
JSR 352 - The Future of Java Batch

and WebSphere Compute Grid

David Follis

IBM

Insert

Custom

Session

QR if

Desired

WebSphere Application Server

3

Session Title Time Room

17363 Debug 101-Using ISA Tools for Apps in
WebSphere Application Server z/OS

Monday 11:15 Europe 11

17367 WebSphere Liberty on Windows and z/OS
(Among Other Things) Hands-On Lab

Tuesday 10:00 Asia 5

17361 ABCs of WAS Tuesday 1:45 Oceanic 7

17368 z/OS Connect: Opening up z/OS Assets to the
Cloud and Mobile Worlds

Tuesday 3:15 Oceanic 7

17362 Configuring Timeouts for WebSphere
Application Server on z/OS

Wednesday 8:30 Oceanic 7

17366 WebSphere Liberty and WebSphere
Application Server Classic - What's New?

Wednesday 11:15 Oceanic 7

17364 IBM Installation Manager for z/OS System
Programmers: Web-based Installs, Fix Packs,
and How iFixes Really Work

Thursday 4:30 Oceanic 7

17365 JSR 352 - The Future of Java Batch and
WebSphere Compute Grid

Friday 10:00 Oceanic 6

4 © 2015, IBM Corporation

Topics to be Discussed

• Brief Overview of Batch Processing
Including background on Java Batch evolution

• Overview of JSR 352
A review of the key elements of the standard

• IBM Implementation and Extensions
A review of how JSR 352 is implemented by IBM,

including extensions to the standard that provide

additional operational features and benefits

5 © 2015, IBM Corporation

Batch Processing …
… and what led up to Java Batch

6 © 2015, IBM Corporation

Batch Processing Has Been Around a Very Long

Time

A picture from the 1960s, and batch processing pre-dated

this by several decades, or even centuries, depending on

what is considered a “computer”

There has long been a need

to process large amounts

of data to arrive at results

from the data

There continues to be the

same need today

It is unlikely the need to do

processing in batch will go

away any time soon

The need persists, the approach has evolved …

7 © 2015, IBM Corporation

Magnetic Tape

Magnetic Disk

COBOL

Tape, Disk, Memory,

Cloud Services, Rules

Engines, etc.

Java

Evolution: Data Storage and Programming Languages

Punch Cards

Paper Tape

FORTRAN

Assembler

Change is driven by need. So what is driving the

trend towards Java for batch processing?

8 © 2015, IBM Corporation

Things Creating Push to Java for Batch

Desire to Modernize Batch Processes
Motivation behind this takes many forms – new business needs; some update to

an existing batch program is needed and it’s seen as a good opportunity to re-write

in Java; separate business logic into rules engine for more agile processing

Availability of Java Skills
Particularly relative to other skills such as COBOL.

z/OS: Ability to Offload to Specialty

Engines
Workload that runs on z/OS specialty engines (zAAP, zIIP) is not counted towards

CPU-based software charges.

9 © 2015, IBM Corporation

Can Java Run as Fast as Compiled Code?

Comparably … and sometimes faster*:
• Batch processing is by its nature iterative, which means Java

classes prone to being Just-in-Time (JIT) compiled at runtime

• Java JIT compilers are getting very good at optimizing JIT’d

code

• z/OS: System z processor chips have instructions specifically

designed to aid JIT-compiled code

• COBOL that has not been compiled in a long time is operating

with less-optimal compiled code that does not take specific

advantage of chip instructions

*
Results vary, depending on many factors. This is not a promise of performance results.

10 © 2015, IBM Corporation

Open Standard

JSR 352

Open standards allow

for code portability

and the development

of larger libraries of

re-usable code

Vendor Batch

Frameworks

Examples: IBM

Compute Grid, Spring

Batch

Framework removed a

lot of coding effort from

developer and allowed

focus to be on business

logic

The Evolution of Java Batch …

Roll Your

Own

Typically built around

the JVM launcher

concept

Processing logic all

custom-code, often

specific to the batch

program, with only

some re-use

11 © 2015, IBM Corporation

Overview of JSR 352

12 © 2015, IBM Corporation

The Process of Creating an Open Standard

The group works to create a

vision and a document of the

proposed specification.

After review and acceptance, it

becomes a published

specification.

IBM led this group, with

involvement from people from

several other companies.

Formation of

Working Group

Initial Release of

Standard Specification

https://jcp.org/en/jsr/detail?id=352

The specification details the

requirements and interfaces.

The JSR 352 specification was

released in May 2013, and has

been accepted as a component

of the Java EE 7 specification as

well.

