
The ABCs of WAS z/OS

David Follis, IBM

Gary Picher, IBM

Michael Stephen, IBM

Don Bagwell, IBM

Sessions

38/7/2015

Session Title Time Room

17363 Debug 101-Using ISA Tools for Apps in
WebSphere Application Server z/OS

Monday 11:15 Europe 11

17367 WebSphere Liberty on Windows and z/OS
(Among Other Things) Hands-On Lab

Tuesday 10:00 Asia 5

17361 ABCs of WAS Tuesday 1:45 Oceanic 7

17368 z/OS Connect: Opening up z/OS Assets to the
Cloud and Mobile Worlds

Tuesday 3:15 Oceanic 7

17362 Configuring Timeouts for WebSphere
Application Server on z/OS

Wednesday 8:30 Oceanic 7

17366 WebSphere Liberty and WebSphere
Application Server Classic - What's New?

Wednesday 11:15 Oceanic 7

17364 IBM Installation Manager for z/OS System
Programmers: Web-based Installs, Fix Packs,
and How iFixes Really Work

Thursday 4:30 Oceanic 7

17365 JSR 352 - The Future of Java Batch and
WebSphere Compute Grid

Friday 10:00 Oceanic 6

Agenda

48/7/2015

• Overview of “application server”

• WAS Classic

• WebSphere Liberty WAS z/OS

58/7/2015

Overview

In The Beginning …

8/7/2015 6

People wrote monolithic programs from the ground up

They didn’t rely on pre-packaged routines or frameworks
because they didn’t exist

As you’d expect … they tended to reinvent the wheel a lot

But that didn’t last long … eventually people
started sharing code, building in sub-routines …
anything to better re-use code that already existed

The Birth of the “Application Server”

78/7/2015

Data Input

Terminal I/O

Data Output

Security

Transaction

Program

“Application Server”
But it wasn’t called
this originally

It was called:
• CICS (1968)
• IMS (1968)

The Purpose of an “Application Server”

88/7/2015

Program or Application Code

Function

Interface

Function

Interface

Function

Interface

The application server
provides common functions
exposed through
documented interfaces

Application developers focus
on their business logic and
call the functions as needed

By that definition, today’s smart phones are “application
servers” … they run apps; the apps make use of documented
programming interfaces.

Our focus today is on large, multi-user enterprise appservers …

Java as an Application Runtime

98/7/2015

Java is designed to be platform
neutral … the Java application code
does not know or care about the
platform on which it runs

However, the layer just under the
Java Virtual Machine (JVM) does
care … that’s what translates the
Java code to the platform code,
and what compiles frequently used
code into re-usable modules.

This makes Java applications
portable across platforms

Java Program

Java Functions

Interface

Java Virtual Machine (JVM)

x86
JIT Compiler

POWER
JIT Compiler

System z
JIT Compiler

Open Standards Interfaces

108/7/2015

Relational DB

Interface

Non-Relational

Interface

Messaging

Interface

Security

Interface

Transaction

Interface

Java Program

“JDBC” “JCA” “JMS” “JSSE” “JTA”

Java Program Java Program Java Program

The wide-spread adoption of Java allowed the community of developers to
get together and create open standard specifications for a wide array of
functional services.

Open standards make applications portable across vendors.

The combination of Java + Open Standards is what IBM WebSphere
Application Server – all platforms, not just z/OS – is all about.

Brief Survey of Different Application Models

118/7/2015

Servlet/JSP

EJB

MDB

These are often referred to as “web applications.” The most common
user interface is the browser.

Enterprise Java Bean applications are often used to contain the key
business logic, such as creating transactions, accessing data, and
committing transactions.

Message Driven Bean applications are really a form of EJB. They listen
on a message queue, and when a message arrives they get the message
and process it.

