
 - Different keys needed to encrypt and decrypt
 - Each entity has two keys: *public* and *private*
 - Invented in 1970s (Diffie-Hellman, RSA, UK government)
- Makes key distribution much easier:
 - I can publish my public key safely
 - You encrypt using public key, I decrypt using my private key
- Downside is performance
 - Symmetric algorithms are typically *much* faster—public key often too expensive for application data protection
 - Requires significant data layout/application changes

Asymmetric Encryption Uses

- Some use cases are ideal for public key encryption
 - Hassle-free (public) key exchange makes some things easy
 - A key is a key, so either (private/public) usable for encryption *or* decryption, provided "other" used for opposite function
- Better yet, encrypt twice: my private, your public
 - You and I can email each other our public keys
 - I encrypt with my private, your public
 - You decrypt with your private, my public
- You now know the data was encrypted by me, I know only you could decrypt it
 - Provided neither of us has exposed our private keys!

Hybrids: Key "Wrapping"

- Because asymmetric encryption is expensive, hybrid solutions are attractive:
 - Sender generates random symmetric key
 - Encrypts actual data ("payload") using that symmetric key
 - Encrypts symmetric key using target's public key
 - Sends encrypted symmetric key with data
- To decrypt:
 - Key decrypted using (expensive) asymmetric (private key)
 - Payload decrypted using cheaper symmetric algorithm

Cryptographic Hashes and Digests

- Related to encryption: cryptographic hashes aka digests
 - Functions that convert variable-length input to fixed-length output
 - Any change to original data changes the hash
 - Used in digital signatures, as checksums, etc.
- Good hashes (SHA-1/2/3, MD4/5) have these properties:
 - Easy to compute for given data
 - Infeasible to reconstruct data from hash
 - Infeasible to modify data without changing hash
 - Collisions (same hash from different data) very rare
- A good way to represent data without leakage risk
 - Frequently used for things like verifying downloads

Digital Signatures

- *Digital signatures* are also related to cryptography
 - Generated from the data using public/private-like key pairs
 - Result is a hash-like blob
- Signatures prove data authenticity and integrity
 - Authenticity: Data is from who it says it's from
 - Integrity: Data has not been tampered with (since signing)
- Implements important concept: non-repudiation
 - Means sender cannot (reasonably) say "I didn't sign that"
- Frequently used for things like secure email
 - Avoids problems due to forged mail

Message Authentication Codes (MACs)

- A MAC (Message Authentication Code) is a keyed hash
 - Created using a hash function plus a secret key
 - Verify both data integrity and authenticity
- Different from digital signatures: same secret key used by creator/reader
 - Thus more like symmetric encryption, where digital signatures are more like public key encryption
- Generally faster to generate than digital signatures
 - MAC sent along with data
 - Receiver re-generates MAC against data, confirms match
 - Useful for verifying transactions

Secret Key Known Only to Sender and Receiver

What is "Encryption Strength"?

- **Encryption strength** refers to the likelihood that an attacker can "break" encrypted data
 - Typically tied to bit length of encryption key
 - Exponential: 128-bit key is 2⁶⁴ times as strong as 64-bit
 - See "Understanding Cryptographic Key Strength" on youtube.com/user/VoltageOne for a good discussion/illustration
- The encryption community is collaborative
 - Research, algorithms are all published and peer-reviewed
 - Cryptographers look for weaknesses in their own and each others' work

More About "Encryption Strength"

- Cryptographers "cheat" in favor of attacker when analyzing
 - Make assumptions like "attacker has multiple known examples of encrypted data and matching plaintext"
 - Also assume they'll know plaintext when they find it, and that the encryption algorithm is known
- "Weaknesses" reported are often largely theoretical—only NSA could really exploit
 - Huge amounts of time, brute-force computing power required

More About "Encryption Strength"

- This "cheating" ensures encryption strength is real*
 - This approach increases security for all
 - By the time an algorithm is accepted as a standard and implemented in products, confidence is high
 - Even if a weakness is later discovered, it's likely largely theoretical/impractical for most to exploit
- Makes it easy to spot the charlatans
 - Companies whose proprietary algorithms are *not* peer-reviewed
 - Also look for claims like "unbreakable encryption", or focus on key length rather than standards-based cryptography

* Well, as real as the smartest minds in the business can make it!

