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Day Time Location Presentation

Wed 11:15 Asia 3 SMF 113 Processor Cache Counter Measurements — Overview,
Update, and Usage

Wed 1:45 Asia 3 WLM - Effective Setup and Usage of WLM Report Classes

Thu 11:15 Asia 3 zProcessor Consumption Analysis (including z13), or What is
Consuming All the CPU?

Scott Chapman

Day Time Location Presentation

Tue 11:15 Asia 3 Memory Management in the TB Age

Tue 3:15 Southern Lessons Learned from implementing an IDAA
Hemisphere 4

Fri 11:15 Asia 3 WLM in One Page




Agenda @

* Review of processor speed
 Hierarchy of data accesses
* Review of processor caches and DAT

» Considerations: uses for more memory and things to watch out
for

* Measurements you might want to track



Processors get faster and smarter
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How do we keep the processor busy? '@

* Disk storage has gotten denser but not significantly faster in
last 10 years
—Average access times in low single-digit ms now common

—But 10 years ago we were pushing access times into low single-digit ms
range as well, just not as consistently



Clock cycles and effective capacity @

* |deally, you'd like to get real work done each clock cycle

 Z Processor speeds are really fast
—~210 — 4.4 Ghz —

—2196 - 5.2Ghz Billions of cycles per second
—7EC12 - 5.5Ghz 1 Clock cycle = fraction of a
— 713 — 5.0 Ghz ] nanosecond

« S0 1ms to wait for an I/O = millions of clock cycles



How long Is a cycle again?

« Just over 2 inches

—Light, in a vacuum
—Electrical signal in a circuit is much slower (40-70% of c¢)
—1 meter in fiber ~ 5 ns

* Need to make a round trip

* Signal paths aren’t as the mosquito flies
— 7.7 Miles of wire in a zEC12 chip, >13 in z13

* Physical distance matters!



Data access hierarchy

N

Closer to CPU Core

» Register

* Memory
— L1 Cache
— L2 Cache

— L3 Cache

— L4 Cache

* Local
« Remote

— Real
 Storage Class Memory
* Disk

— Cache

— SSD

— Spinning
* Network

The farther the data is away
from the processor, the more
clock cycles will be spent
accessing it.

Optimal performance &
capacity utilization =
keeping data as close to
processor as possible!



The only good I/Ois no I/O @

* To keep the processor fed, data needs to be close and ready

—Disk controller cache can help
—SSDs can help read response times for cache misses
—But the disk subsystem is still a long ways away

* Best way to improve 1/O performance is to not do the 1/O

—Keep the data in memory
—Finite limits on memory of course



Why not 4 TB of memory for every LPAR? A’S




Memory costs @

 Memory on z has historically been very expensive
compared to other platforms

« Partly due to the robust nature of z memory

—RAIM greatly enhances error detection and avoidance

— Can sustain multiple component failures concurrently
* Bit, lane, DRAM, DIMM, socket, even complete channels

—Scott’s Mainframe Motto: Quick answers are nice, correct answers
are required

—Not an esoteric point: 2009 Google study: annual incidence of
uncorrectable memory errors: 1.3%/machine, 0.22%/DIMM

* But what's the biggest part of your mainframe budget?

—Almost always: software, usually by a wide margin
—(Not including staff costs, which can vary by geography)



Memory prices coming down, sizes going up é

€

Approx
Max
Memory/ Max Memory
Machine CEC / Book

2005 z9EC 0.5TB 128 GB
2008 z10EC 15TB 384 GB
2010 72196 3TB 768 GB
2012 ZEC12 3TB 768 GB
2015 z13 10TB 2560 GB




What can we do with more memory? @

* Process more data
— More data generated today, richer data types
— Support more dev/test environments
* Performance — I/O avoidance
— Meet business goals or exploit new business opportunities
— Offset other constraints

« CPU reduction — generally, it can be fewer cycles spent to get
data from memory than disk

— Also, avoids things being pushed out of cache while waiting on I/O
—Less CPU generally means less software cost

