

Why Are You Still on HFS? zFS V5: The Future Awaits!

Thursday, August 13, 2015 01:45 PM - 02:45 PM,

Dolphin, Southern Hemisphere 1

Vivian W Morabito

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Copyright (c) 2015 by SHARE Inc. C (i) (S) (i) Kercept where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Benefits of migrating from HFS to zFS

- Higher Performance
- Greater Reliability
- Expanded functionality and tuning
- zFS is IBM's strategic filesystem for z/OS
 - All future enhancements will be made in zFS

zFS Performance

V1R11: zFS sysplex-aware fully supports shared filesystem for both admin and file operations

V1R13: zFS sysplex-aware support enhanced allowing clients direct access to files ("Direct I/O").

V2R1: Introduction of v5 filesystems to resolve known large directory performance problems.

Sysplex client directory performance improvements for both existing v4 and new v5 filesystems

V2R2: zFS kernel to run in AMODE64 and can optionally run in the OMVS address space

7/29/2015

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

zFS sysplex-aware and "Direct I/O"

- V1R11: zFS forwards requests to the owner for sysplexaware filesystems
 - Eliminates the need for Unix Systems to function ship requests.

- V1R13: zFS further enhances its sysplex-aware support providing direct I/O from clients
 - Reduces the overhead of using XCF communications.

zFS read/write file system mounted with NORWSHARE

zFS read/write file system mounted with RWSHARE

zFS for Large Directories

- Prior to V2R1, there were known performance problems with large zFS directories
 - Affects directories with more than ~10,000 entries

- In V2R1, zFS provides a new v5 directory format to resolve this problem
 - Uses extensible hash algorithm
 - Provides improved performance for large directories
 - Maintains POSIX semantics.
 - max num. of sub-directories is increased (4G-1)

zFS V2R2 Performance keeps getting better!!

- zFS Kernel runs AMODE64
- zFS Kernel can be configured to run in the OMVS address space
- zFS will support higher system limits
 - meta_cache_size
 - vnode_cache_size
 - token_cache_size
- The logging system has been re-written in V2R2 providing I/O efficiency and more parallelism resulting in significant performance gains

7/29/2015

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

- VERIFY workload is single-threaded test of various file I/O functions. All measurements on z990 processor
- Record sizes vary from 80, 2K, 4K, 8K, 32K, 64K,bytes
- ETR rates are reported in MB/second
- Monoplex Results:
- <u>Create Sequential File</u>
 - HFS: 7 13 MB/Sec (tops out with 2K record size)
 - zFS : 9 606 MB/Sec (Far superior for 2K through 64K record sizes. Increasing record size improves performance)
- Read Sequential File (non-cached)
 - HFS : 8 19 MB/Sec (Increasing record size slightly improves performance)
 - zFS: 8 23 MB/Sec (20% better for 2K through 64K record sizes)

- VERIFY workload, Monoplex results (cont'd)
- Read Sequential File (cached)
 - HFS : 8 20 MB/Sec (no caching benefit)
 - zFS : 8 856 MB/Sec (Far superior for 2K through 64K record sizes. Increasing record size improves performance)
- <u>Create Random File</u>
 - HFS: 0.05 10 MB/Sec (Increasing record size slightly improves performance)
 - zFS : 6 500 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)
- <u>Read Random File (non-cached)</u>
 - HFS: 0.08 12 MB/Sec (Increasing record size slightly improves performance)
 - zFS: 3 12 MB/Sec (Only 80 bytes size shows improvement)
- Read Random File (cached)
 - HFS : 0.08 12 MB/Sec (no caching benefit)
 - zFS: 7 809 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)

- VERIFY workload
- Sysplex Client Results (two system sysplex)
- <u>Create Sequential File</u>
 - HFS : 0.2 11 MB/Sec (Increasing record size slightly improves performance)
 - zFS : 8 580 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)
- <u>Read Sequential File (non-cached)</u>
 - HFS : 0.2 13 MB/Sec (Increasing record size slightly improves performance)
 - zFS : 7 23 MB/Sec (Slightly better for all record sizes)
- Read Sequential File (cached)
 - HFS: 0.2 13 MB/Sec (no caching benefit)
 - zFS : 7 845 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)