Symmetric Encryption Examples

- DES: Data Encryption Standard
 - Selected as standard by US government in 1976
 - Block cipher, uses 56-bit keys
 - Considered insecure: as of 1999, "breakable" in < 24 hours
- TDES: Triple DES
 - What it sounds like: DES applied three times
 - Uses two or three different keys
 - Thus at least 2¹¹²-bit key strength (168-bit with three keys)
 - Considered secure, though relatively slow

More Encryption Algorithm Examples

- AES: Advanced Encryption Standard
 - Symmetric, adopted as US standard in 2001, reasonably fast
 - 128-, 192-, or 256-bit keys
 - Ubiquitous and proven: rarely any reason to use anything else
- Blowfish, Twofish, Serpent...
 - Symmetric, similar to AES in strength; mostly a bit slower
 - Algorithms are public domain (as is AES)
- Diffie–Hellman (ECDH), RSA, IBE
 - Asymmetric, much slower than common symmetric
 - RSA used in SSL; IBE most common email encryption technology

Format-Preserving Encryption

- Format-Preserving Encryption is another choice
 - Data encrypted with FPE has *same format* as input
 - Encrypted SSN still 9 digits; name has same number of characters; credit card number has same number of digits...

Name	SS#	Credit Card #	Street Address	Zip
James Potter	385-12-1199	5421 9852 8235 6981	1279 Farland Avenue	77901
Ryan Johnson	857-64-4190	5587 0806 2212 0139	111 Grant Street	75090
Carrie Young	761-58-6733	5348 9261 0695 2829	4513 Cambridge Court	72801
Brent Warner	604-41-6687	4929 4358 7398 4379	1984 Middleville Road	91706
Anna Berman	416-03-4226	4556 2525 1285 1830	2893 Hamilton Drive	21842

Name	SS#	Credit Card #	Street Address	Zip
James Cqvzgk	161-82-1292	5 184 2292 5001 69	981 289 Ykzbpoi Clpppn	77901
Ryan lounrfo	200-79-7127	5 662 9566 7734 0	139 406 Cmxto Osfalu	75090
Carrie Wntob	095-52-8683	5 774 6343 6896 28	829 1498 Zejojtbbx Pqkag	72801
Brent Gzhqlv	178-17-8353	4 974 7815 8270 43	379 8261 Saicbmeayqw Yotv	91706
Anna Tbluhm	525-25-2125	4288 0276 0003 18	830 8412 Wbbhalhs Ueyzg	21842

Format-Preserving Encryption

- Format-Preserving Encryption benefits:
 - Avoids database schema changes
 - Minimizes application changes
 - In fact, most applications can operate *on the protected data:* Fewer than 10% of applications need actual data
- Another HP Security Voltage technology
 - Invented by Voltage Security, based on work at Stanford
 - Mode of AES, NIST draft standard SP800-38G (or Google "nist ffx")
 - Peer-reviewed, proven technology

FPE: Cross-Platform Capable

- ASCII/EBCDIC issues go away
 - Data converted to Unicode before encryption/decryption
 - Results in native host format (ASCII or EBCDIC)
 - Possible because character sets are deterministic (FPE!)
- Encrypt/decrypt where the data is created/used
 - Avoids plaintext data ever traversing the network

Tokenization for Data Protection

- Confusion abounds re tokenization vs. encryption
 - Some QSAs think tokenization is better—"no encryption key"
 - Cryptographers see the database index *itself* as a key
- Problems with traditional tokenization approaches
 - Sounds simple, easy to cobble together a solution
 - Problems: replication, backup, collisions
 - Result: early success, with dramatic failure after rampup
 - "Shell game": moves the problem to one critical database

Choosing Tokenization

- When to choose tokenization over encryption
 - When QSA prefers it unilaterally
 - When regulations/policies require key rollover (PCI et al.)
 - As ever, "Choose the right tool for the right use case"
- Why **not** choose tokenization over encryption?
 - Transaction volume, network latency, database replication costs
- Enter HP Security Voltage Secure Stateless Tokenization technology!
 - Avoids all these—no database: random table instantiated once

FPE for Data Masking

- Application testing needs realistic datasets
 - Fake sample datasets typically too small, not varied enough
- Best bet: Use production data...**but:**
 - Test systems may not be as secure
 - Testing staff should not have full access to PII!
- Answer: Use FPE to mask (anonymize) test data
 - With FPE, protected production data is already usable for test
 - No extra steps required!

Implementing Data protection

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

What is "Enterprise data protection"?

