
A System z Developer's Journey
Through the Application Lifecycle

Liam Doherty dohertl@au1.ibm.com

Venkat Balabhadrapatruni venkatu@us.ibm.com

12th August, 2015

Session: 17455

Trademarks and Legal Notes
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks, see
www.ibm.com/legal/copytrade.shtml: AS/400, DBE, e-business logo, ESCO, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/30, VM/ESA, VSE/ESA,
Websphere, xSeries, z/OS, zSeries, System z, z/VM

The following are trademarks or registered trademarks of other companies

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries
LINUX is a registered trademark of Linux Torvalds
UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
Intel is a registered trademark of Intel Corporation
* All other products may be trademarks or registered trademarks of their respective companies.

NOTES:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that
any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject
to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use.

The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

3

Purpose and Presentation flow

4

• Purpose … to present a System z developer’s use of

tools that help manage the software development

cycle: “Day in a Life”

• Flow

• Overview of

• What is DevOps and its role in current state of Software
development

• Tools for Software development to support the DevOps
story

• Walk through the dev cycle and tools that supports

each step in the cycle

Accelerate
software delivery –

for faster time to value

Balance speed, cost,
quality and risk –

for increased capacity
to innovate

Reduce time to
customer feedback –
for improved customer

experience

IBM DevOps point of view
Enterprise capability for continuous software delivery that enables organizations to seize
market opportunities and reduce time to customer feedback

5

Our DevOps POV is resonating with clients and they are delivering
measurable business outcomes with DevOps

Continuous
Customer

Feedback &
Optimization

Collaborative
Development

Continuous Release
and Deployment

Continuous
Monitoring

Continuous
Business Planning

Operate Develop/
Test

Deploy

Steer

DevOps
Continuous
Feedback

Continuous
Testing

Overview of Supported Production Scenario

Project Manager or Support Team has submitted Project Change Request …

6

4: Promote and deploy
enhancement

- Promote changes from
development to test

- Create update package with set
of changes from development

- Deploy update package to the
test environment

3: Implement required
changes, build and

deliver

- Analyze source to identify
modifications

- Implement and test
modifications

- Perform personal build and
deliver new features

2: Review and Approve
Change Request

- Review analysis for change
request and approve for

scheduling

- Create development work
item(s) for implementation

- Add work to project plan

1: Review Change Request

- Analyze application to be
changed

- Size/scope effort and risk of
change

- Submit to Project Manager for
review, approval and scheduling

Analyst/SME

Lead
Developer/

Release
Engineer

Project
Manager

Application
Developer

5. Track Project Status
with Rational Team
Concert Dashboard

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

7

Source Dev BuildPlanning Governance/Unit test

Collaborative application lifecycle management
Deploy new, common team infrastructure for source control, change
management and build that empowers your team with integrated
collaboration, process automation and reporting

8
8

� Decreases development time by 15 to 20 percent

“Building an agile development team requires a multiplatform approach, and Sodifrance
uses Rational Developer for System z and Rational Team Concert for System z to help

application teams synchronize their efforts and improve collaboration.
Rational on System z offers a powerful and valuable combination

for any company that wants to boost its development team’s productivity.”
— Hugh Smith, Project Manager, Sodifrance

RequirementsProject/Planning Development Testing

RPG J2EE

Unify

.NET COBOL/PL/I EGL

Rational Team Concert – A single tool, many
capabilities

9

• Source Control� Planning� Work Items

� Method Enforcement and

Automation

� Dashboards & Reporting� Builds – Continuous

Integration

10

Multiple plan views facilitate continuous planning

10

Rational Developer for System z:
An Integrated Development Environment for System z

Rational Developer for System z

A modern IDE for productive development of
cross-platform applications written in COBOL,
PL/I, ASM, Java, EGL or C/C++ in System z
CICS, IMS, DB2, Batch applications

Access to typical System
z sub-system functionality
in z/OS, CICS, IMS, DB2,
WAS

Out of the Box debugger
and code coverage
capabilities

Integration with Fault
Analyzer for Dump Analysis

Integration with File
Manager for file and test
data handling

Integration with Asset
Analyzer for Application
Understanding and Impact
Analysis

PL/I

Integration with Team
Concert for Lifecycle and
Source Management

Integration with RD&T for flexible
access to System z environment

New

11

Rational Development and Test Environment for System z
The ultimate in modern application development for System z

Note: This Program is licensed only for development and test of applications that run on IBM z/OS. The Program may not be used to run production workloads
of any kind, nor more robust development workloads including without limitation production module builds, pre-production testing, stress testing, or performance testing.

