When Milliseconds Matter: Architected Real-Time Analytics Into Operational Systems

Paul DiMarzio
IBM z Systems Big Data and Analytics
Worldwide Portfolio Marketing Manager
Session objectives

• Introduce a strategy for “right-time” enterprise decision management
• Discuss the role that predictive analytics plays when right-time means real-time
• Propose an architectural tripod for supporting real-time decisions
• Highlight the importance of infrastructure design in enabling real-time decisions
• Look at performance results for real-time, in-transaction predictive analytics

• Review business rationale and architecture for some common real-time decision use cases
 – Countering payment fraud, waste, abuse and financial crimes (banking example)
 – Additional in-process payment analytics (insurance claims example)
 – Predictive customer intelligence / executing the next best action (banking up-sell example)

• Take a quick look into the future, and review

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Why we’re having this discussion today

“Our thinking has created problems which cannot be solved by that same-level of thinking.”
- a pretty wise dude

“You can’t do analytics on the mainframe.”
- most any CIO over the past few decades

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
An enterprise analytics strategy must be able to support a wide variety of decision types

- **Strategic Decisions**
 - Guide overall direction of the enterprise
 - *Should we expand overseas?*

- **Tactical Decisions**
 - Manage and control operations
 - *What product should we promote today?*

- **Operational Decisions**
 - Handle every customer interaction
 - *Is this payment request valid?*

How often is this decision made?

What is the value/risk?

How repeatable is this decision?

What type of analysis does the decision require?

How quickly must the decision be reached?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

Source: James Taylor, Decision Management Solutions: *Transforming Operational Systems From Transactional Systems to Decision Management Systems*, 2015
“Real-time” is a very subjective term: understand your use case carefully!

Real-time analytics

Analyst running reports
“Real-time” objective: reduce time from days/hours to hours/minutes

Transactions in flight
Real-time objective: reduce time from seconds to milliseconds – or less!

Focus for today
Operational decisions: high volume, low latency, highly repeatable and high value in aggregate

- Require analytics that are closely linked to transactional systems so that decisions can be automated, in real-time
- Key considerations: richness of analysis and ability to maintain SLAs

http://bit.ly/1S8rjQQ

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Predictive analytics should be a key element of your real-time decisioning strategy…

- Predictive models detect patterns
 - Deviation from expected behavior can isolate bad (or good) behavior, trigger additional actions or new targeted marketing and up-sell / cross-sell offers

- Like the real world, predictive models are not binary
 - Understanding how closely a pattern of behavior matches a known pattern of bad (or good) behavior can help uncover crimes or non-obvious opportunities

- Predictive models can have many variations
 - Can be built to assess only specific transactions or more generically for all transactions
 - Multiple layers of models can be invoked for increasing sophistication of analysis, triage leading to further inspection of contributing factors and weights
...but, outdated views of infrastructure can impede progress

- Significant complexity
 - Separated data warehouses

- Analytics latency
 - Transactional data is not readily available

- Lack of synchronization
 - Data is not easily aggregated and fresh

- Data duplication
 - Multiple copies of the same data

- Excessive costs
 - Of moving data around

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Unfortunately, you’re probably **not** using predictive analytics in your operations today

- **What you want:** to service the “demographic of one”
 - Understand opportunities and risks, at the granularity of each individual customer interaction, while interaction is happening
 - More sophisticated analytics, incorporating more data for better decision-making
 - Faster identification and response to new behavior correlations

- **What you do:** sub-optimize based on *perceived* infrastructure constraints
 - To meet SLAs, avoid penalties, and maintain customer expectations for real-time service you:
 - Rely only on simpler techniques, such as rules
 - Analyze a subset of transactions, or analyze post-transaction
 - Make decisions based on aged data

- **What you get:** you miss revenue-generating opportunities, overpay, don’t uncover criminal activity in a timely fashion, …

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
The architecture you want: leverage core capabilities to automate, optimize, govern operational business decisions

Predictive modeling, business rules and orchestration together enable the most effective decisions

- Advanced analytics with classification, association, segmentation model types (CHAID, NN, C&R, …)
- Rules to define action based on thresholds
- Orchestration to coordinate all activity

Business policy
- Regulation
- Best practices
- Know-how

- Risk
- Clustering
- Segmentation
- Propensity
Starting point: where are the transactions and data that support real-time operations located?

There’s a very high probability that your operations and data of record are maintained on a mainframe …

92% of top banks
84% of top insurers
92% of top retailers
90% of top airlines
71% of Fortune Global 500

worldwide rely on the mainframe

Operational Systems of Record:
- Customer
- Accounts
- Payments
- Purchases
- Card
- Claims
- etc.