- VERIFY workload, sysplex (cont.)
- <u>Create Random File</u>
 - HFS : 0.04 8 MB/Sec (Increasing record size slightly improves performance)
 - zFS : 6 443 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)
- <u>Read Random File (non-cached)</u>
 - HFS : 0.05 4 MB/Sec (Increasing record size slightly improves performance)
 - zFS: 3 12 MB/Sec (Slightly better for all record sizes)
- <u>Read Random File (cached)</u>
 - HFS: 0.05 4 MB/Sec (no caching benefit)
 - zFS : 6 809 MB/Sec (Far superior for all record sizes. Increasing record size improves performance)

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

- FSPT workload is multi-threaded test of random 4K file I/O with 65/35 R/W ratio
- ETR and ITR improvements vary by zFS caching levels
- Monoplex Results (single owning system)
 - 0% zFS caching : ETR 10% and ITR 44% less than HFS (startup costs for zFS are slightly higher)
 - 75% zFS caching : ETR 5X and ITR 2X better than HFS
 - 100% zFS caching : ETR 128X and ITR 5X better than HFS
 - Based on this data zFS starts to outperform HFS in terms of ETR at 10% and ITR at 60% cache hits

- FSPT workload,
- Sysplex Client Results (two system sysplex)
 - 0% zFS caching : ETR 29% and ITR 2X better than HFS
 - 100% zFS caching : ETR 176X and ITR 22X better than HFS
 - zFS Sysplex Aware and Direct I/O always makes zFS better than HFS

V2R1 & V2R2 Performance Workload Descriptions

- No zFS HFS comparisons available after V1R13, but the following results demonstrate the continuing zFS improvement in directory operations
- Performance results (on subsequent slides) were obtained using 3 workloads created by IBM:
 - All workloads involved many tasks processing 2000 objects in each directory, for multiple directories, on multiple file systems (see slide notes).
 - ptestDL2 This workload did repeated lookup (name searches) by the tasks.
 - ptestDL The tasks did repeated lookup and readdir functions.

7/29/2015

ptestDU – The tasks performed directory create/update/remove/readdir/search.

zFS V2R1 and V2R2 Performance Gains

- Tests were run varying the sizes of the involved directories to test scale-ability.
- Results on next page show:
 - z/OS V2R1 V5 relative improvement over V1R13
 - V2R2 v5 relative improvement over V2R1 v5
- For further details, refer to presentation "zFS v5 Migration and Performance"

zFS V2R1 and V2R2 Performance Gains

,		Monoplex F	Results	Sysplex Client Results			
Workload	Directory Sizes (names / directory)	z/OS V2R1 V5 relative improvement over V1R13	V2R2 v5 relative improvement over V2R1 v5	z/OS V2R1 V5 relative improvement over V1R13	V2R2 v5 relative improvement over V2R1 v5		
ptestDL2	2,000	E∆ = 1.197 I∆ = 1.197	E∆ = 1.54 I∆ = 1.45	E∆ = 1.416 I∆ = 1.378	E∆ = 1.35 I∆ = 1.20		
	20,000	E∆ = 4.536 I∆ = 4.536	E∆ = 1.60 I∆ = 1.51	E∆ = 7.271 I∆ = 7.098	E∆ = 1.63 I∆ = 1.37		
	50,000	E∆ = 10.026 I∆ = 10.026	E∆ = 2.10 I∆ = 1.63	E∆ = 16.668 I∆ = 16.297	E∆ = 1.88 I∆ = 1.40		
ptestDL	2,000	E∆ = 1.167 I∆ = 1.167	E∆ = 1.14 I∆ = 1.14	E∆ = 1.454 I∆ = 1.452	E∆ = 1.03 I∆ = 1.04		
	20,000	E∆ = 5.978 I∆ = 5.977	E∆ = 1.14 I∆ = 1.14	E∆ = 77.549 I∆ = 51.830	E∆ = 1.07 I∆ = 1.08		
	50,000	E∆ = 9.160 I∆ = 9.160	E∆ = 1.12 I∆ = 1.12	E∆ = 276.67 I∆ = 174.81	E∆ = 1.13 I∆ = 1.10		
ptestDU	2,000	E∆ = 1.167 I∆ = 1.167	E∆ = 1.54 I∆ = 1.45	E∆ = 1.249 I∆ = 1.226	E∆ = 1.35 I∆ = 1.20		
	20,000	E∆ = 3.313 I∆ = 3.586	E∆ = 1.60 I∆ = 1.51	E∆ =8.940 I∆ = 6.822	E∆ = 1.63 I∆ = 1.37		
	50,000	E∆ = 6.158 I∆ = 7.069	E∆ = 2.10 I∆ = 1.63	E∆ = 65.110 I∆ = 47.891	E∆ = 1.88 I∆ =1.40		