RDz & ISPF user

ISPF user

RDz user

RDz user
RDz user

COBOL, PL/I, C++, Java, EGL, Batch,
Assembler, Debug Tool

x86 PC running Linux

RDz user

IMS

z/OS

WAS

DB2

MQ

CICS

� Increase availability of z/OS testing environment and resources

� Liberate developers to rapidly prototype new applications

� Develop and test System z applications anywhere, anytime!

� Eliminate costly delays by reducing dependencies on operations staff

� Improve quality and lower risk via automation, measurement, and collaboration

� Focus on what is required for the change at hand, then scale

12

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

13

Source Dev BuildPlanning Governance/Unit test

•Business Analyst

•opening a new work item for Developer using RTC

•Software Developer

•discovering the new work item in his work queue in RTC

•accessing and loading his code into his work env using RTC

•working to setup work using integrated RDz/RTC

•editing the COBOL source file and figuring out how to code the

requirement stated in the work item

•code the requirement, personal build and test

•Build/Release Admin

•team build, test and deploy

•mark the work item Complete in RTC

•Business Analyst

•Verify that requirement is complete and close the work item in RTC

Demo: What we will show

14

Integrated Debugger

� Host-offload architecture:

� Remote debugger with only a small footprint on
the mainframe:

• Leverages workstation CPUs enabling faster
processing of debug information

• Enables scalability and reliability

� Debugger client is supported on Windows and
Linux

� Simple and Secure Connections:

� Single client can handle multiple debug sessions
on multiple hosts or an application the spans
multiple systems

� Client initiated debug – no need to specify client
IP address and port (v9.0.1.2)

� SSL/TLS support

15

16

Debug Multiple Runtimes
• Use the cross-platform debugger to

debug end-to-end systems as they
execute in the runtime
• CICS

• Batch

• Java

• From the workstation:
• View executing source code

• Step through host code line-by-line

• Set breakpoints

• Alter working storage values

• Alter register values

• Etc…

• Debug zOS and distributed code in the
same interface even stepping between
runtimes and platforms!

• Leverage Integration with IBM Debug
Tool for other runtimes

16

Enhanced Application Quality – Code Coverage

17

• Line Level Code Coverage - provides tools to measure and report on test

coverage of an application

• Leverages the Integrated Debugger technology

• Indicating what source code lines were tested and remain to be tested

17

18

Enhanced Quality & Structure Analysis – Code review

• Code Review/Governance -
provides predefined rules and
templates for COBOL and PL/I
applications

•Ensure adherence to corporate

standards

•Custom rules for COBOL and PL/I

18

19

zUnit – Unit testing framework for z/OS

• Frameworks that assist developers in writing code to perform repeatable, self-

checking unit tests are collectively known as xUnit.

• xUnit defines a set of concepts that together provide a light-weight architecture for

implementing unit testing frameworks.

• JUnit, for example, is a very popular instance of the xUnit architecture.

• zUnit is a xUnit instance for System z

• Goal is to encourage the continuous integration and continuous testing

methodology for System z Application development and maintenance

T E S T C A S E 1 (. . .)

A D D T E S T S 2 (. . .)

T E S T 0 0 1 2 (. . .)

T E S T n n n 2 (. . .)

S E T U P 2 (. . .)

T E A R D O W N 2 (. . .)

. . .

Z X U T C IN I (. . .)

Z X U T C A D D (. . .)

Z X U A S T F M (. . .)

Z X U A S T F A (. . .)

U S E R . Z U N I T (T E S T C A S E)

z U n it T e s t R u n n e r A P I

I n v o k in g t h e a s s e r t i o n A P I s i n t h e

S E T U P, T E A R D O W N , o r a c t i v e T E S T

e n t r y w i l l f a i l t h e c u r r e n t Te s t .

