
Adventures In Porting

An ISV's Continuing Journey From AMODE 31 to

AMODE 64 in Assembler

M. Ray Mullins

Phoenix Software International

13 August 2015

Session 17407

Legalese

• These techniques are presented as suggestions

• Every situation is different

• Some of these techniques may not be applicable to your

situation

• YMMV

• Use at your own risk

2015-08-18 2

Legalese

• z/OS, z/VSE, z/VM, and z/TPF are registered trademarks

of International Business Machines, Inc.

• (E)JES is a registered trademark of Phoenix Software

International

• All other trademarks are properties of their respective

owners

2015-08-18 3

Background

• Phoenix Software International

– (E)JES

• We are converting as much code as possible to AMODE 64

• Why are we doing this? One reason…

– “Phoenix is recognized as a leader when it comes to

leveraging the latest hardware and software technology. The

company invests countless development man hours to exploit

these technologies for the sole purpose of helping our

customers increase performance and reduce costs.”

– https://www.phoenixsoftware.com/company/development_phil

osophy.htm

42015-08-18

https://www.phoenixsoftware.com/company/development_philosophy.htm

General notes

• This presentation is about converting assembler code, but

also references interlanguage issues

• It is z/OS-centric

• Many of these techniques are valid for z/VSE, z/VM, and

Linux on z, and probably for z/TPF as well

2015-08-18 5

Notes on my examples

• Glossary

– HOB = high-order bit

– LOB = low-order bit

– ROT = rule of thumb

• I use relative branches; base-displacement branches work

just as well

• I personally use SLGR for zeroing a register. You can use

whatever you like: SGR, XGR, LGHI, BRCTG Rn,*,

BRCTH Rn,*/SRAG Rn,Rn,32

2015-08-18 6

7. Clone executable macros to
create 31-bit counterparts;
change all programs to use
clones; change back during
conversion

8. Update 64-bit version of
complex executable macros
to work in AMODE 64

9. One by one, change outer
routines to AMODE 64

10. One by one, change
internal subroutines to
AMODE 64

11. GOAL: Implement virtual
storage constraint relief by
moving larger storage areas
above the bar

1. Try not to change any storage
areas, widen pointers, etc.
unless absolutely required

2. Expand all internal stacking
services to save/restore 64-bit
registers

3. Implement BASSM/BSM for all
inter-program linkage, calling
services, etc.

4. Update abend recovery to
handle programs running in
AMODE 64

5. Change all XR/SR/SLR Rx,Rx in
all programs to XGR/SR/SLGR

6. Change all L in all programs to
either LGF, LLGF, or LLGT as
appropriate (majority were LLGF)

PSI’s 64-bit conversion strategy

2015-08-18 7

PSI’s 64-bit conversion strategy

• Small and large scope changes

• One step at a time

• Fully rebuild and regression test after steps that involve a

global change (steps 1-7)

• Full regression tests after steps involving changing one

program at a time (steps 8-11)

2015-08-18 8

Hindsight is bliss

• Sometimes you find flaws and you have to go back and

reassess or correct

6. Change all L in all programs to either LGF, LLGF, or LLGT as

appropriate

– For non-address loads, LLGF was used the most, implying

unsigned usage

– This creates problems if use or test of value is arithmetic in

nature, or HOB is a flag, and J(N)M/J(N)P is used.

– This caused 95% of reported bugs directly attributable to

conversion

– Deeper analysis of following code required

– In retrospect, we used LLGF too often, and should not have

been a separate step, but rather be a parts of steps 7 and 8.

2015-08-18 9

Steps 1, 2, 4–Addresses in control blocks

• We modified only if absolutely necessary

– Internal stacking architecture

– Internal abend recovery control blocks

• Internal-use-only control blocks that required changes

– Convert fullwords to doublewords

– Watch for usage of HOB of addresses (look for J(N)M/J(N)P

instructions)

– Watch for alignment and slack bytes, especially if addresses

have ALETs (doubleword/fullword combination)

• May require some reorganization to reduce slack bytes

– Watch out for interlanguage requirements (especially pointer

data types)

2015-08-18 10

Step 1–Supporting AMODE 64 API calls

• External-facing control blocks for APIs

– AMODE 24/31 API

• Keep fullword addresses (don’t change)

– AMODE 64 or AMODE-agnostic API

• Redefine fullword addresses as AD, where a 64-bit

caller stores in the doubleword at the label, & a 31-bit

caller stores in the fullword at the label

• Agnostic requires testing AMODE in the entry logic

• Recommend using a 216-byte save area, mapping to

the proper save area type as required

2015-08-18 11

Step 1–Modifying APIs

• API routine handling of different AMODEs

– Two separate modules (maintenance headache)