« Make ourselves more efficient — stop micro-managing storage
— Staff costs the other big piece of the mainframe budget



Hypothetical Improvements

« Improved response time may
give WLM more flexibility in
managing the work

« Or maybe we can constrain the
R4H

« Velocity goals may need
adjustment




Storage Class Memory (SCM) @

* Nowhere near as fast as main memory, but much faster than
going to disk
—Even SSD disk
—Physically closer (inside the CEC)
—Avoids going through FICON

* Cheaper than memory, more expensive than disk

- Large relative to current common memory sizes, small relative
to disk

—1.4TB increments (up to 4 increments/CEC)
* Initial uses:
—Paging, including pageable 1 MB pages
* |deal for large memory configurations
— CF List structure storage (MQ shared queues)



Exercising SCM (zeC12 4xx)

NUMBER OF SAMPLES =

PAGE
SPACE
TYPE

PLPA

\COMMON
ILOCAL
ILOCAL
ILOCAL
ILOCAL
ISCM N/A

VOLUME DEV
SERIAL NUM

N/A

* Note that "pages” really means 4K

884

DEVICE
TYPE
33903
33903
33903
33903
33903
33903
N/A

SLOTS
ALLOC MIN
179 179
71999 25227
599399 0
599399 0
599399 0
599399 0
8389K 425311

equivalent pages
« My calculations:

—Average paging rate of 14311/sec
—Average 1I/O rate of about 1056/sec

PAGE DATA SET AND SCM USAGE

-—== SLOTS USED ---
MAX AVG

179 179

25227 25227

0 0

0 0

0 0

0 0

1489k 1317K

IN
USE
0.00
0.00
0.00
0.00
0.00
0.00
90.61

PAGE V\
TRANS NUMBER PAGES |I™
TIME IO REQ XFER'DJO DATA SET NAME
0 000 0 PAGE.PLPAO
0. 000 1 1 PAGE . COMMONO
0.'000 0 oly PAGE.LOCALO
0.000 0 oly . PAGE. LOCAL1
0.000 0 oly \_ PAGE.LOCAL2
0.0D0 ofly . PAGE.LOCAL3
0. OQO 950433 12.88M N/A AN

PAGE

TRANS NUMBER PAGES

TIME IO REQ XFER'D

0. 000 0 0

0. 000 1

0. 000 0

0. 000 0

| 0.000 0
0.000 0
{ 0.000 95043 12.88M

—Page transfer time was about 0.000063 (63 microseconds)
* Much slower than memory, much faster than disk



Remember... @

« Paging is not free—even with SCM!

* Avoid paging for production address spaces
—Even though DB2 supports pageable large pages, you're probably better
off page-fixing them
* But some SCM paging for dev/test regions might be acceptable
—Depending on usage patterns
—Allow idle environments to page out / in as they are needed
—Maybe allow more dev/test regions without more real memory




Going deeper in the hierarchy @

N

Closer to CPU Core

* Register

* Memory
— L1 Cache
— L2 Cache

— L3 Cache

— L4 Cache

e Local
« Remote

— Real
 Storage Class Memory
* Disk

— Cache

— SSD

— Spinning
* Network

The farther the data is away
from the processor, the more
clock cycles will be spent
accessing it.

Optimal performance &
capacity utilization =
keeping data as close to
processor as possible!



z13 Processor Chip Schematic

N N NN

N N NN

Approximation
based on IBM docs
Cache sizes scaled
relative to each
other

Physical location of
L1 cache unclear



z13 Storage Control Chip Schematic éPS

* Approximation
based on IBM docs

« NIC directory
embedded in the 4
L4 areas

* L4 Controller
schematic simplified

L4 Controller




Memory card
Memory card
Memory card
Memory card
Memory card

Not
to
Scal

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Data locality — L4 / Memory
I



Memory address translation

Dynamic Address Translation & Prefixing: Virtual -> Real -> Absolute

Addres Address Address
S space space space

Address Address Addres @ Address
space space S space | Space




Dynamic Address Translation ég

* DAT performed using multiple tables that point to different
ranges of storage

* DAT is not free!