1 L a n g u a g e - s p e c i f i c d e t a i l s :

I n C O B O L , th i s i s t h e f i r s t p r o g r a m a p p e a r in g i n t h e Te s t C a s e s o u r c e f i l e a n d i t w i l l

b e i n v o k e d b y t h e Te s t R u n n e r f o r Te s t C a s e i n i t i a l i z a t i o n .

I n P L / I , t h e i s t h e p r o c e d u r e d e c l a r e d w i th o p t i o n (f e t c h a b le) i n t h e Te s t C a s e s o u r c e

f i l e a n d i t w i l l b e i n v o k e d b y th e Te s t R u n n e r f o r Te s t C a s e i n i t i a l i z a t i o n .
2 L a n g u a g e - s p e c i f i c d e t a i l s :

I n C O B O L , th e s e a r e e x p e c te d t o b e s u b p r o g r a m s (n o n - n e s t e d a n d th e r e f o r e

c o m p a t ib l e w i t h F U N C T I O N - P O I N T E R) .

I n P L / I , t h e s e a r e e x p e c t e d t o b e i n t e r n a l p r o c e d u r e s th a t a r e d e c l a r e d a t t h e

p a c k a g e l e v e l (n o n - n e s t e d) .

19

� zUnit Test Runner

• Runs on z/OS

•Installed and configured on z/OS as part of RDz Host install and customization

• Fetches and runs the Test Suite referred to in a zUnit configuration file

� zUnit Wizard used to generate Test Cases

• RDz client feature

• Eclipse based wizards allow creation of:

•Template Test Cases are generated in COBOL or PL/I

•Simple pass/fail assertion API

(RDz v9.1) Complete COBOL test cases:

•Identify the interface or set of copy book(s)

•Generate XML Schema to represent the interface

•Generate XML files where you would specify test input and expected output

•Generate a Test Case based on the XML file

•(Optionally) Generate stubs for called programs

� RDz viewers/editors for unit test XML results

zUnit Capabilities

20

What have we learned

21

•What is Software DevOps and its importance in today’s Enterprise

•The tools that help manage every day life of Software DevOps
practitioners

•How to use some of the tools and where to find more…

Summary

2222

• Many companies spend more than 70% on keeping lights on, and that amount is

increasing

• IT organizations have problems modifying applications at speed of business

• IBM provides a structured approach to incrementally modernize your portfolio

based on business priorities

• Change without a Plan is chaos

• A Plan without change is stagnation

• Business goals change

• applications need to change to address them

• Continual renewal is required

• tools help to guide, govern, drive, and accomplish this change

Getting started
Next steps to modernize your enterprise
applications

2323

� Try latest System z software for free

�Sign up for free web-based training

�Join IBM Rational Cafe Communities

�Get prescriptive service solutions

www.ibm.com/rational/modernization

�Latest news on System z twitter

�Latest customer videos

�Success stories

�Latest skills: System z job board

Enterprise
Modernization

Revitalize

UnifyEmpower

Enabling Product
and Service Innovation

24

25

26

Back up and Reference

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

27

Source Dev BuildPlanning Governance/Unit test

Process
Architect

Variant #1

Variant #2

Variant #3

Project
Manager

Scrum

Waterfall

Iterative

Proj
ect
C
Waterfall

Analyst Release
EngineerDeveloper Quality

Professional

Project
B

Analyst Release
EngineerDeveloper Quality

Professional

Project

A
Product Owner Scrum Master Team Member

Agile

Iterative

F
o
rm

a
l
P

ro
je

c
t

M
g
t
T
e
m

p
la

te
S

c
ru

m
 T

e
m

p
la

te

Any process: Executable and repeatable
Use ONE tool to support both agile and non-agile

28

Progress Tracking -
Everyone can see live project status

2929

30

In-context Collaboration – Team View

Team Central

�Shows what is happening on project:

•News & events

•What’s being worked on

•Changes

�Configurable (RSS feeds) - New kinds of information
easily added

�Personalized, Persistent - Each team member can
tailor to their needs

30

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

3131

Source Dev BuildPlanning Governance/Unit test

32

RDz Source Code Integration

RDz

Rational Team Concert

SCLM

Rational ClearCase

Framework for other SCMs

CA Endevor

� Rational’s Strategic Source Code tooling is
RTC and RDz provides tight integration

� RDz offers integration into a variety of other
Source Code Management (SCM) tools as
well as a framework for creating SCM
integration on your own (CARMA)