– One module with separate pathing (smaller headache)

– AMODE-specific APIs assembled from one source

• Use a modified CSECT name as the differentiator, e.g. -4
suffix

• SETC variables under conditional assembly
(&SYSAMODE and &SYSASCE), also good for AR mode

• Based on CSECT name, OPSYN to G or GF

– 31-bit, L → LGF

– 64-bit, L → LG

• Create macros for fullword instructions to substitute
grande instructions

2015-08-18 12

Step 3–BASSM/BSM

• Preparatory for AMODE 64

• For staying in AMODE 31, this requires HOB to be turned

on in either ACON or VCON (binder option HOBSET), or

dynamically set, otherwise code swaps to AMODE 24

• Update any macro used to wrap internal subroutine calls as

well

– This is a good initiation into the required instruction changes

• Perform full regression tests

– Lingering AMODE 24 code might be affected

2015-08-18 13

Step 3–RMODE 24 diversion

• Exploit RMODE(SPLIT) if you have 24-bit code, using a
glue routine

• A DCB exit example (24 to 31)
DCBABXIT RSECT , Address stored in DCBE
DCBABXIT AMODE 24 Control in AMODE 24
DCBABXIT RMODE 24 Staying below the line

LARL R15,ABXIT31 Point to actual exit
OILH R15,X‘8000' Flip to AMODE 31
BSM 0,R15 Transfer in AMODE 31

ABXIT31 RSECT ,
ABXIT31 AMODE 31 Execute in AMODE 31
ABXIT31 RMODE ANY It can be anywhere*

• The binder creates an RICON for the LARL, and CSV
properly sets its value upon loading

• LARL does not set either AMODE indicator

2015-08-18 14

Step 4–Recovery

• Must deal with AMODE 64 abends

• Must deal with registers with information in the high half

• Testing

– Have a way to trigger an abend (undocumented command,

for example)

– Add code to this method to abend in AMODE 64

2015-08-18 15

Step 5-Converting zeroing registers

• This should be straight forward

• A low-execution-time-impact step

• Clearing of high halves should not affect your code,

depending on use

– Unless you do your own version of the compilers’ HGPR

option

• Perform full regression tests!

– Code not under your control could be affected if it does not

properly manage the high halves

2015-08-18 16

Step 6–Changing LOAD (FULLWORD)

• This was done as a global scope change

• In retrospect, this was not the best idea

• Better done as part of steps 8 and 9

• Discussed later

2015-08-18 17

Step 7–Create 31-bit versions of macros

• Allows you to retain macro names for AMODE 64

• Copy macros to a new name to reflect AMODE 31

– EJESS31, for example

• Refactor source

• Build

• Deal with the ones that somehow got missed

• Build

• Test

2015-08-18 18

Steps 8, 9, 10–AMODE 64 conversion

• Now the real fun begins!

• Analyze, analyze, analyze

• Work your way inward, heading towards common

subroutines

2015-08-18 19

First and foremost!

• AMODE 64 for the C/RSECT, binder parms & statements

– Tells the binder to do things

– CSV does things based on what the binder does

– Otherwise you have to do it yourself

• SYSSTATE AMODE64=YES

202015-08-18

Temporary testing tip

• In entry code of outermost routine, add a LMH

R0,R15,=16F'-1'

• Any subsequent AMODE 64 address reference that has not

insured the purity of the high half will abend

• Arithmetic references – “unpredictable results may will

occur”

2015-08-18 21

Converting lower levels and calling

• Callers must use BASSM into 64-bit mode (but we did that

already)

• LOB of address must be set on

• Fun things ensue if both low half HOB and LOB are on

– (Hint: in z/OS, you wind up in the JRE work area; in z/VM and

z/VSE, results are unpredictable)

222015-08-18

VCONs

• Almost no worries! The

Binder does it all for you (if

option HOBSET is on, for

AMODE 31 addresses)

ADCONs

• Internal usage

– A(FOO) → AD(FOO)

– 31 → 64:

A(FOO+X'80000000') →

AD(FOO+X'1')

– 24|31 → Just A → AD

• External service call

– Switch to equivalent AMODE

64 IBM services when

provided

Modifying address constants

2015-08-18 23

AMODE 64 calling AMODE 31 caveat

• If calling system or other services via macros that do not

support BASSM (e.g., SVC, BASR) that must be entered in

AMODE 31, bracket call with SAM31/SAM64

• CALL has a LINKINST= keyword

• CALL parameter list generation is contingent on

SYSSTATE settings

– 31-bit – 4 bytes, VL honored

– 64-bit – 8 bytes, VL not honored

– ASC=AR, ALETs follow addresses

2015-08-18 24

Loading addresses

• LLGT is usually your friend for dealing with fullword 31-bit

addresses, but if the high-order-bit (HOB) could be on…

– If it is merely an end-of-parameter list flag, LLGT

– If it is an AMODE indicator, use LLGF, not LGF! (Fun

ensues!)