The mainframe processes roughly 30 billion business transactions every day

How can we leverage the mainframe for incorporating analytics into operational decisions?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
The infrastructure you need: compare approaches

Considerations:

Can performance / throughput SLAs tolerate data movement and network traffic?
Can models integrate large volumes of historical data with incoming transactions to deliver the most accurate outcomes?
Can security for sensitive data be maintained across multiple zones?
Can audit trails be maintained to satisfy regulations?
Can availability and BC/DR objectives be met?

Can 100% of transactions be richly analyzed without user impact?

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
The core software for integrated z Systems solutions

Predictive Analytics
IBM SPSS Modeler with Scoring Adapter for z Systems

OR
Zementis for z Systems

- Delivers better, more profitable decisions, at the point of customer impact
- Improves accuracy by scoring directly within the transactional application against the latest committed data
- Delivers the performance needed to meet operations SLAs
- Avoid data governance and security issues, save network bandwidth, data copying latency, disk storage
- Same high qualities of service as operational systems
- Easier to incorporate scoring into applications

Business Rules
IBM Operational Decision Manager for z/OS

- Automate and manage frequently occurring, repeatable business decisions
- Codifies business policies, practices and regulations
- Enables changes to be easily made by business people
- Automates decision making with the fidelity of an expert
- Centralized, externalized decisions enable consistency and reuse
- Manage business decisions in a natural language
- Decouple development and decision change lifecycle

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Sample performance findings: full architecture

- Three advanced SPSS models executed during each transaction with many inputs
- Performance measures show favorable results (26.5 msec CPU time, end to end)
- More optimizations possible: z196 used, interface optimizations, etc.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Sample performance findings: real-time scoring alone

Add Real-Time Scoring to Transaction

<table>
<thead>
<tr>
<th>Response Time (msec)</th>
<th>CPU msec/tran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

- Without Scoring (Baseline Transaction)
- Added Real-Time Scoring

1 msec difference
0.06 msec difference

** Internal testing shows scoring to be a fairly fixed consistent cost, so relative impact will improve with transactions heavier than 10ms baseline

Add Data Preparations to Transaction

<table>
<thead>
<tr>
<th>Response Time (msec)</th>
<th>CPU msec/tran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- Without Scoring or Data Prep (Baseline Transaction)
- Added Data Preparation

Some models may require data preparations to generate model inputs, these will vary, one example follows:

Sample Workload Specifics (Lab Measurements):
- IBM z13
- Transactions > 320,000 in 5 min.
- Predictive Model: Logistic Regression
- Inputs to Model: 12

Minimal SLA and CPU impact!

Data Preparations, 12 fields total:
- 1 required no data preparation
- 5 required database access
- 6 required calculations

Significant opportunity to optimize data preparation using pre-aggregated data and IBM DB2 Analytics Accelerator

** Results will vary based on: modeling algorithm, number of inputs, amount, scope and type of data preparations

Complete your session evaluations online at www.SHARE.org/Orlando-Eva
Use Case 1: Countering payment fraud, waste, abuse and financial crimes (banking example)
The worldwide cost of occupational fraud has risen 9% over the past two years, to $3.7T USD annually.

The cost of fraud is considerable – and rising, not falling
 – The typical organization loses 5% of its revenues to occupational fraud each year (no change)
 – The median loss caused by the occupational fraud cases in our study was $140K (up 4%)
 – 20% of the cases were greater than $1M (up 2%)

Fraudsters are good at hiding their behavior
 – The frauds reported to us lasted a median of 18 months before being detected (no change)

It is nearly impossible to recover fraudulent losses
 – 58% of the victim organizations had not recovered any of their losses due to fraud, and only 14% had made a full recovery

Yet, most organizations still rely on “after the fact” methods
 – Over 40% of all cases were detected by a tip – more than twice the rate of any other detection method

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

IBM’s fraud management point of view

Detect
Detect in real time if a transaction, request, application, document, etc. is potentially fraudulent by applying models and rules in real time.

Detect
Detect fraud within a business process.

Prevent
Take action in real time – when it matters.

Prevent
Stop processing known fraud, or encourage fraudsters to abandon their objective by showing more is known than they think should be known about their activities and intentions.

Investigate
Gather data about fraudsters and/or schemes DETECTED or DISCOVERED; build cases for prosecution, recoveries, or denial of payments. Build watch lists and rules.

Investigate
Confirm fraud for prosecution, recovery, rules and watch lists.

Discover
Find Fraud within the Data.

Discover
Discover fraud by retrospectively reviewing past data and identifying individuals or organizations that may be conducting fraudulent activities.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
IBM’s fraud management point of view

Detect
Detect in real time if a transaction, request, application, document, etc. is potentially fraudulent by applying models and rules in real time.

Prevent
Stop processing known fraud, or encourage fraudsters to abandon their objective by showing more is known than they think should be known about their activities and intentions.