� Variety of vendors supply plug-ins to RDz to
provide easy access to processes and
source code controlled by their products

32

Source Control Management

3333

34

Load the source artifacts

34

35

The Benefits of RDz
Instead of maneuvering to access panels and working sequentially,

in RDz the functionality you need is always in-focus – you work concurrently

Access

Datasets

+ Dataset

Management

Access Jobs

(Outlist facility)

Edit a program

Dataset Statistics

Submit a Compile

File Compare

� File Search

35

36

RDz and RTC together

• Once the project is loaded, it will
appear in the RDz z/OS projects view

• RDz augments the development
productivity & experience

• Appropriate editors (COBOL, maps,
etc.) and functions (content assist, real
time syntax check, etc.)

• High value functions (Enterprise web
services, SFM, Code review, Unit
testing, program analysis/control flow
etc.)

36

37

Create a Property Group

� Generate property groups for your project based on RTC build definition

� Allows RDz to resolve the dependencies and thus offer all the tooling

37

Navigate datasets and jobs live on zOS

38

• Connect to multiple hosts concurrently

• Respects existing security configurations and user IDs

• Search, filter, browse, edit, compare, migrate, and allocate new

MVS datasets and USS files

• Copy source code, members, or datasets between systems

with a few mouse clicks.

• Access JES queues submit jobs, view job state, and open

output spools

• Submit TSO or USS commands

• Add datasets and members into projects to group applications

and work items together logically

• Open an emulator in the IDE to configured hosts

39

Edit capabilities in RDz

• RDz at a high level has different types of editors

• LPEX Editor

• Supports editing of COBOL, PLI, HLASM, JCL,
C/C++, Rexx etc.

• Provides ISPF like edit experience including
prefix commands, command line and even look
and feel

• Supports advanced edit functions for COBOL,
PLI and HLASM like real time syntax checking,
content assist

• COBOL, PLI, and JCL advanced editors

• Based on the Eclipse editor infrastructure,
provide more advanced edit capabilities like
quick fixes, hyper-linking, hover, easy navigation
between various edit sessions or within the same
edit session.

• Supports real time syntax checking, content
assist, key word highlighting etc.

39

�New workspaces created in RDz 9.x

– New editors are the default

– Single click switch to LPEX is available

COBOL, PL/I and JCL Editor – the new default

Applicable to source and

include/copybooks

40

COBOL, PL/I and JCL Editor improvements

� Quick Outline

• Press Ctrl+O to activate

41

42

Editor Productivity Features – real time
syntax checking

Real-time syntax check without requiring code compile or save

42

JCL Editor Content Assist

� Keyword syntax proposals

• Press Ctrl+SPACE to activate

43

� JCL Outline shows all DDs

• No longer only instream

� Open actions allow Open, View, Browse

� Improvements for INCLUDE members

• Hover to see contents

• Open actions support

• Syntax check with Quick fixes

JCL Editor improvements

44

� Open Declaration (F3) on data set with Symbolic variables

JCL Editor Symbolic resolution

� Data set is Retrieved using specified value

45

Enhanced Application Quality & Structure Analysis

46

• Application Analysis

• Control flow diagrams for COBOL and PLI programs,

� Graphical representation of the program flow with links to the source

• Helps identify and highlight potential unreachable code

46

Enhanced Structure Analysis – Data Element Table

4747

Traditional development and Enterprise web services

Supports traditional

development/maintenance

• Cobol, PL/I, Assembler, JCL

Supports modern architecture development

Enterprise Service Tools

Top down, bottom up, and meet in the middle
web service enablement for CICS, IMS, and

Batch/TSO environments.