- A scalable, manageable data protection plan
 - Standards-based, provably secure
- Applies across multiple data sources (databases etc.)
 - Not just point solutions for specific data sources
- Cross-platform
 - Everyone has multiple platforms nowadays
- Includes key management

Data Protection Is Difficult

- Lots of different technologies
 - Hardware-based, software-based, hardware-assisted
 - DES, TDES, AES, Blowfish, Twofish, CAST, PGP, GPG ... !
- Companies have *lots* of data in *lots* of places
 - Much of it probably of unknown value/use
 - The sheer volume is daunting
- Difficult to imagine how to get started
 - Easier to stick your head in the sand and hope it goes away

Data Protection Is Scary

- Most of us don't understand the technologies
 - Math classes were a looong time ago
- It changes constantly
 - We hear "DES has been broken, use AES"
 - What does that mean? Is DES useless? Is AES next to fall?
- Lots of snake-oil salesmen in data protection
 - www.meganet.com touts "unbreakable encryption"
- Easy to decide data protection is unapproachably complex
 - Like buying your first house, or doing your own taxes...
- Yes, if you get it wrong, you *will* lose data!
 - Another reason prompting avoidance behavior...

Department of the Treasury Internal Revenue Service

The Five Ws of Data Protection

- Why protect data?
- What should be protected?
- Where should it be protected?
- When should it be protected?
- *Who* should be able to protect/access (decrypt/detokenize) it?
- *How* will you protect it?

- Every company has data to protect
 - NPPI, PII, or just PI
 - Customer information
 - Internal account information
 - Intellectual property
 - Financial data
- Every company moves data around
 - Backup tapes
 - Networks
 - Laptops
 - Flash drives
 - Data for test systems

- Different media have different issues
 - Very few backup tapes get lost...but it does happen
 - Networks get compromised fairly regularly
 - Laptops are lost or stolen every day
 - Flash drives are disposable nowadays
- Different media types mean different levels of risk
 - Deliberate, targeted network breaches are obvious concern
 - Missing backups *probably* won't be read
 - Missing laptops *probably* won't be analyzed for PII
 - Found flash drives are probably given to the kids

- Breaches happen! Identity Theft Resource Center says:
 - Annual totals: 2009: 498 2010: 662 2011: 419 2012: 447 2013: 614 2014: 783
 - Not improving...and what about undetected/small ones?
 - Can you afford to bet your job/business?
- Data protection is *not* a luxury
 - Claimed cost per compromised card is \$154-\$215!!! *
 - Target breach: 40M++; Heartland : 130M; TJX: 94M cards
 - Do the math...
- * Source: Ponemon Institute \$154 = negligent inside \$215 = malicious/criminal act

- Data breach sources:
 - 73%: external
 - 18%: insiders
 - 39%: business partners
 - 30%: multiple parties

- But insider breaches far more expensive:
 - External attack costs averages \$57,000
 - Insider attacks average \$2,700,000!

Source: Verizon Business Data Breach Investigations Report

- Commonalities:
 - 66%: victim unaware data was on system
 - 75%: not discovered by victim
 - 83%: not "highly difficult"
 - 85%: opportunistic
 - 87%: avoidable through "reasonable" controls

- Causes:
 - 62%: attributed to "significant error"
 - 59%: from hacking or intrusions
 - 31%: used malicious code
 - 22%: exploited vulnerability
 - 15%: physical attacks

"It could happen to anyone!" (and does)

- The law is catching up with the reality
 - PCI DSS (Payment Card Industry Data Security Standard)
 - Red Flag Identity Theft Rules (FACTA)
 - GLBA (Gramm-Leach-Bliley Act)
 - SB1386 (California)
 - Directive 95/46/EC (EU)
 - HIPAA
 - etc.
- PCI DSS not only requires data protection, but also:
 - Restrict cardholder data access by business need-to-know
 - This is called **separation of duties**

What To Protect?

- Everything! (Well, maybe not...)
 - Performance, usability, cost are barriers
 - Partners likely use different data protection technology
 - Changing every application that uses the data is prohibitive
- No single answer
 - Laptops, flash drives: at least PII, probably all data
 - Backup tapes: all data
 - Whole-database encryption possible but not a good answer

What To Protect?

- Whole database encryption fails on several counts
 - Can impose unacceptable performance penalty
 - Prevents data compression, using more disk space etc.
 - Violates separation of duties requirements
 - Better to just protect the PII (whatever that is)!
- What about referential integrity and other data relationships?
 - Database 1 and database 2 both use SSN as key
 - If you protect them, protected SSNs better match!
 - Else must decrypt every access, and indexes useless

Typical Data Protection Approaches

- Whole disk/database/filesystem encryption
 - Encrypt all data in DB—slows all applications
 - No granular access control, no separation of duties
 - No security of data within applications
- Column data protection solutions
 - Protect data via DB API or stored procedure
 - Major DB type/version dependencies
 - No data masking support and poor separation of duties
- Traditional application-level data encryption
 - Protect data itself via complex API
 - Requires DB schema/application format changes
 - High implementation cost plus key management complexity
- Lookaside database (aka "Tokenization")
 - CC# indexed, actual CC# in protected DB
 - Requires online lookup for *every* access
 - Requires major rearchitecting; scope issues

es

43911471208007120

Where To Protect?