– If it is a flag, use LLGF, test with TMLH, then NILH X'7FFF' as

soon as possible

• Sometimes LLGTR or LLGFR might be a better

replacement for LR than LGR

• Context and following code are important!

2015-08-18 25

Return code branch tables

• After BASSM/BSM, the return address is odd!

• Subtract 1 from the displacement in the B instruction

– BASR R14,R15
B 4(R15,R14)
J BAD
WTO 'It worked!'

becomes

BASSM R14,R15
B 3(R15,R14)
J BAD
WTO 'It worked!'

• Also implications for a vectored return off of R14

• Personally, I am not a fan of either technique.

2015-08-18 26

System services returned values

• IBM explicitly documents that all system services that

return information return in the lower 32 bits only, unless

otherwise documented (e.g. IARV64 addresses)

• Important for return codes! Use LTGFR

• One important documented exception: dynamic 24- and 31-

bit storage allocation services return clean 64–bit

addresses

– There are a couple of others, like the R0 value from LOAD

• ROT: Use the same standard in internal routines as well as

APIs

2015-08-18 27

Converting instructions

• General ROTs

– Binary numbers, straight switch to grande, e.g., L → LG

– Binary data where propagation of the sign bit would be an

issue, use LOAD LOGICAL, e.g., SLR/ICM B'0011' → LLGH

– Pure 31-bit address: LLGT

– Register pair arithmetic and shifts → grande and single

instructions, e.g., D → DS

• No more games with testing condition codes after logical

arithmetic

2015-08-18 28

Some instruction optimizations

• Reduce number of instructions

– Copy a register's value and immediately shift: replace with

SLLG/K, which have source and target registers

• Replace storage references with immediate instructions

– IF CH,R0,GE,=H'16' → IF CGHI R0,GE,16

2015-08-18 29

Instructions

• ICM, ICMY

– With B'1111'

• If testing signed binary arithmetic value for (N)Z or (N)M,

replace with LTGF

• If testing unsigned binary arithmetic value for (N)Z,

replace with LLGF/LTGR

• If testing 31-bit address for (N)Z

– If HOB might be on, LLGF/LTGFR

– If HOB will never be on, LTGF

– Unknown or don’t care, LLGT/LTGFR

– Unsigned B'0001' into a zeroed register, LLGC/LTGR

– Signed B'1000'+SRA 24, LB/LTGR

2015-08-18 30

Instructions

• ICM, ICMY (continued)

– Unsigned B'0011' into a zeroed register, LLGH/LTGR

– B'0111' into a zeroed register

• Don’t change

– B'1000' (MVCL padding value, sometimes X'80' into the HOB)

• OILH/IILH

• IC into a zeroed register

– LLGC

2015-08-18 31

Instructions

• Add/Subtract instructions with constants for address

manipulation

– Consider converting to LA/LAY

– Makes register usage more intuitive/self-documenting

2015-08-18 32

Instructions–possible “gotchas”

• L (LOAD FULLWORD)

– Context is important!

– LGF, LLGF, LLGT are most frequent replacements

• LGF if value is known to be a signed binary arithmetic

value

• LLGF if value is known to be unsigned and HOB is part of

the value, or is a flag and needs to be tested first

• LLGT if 31-bit address and HOB is irrelevant

– Also applies to RR flavors of instructions, although you

probably have already handled

2015-08-18 33

Instructions–possible “gotchas”

• Halfword arithmetic

– IBM does not provide ?GH instructions outside of LGH/LLGH

– If you have control of the target field, consider expansion to

fullword or doubleword

• Remember step 1 and control blocks caveat

– Otherwise, find an unused register, L(L)GH/?GR

• LM

– IBM does not provide LMGF

– If all are signed binary, LMH/SRAG 32

– If all are unsigned, LM + LMH, or LMD, using =nF'0'

– If mixed…split up; this is also valid for the first two

2015-08-18 34

Instructions–possible “gotchas”

• BCTG and its relatives

– 64-bit unsigned value

– Exposure to horrendous CPU loop if high half polluted

– Generally avoid changing unless you can be absolutely sure

the value will be within an acceptable range

• HLASMTK DO SPM construct does not use it

2015-08-18 35

Virtual Storage Constraint Relief-the goal!