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

zFS: Greater Reliability

- zFS has made improvements to reduce situations which:
 - Require re-mount of filesystem(s)
 - Require re-IPL
- zFS has a lower exposure to situations that could result in corruption of a filesystem... and in the very rare situation that a corruption does occur, zFS has a salvager to correct most corruptions.

zFS Internal Restart (V1R13)

- There are (unusual) situations where the zFS PFS may go down on a sysplex member
- Prior to V1R13, all zFS filesystems owned on that system are moved or unmounted
- With this V1R13 support, when a such a situation occurs, zFS will internally go down, restart and internally remount any zFS file systems that were locally mounted
- zFS will not read IOEFSPRM configuration options during this internal restart.
- zFS internal restart will clear up almost any internal zFS problem without losing the filesystem tree
- Note that in a single system environment if zFS goes down, you will loose the mount tree.

zFS filesystem corruption avoidance & correction

- Filesystem corruption is a very rare event
 - HFS filesystems can become permanently corrupted if a system outage occurs during an HFS sync. zFS does not have this issue.

- zFS will disable a filesystem to try to prevent a corruption
- In the rare event that a corruption occurs, zFS has a salvager that will repair most filesystem corruptions.

zFS auto-takeover of disabled aggregates (V1R13)

- If a zFS filesystem becomes disabled it must be unmounted and then mounted again to recover
- Prior to this support this was a manual operation
- With this support, in a zFS sysplex-aware environment, zFS will attempt to automatically recover the disabled filesystem
 - The owning system will request that another sysplexaware system take over zFS ownership
 - In a single system, same-mode remounts are used to resolve disabled aggregates.

zFS Queries

- zFS provides query functions that provide extensive information on system utilization, files, directories, and filesystems
- V2R1: fileinfo
 - Displays detailed information about a file or directory
- V2R2: fsinfo
 - Displays detailed information about single or multiple filesystems including sysplex-wide detailed information
- These queries are not available on HFS.

zFS system utilization queries

- zFS has extensive query commands to show system statistics.
- Data that comes from these queries allow the understanding of zFS's use of system resources and allows zFS to be tuned to optimize performance for the installation.
- Queries include:
 - Storage
 - Counters for the various caches
 - I/O by dasd or aggregate
 - PFS calls on the owner
 - Locking statistics

fileinfo query

- zfsadm fileinfo displays detailed file information:
 - zfsadm fileinfo -path <pathname> [{-globalonly | -localonly | -both}]

path: /home/suimghq/lfsmounts/PLEX.ZFS.FS2/DCEIMGHQ.ftestLD.p6/.

*** global data	***			
fid	7,174515	anode	130931,2028	
length	33546240	format	BLOCKED	
1K blocks	21664	permissions	755	
uid,gid	0,10	access acl	33,72	
dir model acl	33,72	file model acl	32,72	
user audit	F,F,F	auditor audit	N, N, N	
set sticky,uid,gid	0,0,0	seclabel	none	
object type	DIR	object linkcount	39686	
object genvalue	0x00000000	dir version	5	
dir name count	39686	dir data version	160308	
dir tree status	VALID	dir conversion	na	
file format bits	na,na,na	file charset id	na	
file cver	na	charspec major,minor	na	
direct blocks	0x000D91FE	0x000D91FF 0x000D92	200 0x000D9201	
	0x000D9202	0x000D9203 0x000D92	204 0x000D9205	
indirect blocks	0x000D9206	0x00052199		
mtime May 28	17:09:45 2013	atime May 28 17:0	09:19 2013	
ctime May 28	17:09:45 2013	create time May 28 15:1	14:48 2013	
reftime none				

fsinfo query

- New file system query command to provide more information, faster, with selection and sorting criteria
- It offers the ability to get and sort information for one or more file systems that have common names, common attributes, or that have encountered similar unexpected conditions
- Available from the shell (zfsadm), console (MODIFY) or via API call.
- Can display basic output, information know only to owner, only on local system, or full information.
- RMF enhancements will use new fsinfo api interface, providing improved performance and additional information