Release of Vendor

Implementations

Vendors release

products and

provide

extensions for

additional value

Individuals working

on the challenges

independent of one

another

13 © 2015, IBM Corporation

Very Abstract Representation of a “Batch Job”

Job

We offer this as a way to set the stage for

the discussion of the JSR 352

specification

1

Job Step

Job Step

Job Step

2

• Read data

• Process data

• Write data

• Read data

• Process data

• Write data

• Read data

• Process data

• Write data

3

A way to

initiate and

control job
4

A way to describe

the details of the

job to whatever

does the job

submission and

control

5

A way to keep

track of the state

of the execution

6

14 © 2015, IBM Corporation

The JSR 352 Diagram to Describe the Architecture

You’ll see how this is implemented

in an upcoming section of this

presentation

A job is a logical

representation of the

batch processing

1

A job may consist of

one to many steps

2

An interface to code

that reads data

3

An interface to

code that

processes data

4

An interface to code

that writes data

5

A function and interface

used for job submission

and job control

6

A file that declares the

specifics of the job and the

steps contained in the job

7

A mechanism to persist

information about the state

of jobs in the environment.

For example, a set of

relational database tables.

8

15 © 2015, IBM Corporation

How Much of that Picture Do I Have to Code?

We explain why this is

“optional” in the section

on IBM extensions

It turns out … relatively little
Much of the processing is handled by the vendor implementation of the JSR 352 standard. Your code

sits behind standard interfaces and is called by the JSR 352 runtime.

16 © 2015, IBM Corporation

Job Step Types – Chunk and Batchlet

Job Step

Chunk Step • What we typically think of as a “batch job” – an

iterative loop through data, with periodic commits of

data written out during processing

• This involves the ItemReader, ItemProcessor and

ItemWriter interfaces shown earlier.

Job Step

Batchlet Step • A job step with much less structure … it is called, it

runs and does whatever is in the code, and ends

• This job step type is useful for operations that are not

iterative in nature, but may take some time … a large

file FTP, for example

• This is also useful for encapsulating existing Java
main() programs into the JSR 352 model

A multi-step job may consist of either … or both

17 © 2015, IBM Corporation

High-Level Example … to Illustrate the Key Concepts

SimpleBonus

Job Specification

Language (JSL) file

generate

First step is a Batchlet that writes

account data to a file. This data will

serve as input to the second step

CSV Format

addBonus
Second step is a Chunk step that reads the records

from the file, adds a fixed integer value to each

account, and inserts a row in a table

ACCOUNT

table

Not real-world, but useful to illustrate essential JSR 352

concepts. What does packaging look like?

18 © 2015, IBM Corporation

The “Job Specification

Language” (JSL) file,

which we’ll look at next

…

A Peek Inside the Sample Application WAR file

Application

Developer

BonusPayout-1.0.war

WEB-INF

\classes\com\ibm\websphere\samples\batch

\artifacts

GenerateDataBatchlet.class

GeneratedCSVReader.class

BonusCreditProcessor.class

AccountJDBCWriter.class

(other class files)

\beans

(data bean class files)

\util
(utility class files)

\classes\META-INF\batch-jobs

SimpleBonusPayoutJob.xml

The “How to write JSR 352

applications” topic is

important, but outside the

scope of this overview

discussion.

Step 1 Batchlet

Step 2 Chunk

ItemReader

ItemProcessor

ItemWriter

This deploys into the Liberty Profile server’s /dropins directory, or pointed to

with <application> tag like any other application

19 © 2015, IBM Corporation

JSL: Job Specification Language, Part 1

<?xml version="1.0" encoding="UTF-8"?>

<job id="SimpleBonusPayoutJob">

<properties>

<property name="numRecords" value="#{jobParameters['numRecords']}?:1000;" />

<property name="chunkSize" value="#{jobParameters['chunkSize']}?:100;" />

<property name="dsJNDI" value="#{jobParameters['dsJNDI']}?:java:comp/env/jdbc/BonusPayoutDS;" />

<property name="bonusAmount" value="#{jobParameters['bonusAmount']}?:100;" />

<property name="tableName" value="#{jobParameters['tableName']}?:BONUSPAYOUT.ACCOUNT;" />

</properties>

<step id="generate" next="addBonus">

<batchlet ref="com.ibm.websphere.samples.batch.artifacts.GenerateDataBatchlet">

<properties>

<property name="numRecords" value="#{jobProperties['numRecords']}" />

</properties>

</batchlet>

</step>

:

(second part on next chart)

Properties are a way to get values into your batch job.

They can be specified in the JSL as shown, and

overridden at submission time using IBM’s REST

interface (shown later)

The job specification is taking shape. What about the second step?

That’s shown next …

The first step is defined as a Batchlet.

The Java class file that implements the

Batchlet is indicated. The property to

tell the Batchlet how many records to

create is specified.