Discover
Discover fraud by retrospectively reviewing past data and identifying individuals or organizations that may be conducting fraudulent activities.

Investigate
Gather data about fraudsters and/or schemes DETECTED or DISCOVERED; build cases for prosecution, recoveries, or denial of payments.

Detect
Detect fraud within a business process.

Prevent
Take action in real time – when it matters.

Discover
Find Fraud within the Data.

Investigate
Confirm fraud for prosecution, recovery, rules and watch lists.

Predictive Analytics
Be conducting fraudulent activities.

Business Rules
Gather data about fraudsters and/or schemes.

Orchestration
Gather data about fraudsters and/or schemes.

Transaction / Batch Workload
Gather data about fraudsters and/or schemes.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

8/9/15
Business Goal: reduce loss due to card fraud, reduce card deactivation, grow revenue associated with card purchases, reduce call center costs, improve service yielding preferred card usage

Approach: incorporate aggregate data from geographic location, merchant, issuer and card history into existing card authorization business flow to reduce fraud while preserving transactional SLAs

- Integrated high performance query optimizations enable client to aggregate data several times a day and use this complex data as part of real-time fraud detection process
- Enhance with predictive scoring integrated with fraud detection transaction for even more preventive capabilities

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Architecture view - bank: incrementally enhance existing fraud detect with predictive approach

Benefits

- Fraud detection rates improved through integrated infrastructure that delivers new capabilities without sacrificing SLAs or compromising security
 - Flexibility to invoke processes real-time or scheduled, tight or loose coupled to invoking application
 - Prioritize detect operations based on inputs (tran, LOB, amounts, etc)
 - Leverage same infrastructure across multiple functions with both standardized processes & variations for specific LOBs as needed
 - Can provide as a service across multiple clients, differentiate through context

Existing banking systems of record:
- Payments
- Internet Banking
- Etc.

New detect function

- IBM Operational Decision Manager
- Orchestration
- Fraud Detection Workflows

DB2 z/OS

- Acct Data
- Cust Data
- Trx Data

SPSS Scoring Adapter or Zementis models

Mobile Device:
- Initiate Payment
- Transfer Funds
- Check Balance

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Use Case 2:
Additional in-process payment analytics (insurance claims example)
How can insurers leverage in-process scoring for best advantage?

Quickly, efficiently tag each claim with additional business insight; by extending in-process claims scoring across domains, you transform predictive analytics from a specialized function to one that best leverages transactional systems at a repeatable enterprise scale.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Challenge 1: Complex reports for overpaid claims not completing on time, result is monetary losses

Solution: Integrate optimized analytics of IDAA with overpayment reporting of transactions

Benefits:
• Up to 2000x improvement in speed of overpayment reports
• LOB users enabled to respond with more agility to overpayment trends
• Informed decisions at the right time

Challenge 2: Stop improper payments prior to payment, avoid pay & chase, meet SLAs

Solution: Integrate predictive analytics into claims adjudication for analytics in place

Benefits:
• Very efficient scale for analytics
• Scale requirements only achievable with analytics as part of transaction flow
• Expected results of efficient in-transaction analytics can be multi-million dollars per year

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

System of Record

Intake Claims → Prepare Claims → Adjudicate Claims → Deliver Benefit → Recover Overpaid Claims

Model

Claims DB (DB2 z/OS)

Predictive Analytics leveraging IBM SPSS Modeler with Scoring Adapter or Zementis for z Systems

Descriptive analytics leveraging IBM DB2 Analytics Accelerator

Business view - insurer: minimize loss from claims overpayments
Architecture view - insurer: minimize loss from claims overpayments

Incorporate model execution into z/OS claims transaction systems

- Get claims transaction information
- Determine likelihood of overpayment
- Use model result, determine best action
- Recommendation
 - Examples:
 - Continue pay
 - Pay but highlight for investigate
 - Execute further models

Invoke score: result is Propensity of Overpayment and confidence

Invoke data preparations required for input to models

DB2 zOS v10 or above

- Efficient, scalable scoring on each and every claim
- No data movement to achieve analytics
- Leverage both historical and current transaction data

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Use Case 3: Predictive customer intelligence / executing the next best action (banking up-sell example)
Real-time predictive customer intelligence leads to smart business decisions at the point of impact

1. Build long-term customer relationships
2. Drive one decision one interaction at a time
3. Maximize customer lifetime value

Telco Providers
- When a high-value, long-tenure customer calls with a bill query within six months of the end of his / her contract, offer him / her a complimentary handset upgrade if he / she renews in advance.
- Customer repeatedly called tech support with mobile Internet issues comes to the website to check process to transfer his / her number. Initiate a chat, check problems are now resolved, refund two months data charges by way of apology, and offer discount on a new handset.