FSINFO – full (brown = info not previously available)

• File System Name: PLEX.ZFS.SMALL2

•	*** owner informatio:	n ***							
٠	Owner:	DCEIMG	HQ			Conv	erttov5:		OFF,n/a
٠	Size:	40320K	5			Free	8K Block	S:	905
٠	Free 1K Fragments:	7				Log 1	File Size		32800K
٠	Bitmap Size:	8 K				Anod	e Table S	ize:	80K
•	File System Objects:	28				Vers	ion:		1.5
٠	Overflow Pages:	0				Over	Elow High	Water:	0
٠	Thrashing Objects:	0				Thra	shing Res	olution:	0
٠	Token Revocations:	37				Revo	cation Wa	it Time:	85.141
٠	Devno:	46				Space	e Monitor	ing:	90,5
٠	Quiescing System:	n/a				Quie	scing Job	Name:	n/a
٠	Quiescor ASID:	n/a				File	System G	row:	OFF,0
٠	Status:	RW,RS,	GD,S	E					
٠	Audit Fid:	C3C6C3	FO F	'0F(01	F9 00	00		
٠									
٠	File System Creation	Time:	Nov	14	00	:07:3	5 2014		
٠	Time of Ownership:		Dec	9	11	:10:3	5 2014		
٠	Statistics Reset Time	e:	Dec	9	11	:10:3	5 2014		
٠	Quiesce Time:		n/a						
٠	Last Grow Time:		n/a						
٠									
٠	Connected Clients:	n/a							
•									
•									
•	Legend: RW=Read-write,	GD=AGGR	GROW	I di	lsal	oled,	RS=Mount	ed RWSHARE	
•	SE=Space errors	report	ed						

FSINFO – full (output continued)

•	*** local data from svs	stem DCETMGH	0 (owner:	DCETMGHO) **	*
•	Vnodes:	410	LFS H	eld Vnodes:	30
•	Open Objects:	2	Token	S:	29
•	User Cache 4K Pages:	13	Metad	ata Cache 8K	Pages: 35
•	Application Reads.	104355143	Ava	Read Resp. Ti	$\operatorname{im}_{\Theta}$, 0.151
•	Application Writes	39105328	Avg.	Writes Resp. 11	$\frac{1}{2} = 0.131$
•	Pood VCE Colley	0	Avg.	NIICES Kesp.	
	Write VCE Calla	0	Avg.	KU ACF Resp.	
•	WILLE ACF CALLS:	0	Avg.	WI ACF Resp.	11me: 0.000
•	ENOSPC Errors:	12370032	DISK	10 Errors:	0
•	XCF COMM. Failures:	0	Cance	led Operation	ns: U
•					
•	DDNAME :	SYS00008			
•	Mount Time:	Dec 9 11:1	0:35 2014		
•					
•	VOLSER PAV Reads Average	KBytes	Writes	KBytes	Waits
•					
•	CFC000 1 821059	6997808	537165	14633376	974568
	2.805				
•					
•		6007000	E 2 7 1 C E	14622276	074560
•	2.805 821059	808/220	23/102	14033370	9/4008

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

Improved quiesced filesystem displays

- df Shell command:
- Console Commands:
 - D OMVS,F
 - F ZFS,QUERY,FILESETS,QUIESCED

Misc zFS Advantages and Improvements

- Improved FFDC
- Intelligent hang detector
- More stressful and varied testing on zFS
- Filesystem backup improvement in V2R1

zFS is the strategic filesystem for z/OS

- No additional enhancements will be made to HFS
- zFS will continue to be enhanced in future releases!