* Result of DAT cached in Translation Look-aside Buffers (TLB)
* TLBs are in L1 cache and managed by the hardware

* Relatively small

 Flushed when DAT table changes

*« 1MB & 2GB pages make TLBs more effective



z/OS 64-bit Address Translation

Address Space
Control Element

A
ST Oriain
ST Oriain

ST Oriain
ST Oriain
ST Oriain
ST Origin

PT Oriain
PT Oriain
PT Oriain
PT Oriain

Paoe address

Region E$ 8?0@2 Paae address
- igi
Third Table Paae address

Paaoe address
Segment Paae address

Table Page address
Page Table




Large Page Address Translation

Address Space
Control Element

A
ST Oriain
ST Oriain
ST Oriain
ST Oriain
ST Oriain
ST Origin

Region
Third Table

Paae address
Paae address
Paae address
Paae address
Paae address
Page address

Segment
Table




Giant Page Address Translation é

A 4
Paae address
Paae address
Paoe address
Paae address
Paoe address
Page address

Region
Third Table

Address Space
Control Element



TLB Misses attributed to PTE misses é
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Cache utilization & performance @

* Memory is far away from the processor core and relatively slow

* Effective use of processor cache is important to keeping the
processor “fed”

* Cache effectiveness measurements are in the Hardware
Instrumentation Services SMF 113 records

—Requires z/OS 1.8 +PTFs & z10 GA2

* Enable HIS and record the 113 records
—Required for effective capacity planning on upgrade



SMF 113 Cache Measurements @

* LIMP — Level 1 Misses per 100 Instructions

* CPI — Cycles Per Instruction

—Estimated Finite CPI — effectively: penalty cycles per instruction due to the
fact that caches are finite

— Estimated Instruction Complexity CPIl — CPI as if there were no penalty
cycles (completely effective L1 cache)

* RNI — Relative Nest Intensity
—Combined calculation for effect of overheads to get to cache and memory
—Used for capacity planning on upgrade

* TLB CPU Miss Percent of CPU — How much CPU time goes to
resolving DAT during TLB misses



SMF113 CPI
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EPS

L1MP by CPU

SMF 113 - Verbose - LIMP for Each CPU for System Over Time

Average of LIMP
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Zoomed in on just CPs [EPS
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Zoomed in on zIlIPs EPS

SMF 113 - Verbose - LIMP for Each CPU for System Over Time
Average of LIMP
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RNI — Evaluate over time /EPS\

SMF 113 - Verbose - RNI for Each CPU for System Over Time
Average of RNI
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Combine L1MP and RNI for workload “hint” é

SMF 113 - L1MP (L1 Miss Per 100 Instructions) Average for Shift for Each System

*********************************************************** Workload
i L1IMP RNI Hint
<3% >=0.75 AVERAGE

e <0.75 LOW
3%t0 6% | >1.0 HIGH
06t01.0 |AVERAGE
SMF 113 - RNI (Relative Nest Intensity) Average for Shift for Each System (Where H is Hour <06 LOW
o >6% >=0.75 HIGH
- <0.75 AVERAGE

Average of RNI




How can you improve cache effectiveness?

« Enable HiperDispatch
» Make good use of large pages
« Upgrade to newer machine

Cache sizes (L4/book or drawer)

Per CP Per Chip| NIC dir | Shared
Year |Machine| L1 Data | L1Inst. | L2 Data | L2 Inst. L3 L4
2005 z9 EC | 256KB | 256KB 40MB n/a n/a
2008 | z10 EC | 128KB | 64KB 3MB n/a 48MB
2010 z196 128KB | 64KB 1.5MB 24MB 192MB
2012 ZEC12 96K 64K 1MB 1MB 48MB 384MB
2015 z13 128K 96K 2MB 2MB 64MB | 224MB | 480MB

* Consider more/slower CPUs instead of fewer/faster
—More CPUs = More L1/L2/TLB



Considerations
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Do you have reserved memory? @