Not an exhaustive list, but it is representative of common types

Brief History of WAS z/OS

128/7/2015

“WAS Classic”

“WebSphere Liberty”

138/7/2015

WAS z/OS Classic

Key Points …

148/7/2015

• Most current level is 8.5.5.6

• Supports Java EE 6

• Open standard specifications supported by WebSphere
Application Server is common across all platforms

• Supports Java 6 or 7 at either 31-bit or 64-bit mode

• Is in use by many large customer accounts … some with very
large server topologies serving very high transaction rates

• Can be configured across LPARs for redundancy and availability

Let’s take a closer look at how it operates on z/OS

The CR / SR AppServer

158/7/2015

Native Code

Java Code

WLM
Queue

Control Region

Native Code

Java Code

Your applications

Servant Region

Native Code

Java Code

Your applications

Servant Region

Work requests come into
the CR initially

CR queues the work to the
WLM queue

WLM dispatches to a
worker thread in the
Servant Region

May have one or more
servant regions

Servant regions may be
started at server start, or
dynamically expanded by
WLM

A “pull” model

WLM queue serves as “shock
absorber” for short-term spikes in
work

Dynamic (or manual) expansion of
servant regions provides additional
JVMs and worker threads

CR SR

“Server”

“Nodes” … Collections of Servers

168/7/2015

CR SR

CR SR

CR SRConfiguration
File System

“Node”
Collection of servers on an LPAR

CR SR

CR SR

CR SRConfiguration
File System

“Node”
Collection of servers on an LPAR

You may configure many servers, depending on your needs

Multiple servers on an LPAR are collected into a “node”

Each node has a configuration file system associated with it

The Deployment Manager Server

178/7/2015

CR SR

CR SR

CR SR

CR SR

Configuration
File System

“Node”
Collection of servers on an LPAR

Master
Configuration

CR SR

CR SR

CR SRConfiguration
File System

“Node”
Collection of servers on an LPAR

The Deployment Manager is an appserver
that runs the IBM admin console

It owns the “master” configuration file
system for everything it manages

“Nodes Agents”

188/7/2015

CR SR

CR SR

CR SR

CR

CR SR

Configuration
File System

“Node”
Collection of servers on an LPAR

Master
Configuration

CR SR

CR SR

CR SR

CR

Configuration
File System

“Node”
Collection of servers on an LPAR

Node Agents are CR-only servers that
operate in each node

They accept configuration changes from the
DMGR. That’s called “synchronization.”

“Cell” … Span of Management Control

198/7/2015

CR SR

CR SR

CR SR

CR

CR SR

Configuration
File System

“Node”
Collection of servers on an LPAR

Master
Configuration

CR SR

CR SR

CR SR

CR

Configuration
File System

“Node”
Collection of servers on an LPAR

The collection of nodes managed by the
DMGR is what constitutes a “cell”

The cell is often used to separate by
operational purpose – Test, QA, Production

The Administrative Console

208/7/2015

A web-based application that runs in the
Deployment Manager server

It has sections related to the major configuration
areas for WAS – servers, applications, security, etc.

Think of this as a smart XML updater – it translates
your mouse clicks and data into updates to the
configuration XML files

(You don’t really want to hand-edit the XML files
unless IBM Level 2 support directs you to.)

You can also start and stop servers, deploy
applications, and synchronize changes

z/OS Platform Exploitation by WAS z/OS

218/7/2015

At the application layer WAS is common across all platforms. But under
the application layer WAS z/OS takes advantage of the z/OS platform:

• z/OS Workload Manager
WLM is used to queue work and dispatch to servant regions
WLM for Service Classification (priority) or Report Classification (data collection)

• Cross-Memory Services
TCP stack bypass for call server to server on the same LPAR
Cross-memory into CICS (EXCI)
Cross-memory into DB2 (Type 2)
Cross-memory into MQ (BINDINGS)
WebSphere Optimized Local Adapters (WOLA)

• SAF Integration
SAF (RACF or equivalent) for security registry, keystores, and other security elements

• SMF 120.9
Request records to capture usage statistics for capacity planning, chargeback, analysis

• z/OS MODIFY
Dynamically change runtime, or display information about runtime

228/7/2015

WebSphere Liberty z/OS

Background on “Why WebSphere Liberty?”