20 © 2015, IBM Corporation

A property on the processor provides the

integer bonus to add to each account.

Properties on the writer indicate how to

reach the database and what table to use

JSL: Job Specification Language, Part 2
(first part on previous chart)

:

<step id="addBonus">

<chunk item-count="#{jobProperties['chunkSize']}">

<reader ref="com.ibm.websphere.samples.batch.artifacts.GeneratedCSVReader"/>

<processor ref="com.ibm.websphere.samples.batch.artifacts.BonusCreditProcessor">

<properties>

<property name="bonusAmount" value="#{jobProperties['bonusAmount']}" />

</properties>

</processor>

<writer ref="com.ibm.websphere.samples.batch.artifacts.AccountJDBCWriter">

<properties>

<property name="dsJNDI" value="#{jobProperties['dsJNDI']}" />

<property name="tableName" value="#{jobProperties['tableName']}" />

</properties>

</writer>

</chunk>

</step>

</job>

The “reader,” “processor” and

“writer” Java classes are specified

Summary: the JSR 352 runtime provides the infrastructure to run batch jobs; this JSL tells it what

Java classes to use and other details related to the operation of the job

The second step is defined as a Chunk

step. The “chunkSize” (commit interval)

is a property from earlier.

21 © 2015, IBM Corporation

Parallel Job Processing

 Splits and Flows provide a mechanism for executing

job steps concurrently at the orchestration layer

 A flow is a sequence of one or more steps which

execute sequentially, but as a single unit.

 A Split is a collection of flows that may execute

concurrently

– A split may only contain “flows”; a step is not implicitly a flow

 This is done entirely in the JSL descriptor

– Imposed on the batch application with no code changes!

22 © 2015, IBM Corporation

Step-level parallelism

 Step-level parallelism can be achieved

programmatically using step partitioning

 A partitioned step runs as multiple instances with

distinct property sets

 PartitionMapper defines the number of partitions, and

property values for each partition

– Can be a fixed set of partitions in JSL

– Can be dynamic using a PartitionMapper

implementation

23 © 2015, IBM Corporation

Step-level parallelism

• No new Java artifacts

 Not necessarily the general case

 Might have to

– Coalesce Exit Status (PartitionAnalyzer)

– Process Intermediate results on parent thread

(PartitionCollector->PartitionAnalyzer)

– Perform other tasks on end of partition

(PartitionReducer)

 Also might want to programmatically partition

(PartitionMapper) rather than via JSL

24 © 2015, IBM Corporation

24

Parallel Job Processing

25 © 2015, IBM Corporation

IBM Implementation
And Extensions

26 © 2015, IBM Corporation

Built on Liberty as the Java Runtime Server

IBM Java SDK

Liberty

Java EE 7

All Platforms Supported By Liberty

Liberty 8.5.5.6 and above
• IBM’s fast, lightweight, composable server runtime

• Dynamic configuration and application updates

JVM Stays Active Between Jobs
• Avoids the overhead of JVM initialize and tear down

for each job

IBM Extensions to JSR 352
• JSR 352 is largely a programming standard

• IBM extensions augment this with valuable

operational functions

• Includes:
 Job logs separated by job execution

 REST interface to JobOperator

 Command line client for job submission

 Integration with enterprise scheduler functions

 Multi-JVM support: dispatcher and endpoint servers

provide a distributed topology for batch job execution

IBM Extensions

JSR 352

27 © 2015, IBM Corporation

JobRepository Implementation

The JSR 352 standard calls for

a JobRepository to hold job

state information, but it does

not spell out implementation

details

IBM JSR 352 provides three options for this:
1. An in-memory JobRepository

For development and test environments where job state does not need to persist between server starts

2. File-based Derby JobRepository
For runtime environments were a degree of persistence is desired, but a full database product is not needed

3. Relational database product JobRepository
For production and near-production environments where a robust database product is called for

Table creation is automatic. Relatively easy to drop one set of tables and re-configure to

use a different data store.

28 © 2015, IBM Corporation

REST Interface to JobOperator

The JSR 352 standard calls for a

JobOperator interface, but leaves

to vendors to implement function

to handle external requests for job

submission, control and

monitoring

The IBM JSR 352 REST interface provides:
1. A RESTful interface for job submission, control and monitoring

Job submission requests may come from outside the Liberty Profile runtime

2. Security model for authentication and authorization
Authorization is role-based: administrator, submitter, monitor

3. JSON payload carries the specifics of the job to be submitted
With information such as the application name, the JSL file name, and any parameters to pass in

REST

This permits the remote submission and control of jobs; it provides a way to integrate

with external systems such as schedulers

29 © 2015, IBM Corporation

Command Line Client to REST Interface

RESTbatchManager

> command

REST/JSON

Person Script

The batchManager command line interface client provides:
1. A way to submit, monitor and control jobs remotely using a command line

interface
On the same system, or a different system … different OS … doesn’t matter: TCP/IP and REST/JSON

2. Uses the REST interface on the IBM Java Batch server
Which means the same security model is in effect: SSL, authentication, role-based access

3. External schedulers can use this to submit and monitor job completion
batchManager parameters allow the script to “wait” for Java to complete. Parameters allow for discovery of

job log information, and a mechanism to retrieve the job log for archival if desired.