Enable Enterprise Applications for Mobile and Web

48

User Build from RDz

“User build”, is supported both in zComponent projects and RDz remote z/OS projects

� Builds just one the single file selected, supports Error feedback

� Generates JCL based on the associated RTC Language definitions and Translators

49

Pending Changes

50

• If you want finer grained

control on your SCM

operations, then the Pending

Changes view is for you
• Check in, deliver, accept

changes

• Suspend, resume, discard
changes

• Replace, reload out-of-sync

• Resolve conflicts

• Open change sets and work
items via the web client

50

Traceability : Check-in History

51

• Someone made a costly mistake merging and you want to understand
exactly where the mistake was made

• Problem : Traditional history commands & UI only show before/after &
merge states for a change set … it does not show intermediates

• Solution : Use Check-in history in Eclipse, CLI or .NET clients

51

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

5252

Source Dev BuildPlanning Governance/Unit test

Integrated Debugger

� A GUI-based multi-platform, multi-language debugger

� Full asynchronous mode

� Thread-level control of multi-threaded applications

� Automonitor support

� RDz v9.0.1 Supported:

� COBOL V5.1, V4, V3.4

� Batch, Batch IMS, Batch DB2, CICS 5.1, 4.2, 4.1

� Interactive Code coverage – Out of the box

� RDz 9.1 added support for:

� PLI v4.x, v3.9

� C/C++ V1R13, V2R1

� IMS TM

� DB2 Stored procedures

� RDz introduced a new feature called Integrated Debugger

53

Integrated Debugger

� Host-offload architecture:

� Remote debugger with only a small footprint on
the mainframe:

• Leverages workstation CPUs enabling faster
processing of debug information

• Enables scalability and reliability

� Debugger client is supported on Windows and
Linux

� Simple and Secure Connections:

� Single client can handle multiple debug sessions
on multiple hosts or an application the spans
multiple systems

� Client initiated debug – no need to specify client
IP address and port (v9.0.1.2)

� SSL/TLS support

54

55

Debug Multiple Runtimes
• Use the cross-platform debugger to

debug end-to-end systems as they
execute in the runtime
• CICS

• Batch

• Java

• From the workstation:
• View executing source code

• Step through host code line-by-line

• Set breakpoints

• Alter working storage values

• Alter register values

• Etc…

• Debug zOS and distributed code in the
same interface even stepping between
runtimes and platforms!

• Leverage Integration with IBM Debug
Tool for other runtimes

55

Enhanced Application Quality – Code Coverage

56

• Line Level Code Coverage - provides tools to measure and report on test

coverage of an application

• Leverages the Integrated Debugger technology

• Indicating what source code lines were tested and remain to be tested

56

57

Enhanced Quality & Structure Analysis – Code review

• Code Review/Governance -
provides predefined rules and
templates for COBOL and PL/I
applications

•Ensure adherence to corporate

standards

•Custom rules for COBOL and PL/I

57

58

zUnit – Unit testing framework for z/OS

• Frameworks that assist developers in writing code to perform repeatable, self-

checking unit tests are collectively known as xUnit.

• xUnit defines a set of concepts that together provide a light-weight architecture for

implementing unit testing frameworks.

• JUnit, for example, is a very popular instance of the xUnit architecture.

• zUnit is a xUnit instance for System z

• Goal is to encourage the continuous integration and continuous testing

methodology for System z Application development and maintenance

T E S T C A S E 1 (. . .)

A D D T E S T S 2 (. . .)

T E S T 0 0 1 2 (. . .)

T E S T n n n 2 (. . .)

S E T U P 2 (. . .)

T E A R D O W N 2 (. . .)

. . .

Z X U T C IN I (. . .)

Z X U T C A D D (. . .)

Z X U A S T F M (. . .)

Z X U A S T F A (. . .)

U S E R . Z U N I T (T E S T C A S E)

z U n it T e s t R u n n e r A P I

I n v o k in g t h e a s s e r t i o n A P I s i n t h e

S E T U P, T E A R D O W N , o r a c t i v e T E S T

e n t r y w i l l f a i l t h e c u r r e n t Te s t .

1 L a n g u a g e - s p e c i f i c d e t a i l s :

I n C O B O L , th i s i s t h e f i r s t p r o g r a m a p p e a r in g i n t h e Te s t C a s e s o u r c e f i l e a n d i t w i l l

b e i n v o k e d b y t h e Te s t R u n n e r f o r Te s t C a s e i n i t i a l i z a t i o n .

I n P L / I , t h e i s t h e p r o c e d u r e d e c l a r e d w i th o p t i o n (f e t c h a b le) i n t h e Te s t C a s e s o u r c e

f i l e a n d i t w i l l b e i n v o k e d b y th e Te s t R u n n e r f o r Te s t C a s e i n i t i a l i z a t i o n .
2 L a n g u a g e - s p e c i f i c d e t a i l s :

I n C O B O L , th e s e a r e e x p e c te d t o b e s u b p r o g r a m s (n o n - n e s t e d a n d th e r e f o r e

c o m p a t ib l e w i t h F U N C T I O N - P O I N T E R) .