238/7/2015

The WAS Classic design loads all the Java EE function for each
server, regardless of what the applications actually needed:

CR

“Server”

SR ~ 1GB of memory for each server, based on default JVM heap sizes

In development and test environments, where many servers are
needed, that memory requirement added up quickly.

WebSphere Liberty was created to address that issue as well as
others. Let’s take a tour of Liberty … what it is, how it’s used …

High-Level View of WebSphere Liberty

248/7/2015

Java

Java EE

Applications

Single JVM server model
• All platforms, including z/OS

Simple configuration model
• One XML file per server rather than many
• Concept of cells and nodes goes away

Composable
• You configure what features you want loaded
• The fewer features, the less memory
• You tailor Liberty to your specific needs

Dynamic
• Changes detected and dynamically loaded (configurable)
• Server changes and/or application changes
• Reduces the number of server restarts considerably

Liberty z/OS extensions
• Several platform-exploitation features (covered later)

You May Already Have it Running!

258/7/2015

z/OS Management Facility
“zOSMF”

z/OS 2.1

Graphical interface
to z/OS system

programmer
functions

Angel Process
(more on this later)

zOSMF is a Java program. Starting with z/OS 2.1 the Java
runtime server it uses is WebSphere Liberty z/OS

So if you have z/OS 2.1 and zOSMF enabled, you’re using Liberty!

That’s WebSphere Liberty z/OS!

WebSphere Liberty Features

268/7/2015

“Features” are composable units of function you configure into Liberty:

zOS

ND

Core

Base

zosConnect-1.0

zosLocalAdapters-1.0zosSecurity-1.0 zosTransaction-1.0 zosWlm-1.0

scalingController-1.0

scalingMember-1.0

dynamicRouting-1.0

collectiveController-1.0 clusterMember-1.0

New in

1Q15

New in

4Q14

8.5.5.6

Java EE 6

subset couchdb-1.0

mongodb-2.0

wsSecurity-1.1
javaee-7.0

batchManagement-1.0

webProfile-6.0

javaMail-1.5

openid-2.0

openidConnectServer-1.0

openidConnectClient-1.0

osgiAppIntegration-1.0

spnego-1.0

collectiveMember-1.0

restConnector-1.0

sessionDatabase-1.0

ldapRegistry-3.0

webCache-1.0

distributedMap-1.0

osgiConsole-1.0

json-1.0

timedOperations-1.0monitor-1.0

oauth-2.0

serverStatus-1.0

wab-1.0

blueprint-1.0

webProfile-7.0

eventLogging-1.0

requestTiming-1.0

adminCenter-1.0

Details under
these two shown
after next page

Review of
these next

page

Focus: z/OS Features of Liberty

zosConnect-1.0

zosLocalAdapters-1.0

zosSecurity-1.0

zosTransaction-1.0

zosWlm-1.0

zOS This is from the earlier chart

It shows five z/OS-specific features:
zosSecurity-1.0 – integration with z/OS SAF

zosTransaction – integration with z/OS RRS

zosWlm-1.0 – integration with z/OS WLM

zosLocalAdapters-1.0 -- WOLA

zosConnect-1.0 – REST/JSON request handler with
integration to backend systems

Original

in 8.5.0.0

Introduced

in 8.5.5.2

Enabling in a Liberty z/OS server is a matter of updating server.xml:

<featureManager>

<feature>jsp-2.2</feature>

<feature>zosSecurity</feature>

<feature>zosLocalAdapters</feature>

</featureManager>

And then making the appropriate
updates further down in XML to
configure the function

Web Profile and Java EE Evolution

288/7/2015

Liberty has been adding new features over time. With 8.5.5.6 it looks like this:

New in

1Q15

New in

4Q14

8.5.5.6

Before

servlet-3.1

jsp-2.3

jsf-2.2

ejbLite-3.2

jdbc-4.1

jndi-1.0

appSecurity-2.0

managedBeans-1.0

ssl-1.0

beanValidation-1.1

cdi-1.2

jpa-2.1

el-3.0

websocket-1.1

websocket-1.0

jsonp-1.0

jaxrs-2.0

jaxrsClient-2.0

Web
Profile

Features

servlet-3.1

jsp-2.3

jsf-2.2

ejbLite-3.2

jdbc-4.1

jndi-1.0

appSecurity-2.0

managedBeans-1.0

ssl-1.0

beanValidation-1.1

cdi-1.2

jpa-2.1

el-3.0

websocket-1.1

websocket-1.0

jsonp-1.0

jaxrs-2.0 jaxrsClient-2.0

javaMail-1.5

appClientSupport-1.0

ejbPersistentTimer-1.0

ejbHome-3.2

ejbRemote-3.2

ejb-3.2

batch-1.0

j2eeManagement-1.1

jacc-1.5

jaspic-1.1

jca-1.7

jms-2.0

wmqJmsClient-2.0

wasJmsClient-2.0

jaxws-2.2

jaxb-2.2

Java EE
Features

WebSphere Liberty on z/OS

298/7/2015

Java

Java EE

Applications

Common features and interfaces
• Liberty z/OS has the same programming interfaces as

Liberty on other platforms. Applications portable across
platforms.

Start as UNIX process or z/OS STC
• Process = okay for ad hoc testing
• STC = better within z/OS operational environment
• No functional difference between the two (except

MODIFY, which requires STC)

Platform Exploitation
• JDBC Type 2 (cross memory into DB2)
• JMS Bindings Mode (cross memory into MQ)
• WLM classification
• SAF integration
• MODIFY (when started as STC)
• WOLA

Creating a Liberty Server

308/7/2015

Creating Multiple Servers

318/7/2015

Starting as a z/OS Started Task

328/7/2015

The server.xml Configuration File

338/7/2015

Configuring the server is a matter of updating the XML. Liberty
will dynamically load changes when file is saved.

The “Angel” Process on z/OS

348/7/2015

WebSphere

Liberty

Collectives – A Management Infrastructure

358/7/2015

Collective
Controller

Liberty Server
Instance

Collective
Member

Liberty Server
Instance

Collective
Member

Liberty Server
Instance

Collective
Member

Liberty Server
Instance

Collective
Member

Liberty Server
Instance

Cluster

“Collective”

Admin
Center

“Collectives” provide a way to organize
Liberty Profile servers into a logical
grouping and provide a single interface
point for management.

The “Controller” is the interface point.
Servers are members and join the
collective with an XML update that points
to the controller.

Servers can leave the collective by simply
removing the XML.

Server in a collective can be designated as
part of a cluster, and the controller can
generate the plugin-cfg.xml file for HTTP
server routing.

Controllers can be clustered to form a
highly-available controller infrastructure

Using collectives is optional. When first starting out it’s better to
have standalone Liberty servers. It’s simpler. Collectives later.

For Further Reading and Study …

368/7/2015

www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/welcome_nd.html

WebSphere Application Server 8.5.5 Knowledge Center

IBM Techdocs

“Why WebSphere Application Server z/OS”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532

“WAS z/OS Wildfire Workshop Material”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4848

“Liberty Profile for z/OS”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

“WebSphere Optimized Local Adapters (WOLA)”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

“Hidden Gems”
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101138

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101464

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101992

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102371

IBM developerWorks

https://developer.ibm.com/wasdev/

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/welcome_nd.html
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS4848
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101138
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101464
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101992
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102371
https://developer.ibm.com/wasdev/

Questions?

378/7/2015

We just went through a lot of material

Nobody can become expert in all this
with one presentation

IBM Knowledge Center has a wealth of
information on this subject

IBM Techdocs does as well