30 © 2015, IBM Corporation

z/OS: Native Program Command Line Interface

> command

Person Script

WOLAbatchManagerZos

Same LPAR, cross-memory

Same batchManager command line function, but …
1. Not a Java client, so do not need to spin up a JVM for each invocation

Saves the CPU associated with initiating the JVM, and when there’s a lot of jobs this can be significant

2. Cross-memory
Very low latency, and since no network then no SSL and management of certificates

3. Same access security model
Once the WOLA connection is established, the same “admin,” “submitter” and “monitor” roles apply

31 © 2015, IBM Corporation

Liberty Profile

IBM Extensions

JSR 352

Dispatcher

Liberty Profile

IBM Extensions

JSR 352

Endpoints

Liberty Profile

IBM Extensions

JSR 352

Multi-JVM Support: Job Dispatchers, End-Points

REST

WOLA

batchManager

batchManagerZos

Separation of duties …
1. Server designated as dispatchers handle job requests, and places them on JMS queue

The endpoints listen on the JMS queues and pick up the job submission request based on criteria you set to indicate which jobs

to pick up (more on that next chart)

2. Endpoint servers run the batch jobs
Deploy the batch jobs where most appropriate; co-locate some batch jobs and others have their own server

3. JMS queues (either Service Integration Bus or MQ) serve as integration between two
This provides a mechanism for queuing up jobs prior to execution

SIBus or MQ

Submit
<props>

Submit
<props>

Queue

32 © 2015, IBM Corporation

Multi-JVM Support: Get Jobs Based on Endpoint Criteria

Liberty Profile

IBM Extensions

JSR 352

IBM Extensions

JSR 352

Dispatcher SIBus or MQ

Submit
<props>

Submit
<props>

Queue

Endpoint

A property in the server.xml

defines the “message

selector” criteria to use to

pick up messages. You can

designate – by server – what

criteria to use.

server.xml

… messageSelector="com_ibm_ws_jbatch_applicationName = 'BatchJobA'" 1

… messageSelector="com_ibm_ws_jbatch_applicationName = 'BatchJobA'

AND com_ibm_ws_jbatch_myProperty = 'myValue'"
2

Submit jobs and have them run only when

intended server starts and picks up the

submission request

Have jobs run in intended servers

based on selection criteria of your

choice

Not limited to system, not limited to

platform … may span systems and

platforms

33 © 2015, IBM Corporation

Job Logging

Liberty Profile

IBM

Extensions
JSR

352

A B

/<server_directory>/logs

/joblog

/<application_name_A>

/<date>

/instance.#

/execution.#

part.#.log

/<application_name_B>

<date>

etc.

Job logs separate from the server log, separate from each other
1. Each job’s logs are kept separate by application name, date, instance and

execution

2. The IBM JSR 352 REST interface has a method for discovery and retrieval of job

logs
This is accessible through the batchManager command line interface as well. This is how job log retrieval and

archival can be achieved if needed.

34 © 2015, IBM Corporation

Liberty server.xml

:

<featureManager>

<feature>servlet-3.1</feature>

<feature>batch-1.0</feature>

<feature>batchManagement-1.0</feature>

</featureManager>

:

<batchPersistence databaseStoreRef="BatchDatabaseStore" />

<databaseStore id="BatchDatabaseStore"

dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

:

Relatively simple updates to server.xml …

1. The batch-1.0 feature enables the JSR 352 core functionality

2. The batchManagement-1.0 feature enables the REST interface, job logging, and the ability to

configure the multi-JVM support.

3. The <batchPersistence> element provides information about where the JobRepository is

located

Some details left out of this chart, of course … but the key point is that configuring the support is
based on updates to server.xml

35 © 2015, IBM Corporation

IBM Extensions

Overall Summary

JSR 352

Standard

Liberty

Modernization

Java

JSR 352

Early Days of

Batch Processing

Over time …

Windows, AIX, Linux, Linux

for z Systems, z/OS …

REST interface

Command line client

Job logging

Multiple JobRepository

z/OS: native client

Multi-JVM capability

IBM JSR 352

Java Batch