- Different question than "what":
 - Data at rest and in motion
- Data at rest
 - "Brown, round, and spinning" (disks of all types)
 - On tape (backup or otherwise)
- Data in motion
 - Traversing the network

Where To Protect?

- Data in motion particularly troublesome
 - How do you know if it's been sniffed as it went by?
- Data at rest *somewhat* easier
 - Intrusion detection systems fairly effective (if installed and configured, and if someone actually checks the logs)
 - ESMs very effective on z/OS (if administered correctly)
- Different issues, thus different criteria!

Elter			•	+ Express	ion 🏷 Diwar 🛷 Booly
P.41	Time	Seurce	Destination	Protocol	into
	CONTRACTOR OF		Alfersteinstate	1996	manual in short & campoor
	35.647289	102,368.1.101	208.67.222.222	DNG	Standard guery A www.
	15.937059	208.67.222.222	192.108.1.101	DIS	Standard guery respon
	15.997457	192.100.1.101	75.126.43.232	TCP	ASSEL + www [SPN] Sec
	38.314593	75.126.43.232	192,168.3.101	TCP	ww > 45061 (SPN, AC
	36.314965	102.168.1.101	75.126.43.232	TCP	4086) = www [ACK] Set
	34.014904	199,169,1.101	75.128.43.232	TCP	ITOP segrent of a rea
	1 10. 315020	192,100.1.101	75.126.43.232	100	[TOP segment of a rea
	16,724366	75.126.43.232	192.168.1.101	TCP	ww > 45061 [ACK] Set
	1.16.732070	75.126.43.232	192,168,1,101		www > 45061 (ACK) Set
	18.072290	192,368,1,101	208.67.222.222	CING .	Standard mary & vvv.
	10,390176	208.67.222.222	192,168,1,101	DNS	Standard guary respon
	18,445056	192.148.1.101	200.67.222.222	DNG / TRA	Standard query AAAA v
11.	THE PROPERTY	the same a control	10 AT 111 111		AL DALLARY ALLARY & LOUP
Fram	1 (42 byte	m un wire, 42 byte	a captured)		
				WALL DOWN	1.4. Jan 198-58. 100-18-30-
					· · · · · · · · · · · · · · · · · · ·

When To Protect?

- Ideally, data is protected as it's captured
 - By the data entry application, or the card swipe machine
- In reality, it's often done far downstream
 - The handheld the flight attendant just used—is it protecting?
 - Did last night's restaurant protect your credit card number?
 - If the data goes over a wireless network, is it WEP? WPA?
- "Doing it right" is harder: more touchpoints
 - Easier (if less effective) to say "Just protect at the database"
 - Avoids interoperability issues (ASCII/EBCDIC, partners)

Who Can Protect/Decrypt?

- Usual question is: Who can *decrypt*?
 - Who should have the ability to decrypt PII?
- Should your staff have full access to all data?
 - Many unreported (or undetected) internal breaches occur
- What if someone leaves the company?
 - How do you ensure their access is ended?
- What if an encryption key is compromised?
 - Can you revoke it, so it's no longer useful?
- PCI DSS et al. *require* these kinds of controls
 - This is a big deal—*not* trivial to implement

How Will You Protect Data?

- Hardware? Software?
 - Many options exist for both
- Is a given solution cross-platform?
 - If not, you *must* reprotect when data moves
- AES? TDES? Symmetric? Public/private key?
 - Many, *many* choices exist—too many!

How Will You Protect Data?

- Different issue: How do you get from here to there?
 - 100M++ data records—how to protect without outage?
 - "Customer database down next week while we protect"?!
- What about data format changes?
 - Protected data usually larger than original
 - Does not compress well (typically "not at all")
 - Database schema, application fields expect current format
 - Can you change everything that touches the data? (Should you need to?)