I n P L / I , t h e s e a r e e x p e c t e d t o b e i n t e r n a l p r o c e d u r e s th a t a r e d e c l a r e d a t t h e

p a c k a g e l e v e l (n o n - n e s t e d) .

58

� zUnit Test Runner

• Runs on z/OS

•Installed and configured on z/OS as part of RDz Host install and customization

• Fetches and runs the Test Suite referred to in a zUnit configuration file

� zUnit Wizard used to generate Test Cases

• RDz client feature

• Eclipse based wizards allow creation of:

•Template Test Cases are generated in COBOL or PL/I

•Simple pass/fail assertion API

(RDz v9.1) Complete COBOL test cases:

•Identify the interface or set of copy book(s)

•Generate XML Schema to represent the interface

•Generate XML files where you would specify test input and expected output

•Generate a Test Case based on the XML file

•(Optionally) Generate stubs for called programs

� RDz viewers/editors for unit test XML results

zUnit Capabilities

59

• Define the tasks
• Create a plan
• Create a work item

• Assign the work
item to a developer

• Load the
project/source
artifacts from SCM

• Navigate, Analyze,
Edit, Syntax check
source code

• Compile

• Quality assurance
• Debug
• Code Coverage
• Code review
• Unit Testing

• Check-in/Deliver the
source code

• Build

CLM
RDz
RTC

RDz
RD&T
RTC

RTC
RDz

Development Life Cycle

6060

Source Dev BuildPlanning Governance/Unit test

The big picture

6161

1. Dependency build runs on build machine. Source is loaded from Dev Stream and

outputs are built in Dev Library.

2. Promotion build runs on build machine. Source is promoted from Dev Stream to

Test Stream and build outputs are copied from Dev Library to Test Library.

3. Package build runs on build machine. Test Library build outputs are archived in a

package.

4. Deploy build runs on various test machines. Package is loaded to test machine

and build outputs are deployed to runtime libraries. Test Machine 1

Jazz Team Server

Test Stream

Dev Stream

Build Machine

Test Library

Dev Library

Runtime Library

Test Machine 2

Test Machine 3

Package

Runtime Library

Runtime Library
1

2
2

3

4

4

4

Dependency Build Summary

6262

1- Scan

2- Preprocessing

Scan new or changed

files

Extract their logical

information and

dependencies

For changed files:

impact on build maps

Calculate dependency

sets Dependency

sets

Build

processing

Server Mainframe (Build machine)

Build

Maps

Snapshots for every build

6363

Promotion

64
64

• Flow source code changes and build outputs through the

development hierarchy

Source

Outputs

Development Tools: RTC, RTC ISPF Client,

RDz - Hands-on Lab
Liam Doherty, Rosalind Radcliffe,

Venkat Balabhadrapatruni
IBM Corporation
Session 17458

Tuesday August 11th, 2015

Liberty Profile on Windows and z/OS

(Among Other Things) Hands-On Lab
David Follis, Michael Stephen, Ken Irwin, Gary Picher

IBM Corporation
Session 17367

Lab choices

• RDz
– RDz

• Part 1: COBOL development on
System z (~25 min)

• Part 2: Generating, deploying,
and testing a CICS Web service
(~25 min)

– What’s new in RDz Lab

• Option 1: Navigating PDS on
the Remote Systems view (5-10
minutes)

• Option 2: Retrieve data set /
Retrieve job (5-10 minutes)

• Option 3: The new Eclipse-
based editors for COBOL and
PL/I (15-30 minutes)

66

• WebSphere
– Liberty!

• For developers – Windows and z/OS
• For sysprogs - z/OS

– WAS V8 Timeouts

– WAS V8 High Performance Extensible
Logging (HPEL)

– SMF

– Debugging Timeouts

– Debugging Java Out of Memory
Exceptions (OOM)

• RTC
– Source Code Management using IBM

Rational Team Concert
• Module 1 – Using the Eclipse Client
• Module 2 – Using the ISPF Client