Banking Providers
- Customer calls for password reminder on “self-trade” account. Pattern of usage shows limited activity and few returns; offer upgrade to managed investment offering.
- Customer’s transactions show multiple trips to Asia; offer international emergency cover, and provide information about commission-free ATM withdrawals from our regional partner.

Insurance Providers
- When confirming to a customer that his / her claim will be settled, direct him / her to a repair shop which, although it may take 1 – 2 days longer than other options, has higher quality ratings.
- When a customer calls in with a coverage query, let them know they can save money by combining their two policies into a single multi-car one.

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Next best action subsystems: high-level logical view

3. Capturing Customer Activity: This subsystem gathers information about the customer’s activity, including the outcomes of the Next Best Actions offered by this solution.

1. Analytics Management: Responsible for developing the decision models for the solution.

2. Real-time Decisions: This subsystem contains the execution of the Next Best Action decision loop.

z Systems optimized functions focus on transactional, real-time execution

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Business view - bank: optimized next best action for customer-initiated loan

Customer call: need a new business car loan
Advise: eligible for new car loan up to $35,000 with $1,000 down on vehicle
Eligible to leverage current LOC for car loan with improved overall rate and LOC credit increase. If LOC used for loan, then down payment not required
Offer accepted by customer

• Banking clients want to integrate information across all product lines in order to make **real-time, targeted decisions**
• Why real-time? Bank may risk losing customer business or loyalty for other products
• Need to incorporate high value, predictive advanced analytics as part of transactional systems
• Why do we need all the data to score? Reduce bank’s risk in approving loan

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Architecture view: example real-time analytics for next best action

Existing z/OS systems of record:
- Transactions
- Payments
- Orders
- History

New z/OS-optimized NBA function

IBM Operational Decision Manager

Orchestration

NBA Workflows

DB2 z/OS

Acct Data
Cust Data
Trx Data

SPSS Scoring Adapter or Zementis models

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Wrap-up
What’s next: streamline data preparation, modeling to improve accuracy and responsiveness

z Systems: unique ability to score transactions in real-time without breaking SLAs

z Systems: ability to build richer, more accurate models orders of magnitude faster

Business as Usual: Input data from DB2 z/OS copied to SPSS Modeler, which then performs all data preparation and modeling algorithms

Significant data movement, processing consumption limits modeling options

Transformation Acceleration (new)
- Input data sourced from accelerated tables in DB2 Analytics Accelerator
- All data preparation performed within accelerator using accelerator-only tables

Modeling Acceleration (future)
- Modeling algorithm called and executed in Accelerator on an accelerator-only table

Complete your session evaluations online at www.SHARE.org/Orlando-Eval

Adapt to change faster, increase effectiveness of campaigns, generating more up-sell revenue
Recap: the key elements behind real-time operational decisions

- Predictive modeling, business rules and process flows together enable the most effective decisions
- Integrating analytics with transactions transforms operational systems into Decision Management Systems

Real-time objective: reduce time from seconds to milliseconds – or less!
z Systems: vision, strategy and technology to fuse transactions and analytics to support enterprise decisions

Best of class integrated data life cycle management for: Generating customer insights, fighting fraud and financial crimes, …
Integrating analytics with transactions on z Systems

Business Advantages

• Integrate advanced analytics as part of each and every transaction with negligible impact to transaction SLAs

• Access to most current data for best analytic outcome, reduced false positives

• Actionable insight on every transaction, real-time or batch

• Analytics in the flow of business to stop fraud, increase customer loyalty, increase revenue and reduce risk

IT Advantages

• Avoid costly ETLs for analytics with fewer copies of data to manage, secure, and make highly available

• Reduced network costs through avoiding off-platform calls during transaction interaction

• z Systems governance for integrating new analytic models

• Leverage investments in z Systems data infrastructure, particularly data sharing and DB2 Analytics Accelerator

• Extremely efficient scoring within DB2 or Java minimizes IT consumption

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
Session summary

• Predictive analytics should be integral to any real-time decision architecture
 – Don’t let outdated views of infrastructure cause you to sub-optimize operational business solutions!
 – An architecture that combines rules and predictive analytics can deliver the most effective real-time decisions

• When operational systems are on the mainframe, IBM and Zementis products deliver optimized support for real-time decision management while maintaining operational SLAs
 – Common use cases are countering payment fraud, waste, abuse and financial crimes; payment optimizations; and predictive customer intelligence
 – IBM is now optimizing the model creation phase for the mainframe as well

• The z Systems portfolio enables “right-time” insights throughout the hierarchy of enterprise decision types

Complete your session evaluations online at www.SHARE.org/Orlando-Eval
THANK YOU

Complete your session evaluations online at www.SHARE.org/Orlando-Eval