Key Management

- "Encryption is easy, key management is hard"
 - Ultimately, encryption is just some function applied to data
 - To recover the original data, you need key management
- Three main key management functions:
 - 1. Give encryption keys to applications that must protect data
 - 2. Give decryption keys to users/applications that correctly authenticate according to some policy
 - 3. Allow administrators to specify that policy: who can get what keys, and how they authenticate

Key Management

- Key servers generate keys for each new request
 - Key server must back those up—an ongoing nightmare
 - What about keys generated between backups?
 - Maybe punch a card every time a key is generated...
- Alternative: Derive keys on-the-fly
 - No key database, no ongoing backups/synchronization
- What about distributed applications?
 - How do you distribute keys among isolated networks?
 - What about keys for partners who receive encrypted data?
 - "Allow open key server access" not a good answer
 - Suggest it, watch network security folks' heads explode

Getting There From Here: A Realistic Approach

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

A Realistic Approach

- Investigate data protection, now or soon
 - Better now than *after* a breach
- Understand that choices have far-reaching effects
 - Data tends to live on for a very long time
- Expect to use multiple solutions
 - Backups, laptops, databases all have different requirements
 - "Right" answer differs
 - E.g., for backups, hardware-based encryption; for customer database, column-based data protection

High-Level Roadmap

1. Classify data by degree of sensitivity

• This is harder than it sounds!

2. Analyze risks: Security costs

• How secure can you afford to be?

3. Implement solution (remediation)

• *Must* be a gradual process

4. Use compensating controls sparingly

- By definition, they're suboptimal
- Goal: persistent data protection everywhere
 - Best achieves regulatory compliance

3a. Compensating Controls

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Key Steps

- Key: Involve stakeholders across the enterprise
 - "No database is an island": multiple groups use the data
 - Partners, widespread applications need access too...
- Key: Find a "starter" application
 - Generating test data from production is a good beachhead
 - If you "get it wrong", you haven't lost anything "real"
- **Key:** Designate data by sensitivity:

Red:	Regulated (legally required to be protected)
Yellow:	Intellectual property or other internal (unregulated)
Green:	Public

- Each requires a different level of isolation/protection

Proof of Concept

- Protect a representative database
 - "Database" could be RDBMS, .Csv, flat file...
- Update application(s) that access it
 - You know what all your applications do, right? $\ensuremath{\textcircled{\sc o}}$
- Validate performance, usability, integrity
 - Protection is not free: may see significant performance hit
- Demonstrate to other groups
 - Invite discussion, counter-suggestions
- Once (if!) project approved, request executive mandate
 - Otherwise, some groups may simply not participate

Finishing the Job

- Doing *all* databases/applications takes time
 - Expect glitches
 - Perhaps most difficult: understanding data relationships
 - Table A and Table B seem unrelated, but aren't
- Lather, rinse, repeat...
 - Each database will have its own issues/surprises

Making Intelligent Choices

Approaches and Options

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Choose a Hardware Solution?

- Many choices: encrypting disk arrays, tape drives...
 - Minimal performance impact
- Biggest issue: hardware only protects hardware!
 - Layers "above" all unprotected
 - Use case determines value
- Also: key management
 - Usually proprietary
 - Difficult to integrate
 - Separation of Duties?

Or a Software Solution?

- Data protection software products fall into two categories
 - 1. SaaS/SOA/SOAP (web services) remote server-based
 - 2. Native (data protection performed on local machine)
- Some are very narrow "point" solutions
 - E.g., platform-specific, or file encryption only
- Do you want to manage dozens of products? (Hint: "No")
 - Enterprise solution is cross-platform, solves multiple problems
- Web services is good for low-volume/obscure platforms
 - Native solutions perform better, avoid network vagaries

Questions to Ask

- Security-related questions
 - Are algorithms strong, peer-reviewed?
 - Does solution support hardware security modules/assists?
 - Is key management part of the solution?
- Operational/deployment questions
 - Is implementation cost reasonable?
 - Is implementation under your control?
 - Is product multi-platform?

Summary

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Conclusion

- Data protection is not a luxury, not optional today
- Many solutions exist
- Different data/media require different solutions

• A complex topic, but one that can be mastered!

Data Protection Resources

- InfoSecNews.org: email/RSS feed of security issues infosecnews.org/mailman/listinfo/isn
- HP Security Voltage security, cryptography, and usability blog <u>www.voltage.com/blog</u>
- Bruce Schneier's CRYPTO-GRAM monthly newsletter <u>schneier.com/crypto-gram.html</u>
- RISKS Digest: moderated forum on technology risks <u>catless.ncl.ac.uk/risks</u>
- US Computer Emergency Response Team advisories <u>us-cert.gov/cas/signup.html</u>
- Track breaches: privacyrights.org and databreachtoday.com and datalossdb.org and idtheftcenter.org

(links checked 2015-07-22)

Questions/Discussion

Phil Smith III 703.476.4511 phsiii@hp.com