• Storage can now be above the bar

– Affects any control block that has pointers

• Modify control blocks first

– a few related pointers at a time

– Fully test

– Lather, rinse, repeat

• Once done making pointer changes, begin changing

dynamic storage allocation to 64-bit

– Again, modify only one or related storage areas at a time

– Test

– Lather, rinse repeat

2015-08-18 36

Architecture level set issues

• As an ISV, we support versions of z/OS that run older

hardware, back to z8/900

• This limits (E)JES to

– HLASM: OPTABLE(YOP)/MACHINE(ZSERIES-2)

– z/OS XL C and METAL C, and other compilers: ARCH(5)

• Some useful instructions we can't use

– LT instructions that reference storage 

– Fullword immediate, like NILF

– The K shift instructions

• A workaround is to create macros to generate equivalent

instructions

– Test O' and define the macro if the opcode is not defined

2015-08-18 37

z/VM, z/VSE, and z/TPF

• z/VM supports AMODE 64 very nicely

• z/VSE has support

– Code can run AMODE 64 and obtain storage above the bar

using IARV64 memory objects, but…

– z/VSE system services do not support being called in

AMODE 64

– HLASM and compilers do not support AMODE 64

• z/TPF supports AMODE 64 very nicely

2015-08-18 38

Interlanguage issues

• z/OS XL C/C++

– Compiling under ILP32, all pointers are 4 bytes

– Compiling under LP64, all pointers are 8 bytes, unless

declared with __ptr32

– If dealing with 8-byte pointers in a control block under ILP32,

create a typedef that uses either a struct for allocating 4

bytes slack followed by a 4 byte pointer, or a union with a

long long and a pointer (depending how you set up the

field).

– Watch out for pollution from the HGPR(NOPRESERVE)

option, which allows the compiler to use the high halves of

the registers

2015-08-18 39

Interlanguage issues

• Enterprise COBOL for z/OS

– Still only understands 31-bit pointers, even with Enterprise

COBOL V5.2

– 8-byte pointers can be split into a group level with a

POINTER FILLER and the actual POINTER

– V5: watch out for pollution from the HGPR(NOPRESERVE)

option, which allows the compiler to use the high halves of

the registers

2015-08-18 40

Interlanguage issues

• Enterprise PL/I for z/OS

– Still living in AMODE 31 as of version 5.2

– POINTER is 4 bytes

– If dealing with 8-byte pointers in a control block, create a

TYPE that uses a STRUCTURE for allocating 4 bytes slack

followed by a 4 byte pointer.

– Watch out for pollution from the HGPR(NOPRESERVE)

option, which allows the compiler to use the high halves of

the registers

2015-08-18 41

Interlanguage issues

• REXX (interpreter and compiler), CLIST (ugh)

– Still living in AMODE 31

– STORAGE() does understand 64-bit addresses

• VS FORTRAN—Really? YES! But…

– Only lives in AMODE 31

– Don't be confused by POINTER*8

• First fullword is ALET (used in EMODE)

• Second fullword is address

• APL2, PASCAL/VS, and BASIC/MVS

– Just checking if you're still awake

2015-08-18 42

Interlanguage issues

• z/OS Language Environment (including z/VM)

– Does support AMODE 64

– Provides AMODE 64 services

– Well-documented

– Some 64-bit services are being revised

• z/VSE language

– Still AMODE 31

2015-08-18 43

Wrapping up

• Changing AMODEs is not a short project, by any means

• Test, test, test!

• After completion, (almost) no more limits

• It could be a competitive advantage

• Did I mention test, test, test?

2015-08-18 44

Questions?

2015-08-18 45

Think of something after you leave?

• E-mail: m.ray.mullins@gmail.com

• LinkedIn: https://www.linkedin.com/in/raymullins

• Facebook: https://www.facebook.com/zarchasmpgmr

• Twitter: @zarchasmpgmr

• XING: https://www.xing.com/profile/Ray_Mullins

2015-08-18 46

mailto:m.ray.mullins@gmail.com
https://www.linkedin.com/in/raymullins
https://www.facebook.com/zarchasmpgmr
https://www.xing.com/profile/Ray_Mullins

2015-08-18
© 2015 M. Ray Mullins. All rights reserved. A non-exclusive license for

distribution is granted to SHARE.
47

FIN