* “Reserved” = “unused” = not allocated to any LPAR

» Some sites seem to have given all the memory to LPARS
—This makes responding to new requirements difficult

« Some sites hold back some memory

—Define some amount of reserved memory to each LPAR

—Total reserved across all LPARs can be > actual reserved
« Just means you can’t bring it all LPAR’s reserve elements online

« Make sure reserved by LPAR < actual reserved, or won'’t be able to bring that
LPAR’s reserve element online

— Consider specifying RSU=0OFFLINE to make it reconfigurable
« Then you can take all or part of it offline dynamically
« May limit use of the area, e.g. not preferred for long-term pages
» Scott’'s recommendation: don’'t immediately give away all your
memaory



How active will that new memory be? @

* How Is your total cache size going to increase relative to
your memory size?

* This may be a non-issue depending on how you plan on
using that new memory

 But it may be something to consider: consider
more/slower instead of fewer/faster processors
—More CPUs = more L1/L2 cache

—Be sure to investigate single-CP workloads running in
unconstrained times before doing this

* If they’re already suffering CPU delay, more/slower CPUs may be fine



* If you add a whole bunch of memory as 4K pages you may see
overhead due to TLB misses go up

—Again, workload-dependent of course
« Consider using 1M pages wherever possible

—Probably should be the default wherever you can

—Non-authorized allocation nonpageable large pages must be permitted to
IARRSM.LRGPAGES

* Plan your LFA size & check that you got what you thought you
were getting
—DISPLAY VIRTSTOR,LFAREA

* If you have giant amounts of storage, consider giant pages

TLB miss overhead




Estimated impact of TLB Misses é

FArerage oftbl_cpu_miss_pot of cpu
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DB?2 Buffer Pools @

* Going “Biggie Size” on DB2 buffer pools probably a good use of
memory

« Start with BPs and/or objects that do the most I/O
—BPs that don’t do a lot of I/O won’t give you a lot of benefit

* Don’t forget about the group buffer pools

—Catterall’'s ROT is probably still good: sum(local BPs) * 0.4

—May get benefit from super-sizing the group BPs without increasing local
BPs, but I'd prefer to make locals bigger

« Keep the data as close to the CPU as possible
* Consider PGSTEAL(NONE) in DB2 10+ for pinning objects in a
BP

—DB2 will load the BP on first access and then assume no I/O needed for
subsequent access

« Use Large (v10+) or Giant (vl11+) pages



Other DB?2 areas @

* Prepared statement cache

* RID Pool

—DB2 10 default is 400 MB, will use workfile database if not enough space
In RID Pool

* Sort pool

— Careful: this is per concurrent sort
—V10 changed default to 10MB, max 128MB

» Utilities: consider giving more memory for improved
performance



Sort @

« Some shops restrict sort’'s use of memory, either all the time, or
perhaps at certain times of the day
* For example: restrict sort’'s use of memory during the online day

—This thinking made a lot of sense when memory was extremely precious

—Today, CPU cycles may be more precious than memory because
Increased CPU usage = increased software cost

* It may be time to rethink your sort memory limits
—But don’t crazy — Sort can run away with a lot of memory really quickly



Eliminate IEFUSI [imits?? @

* IEFUSI (SMF Step Initiation Exit) is often used to limit the
amount of memory a job (or STC) step can acquire

—The idea being to prevent something from running away with lots of
storage and causing severe performance issues

» Scott’s opinion: IEFUSI is still a good idea, but rethink limits

—It used to be that most application jobs wouldn’t need more than 10s of
MBs

—Today Java batch jobs could easily use a GB or more
* Don't forget to limit 64-bit storage



What about more Java®? @

 Java iIs definitely viable on the mainframe

« Java programmers may be more generally available than
COBOL

—JZOS API allows easy access to z/OS constructs
* Running on the specialty engines can save money

* One of the concerns in the past has been that Java will almost
certainly require more memory to run the same function

—If we have more memory, this is less of a concern, but...



Avoid unnecessarily large JVMs @

* If you give a long-running JVM an arbitrarily large heap, it will
use it

—Garbage collection may cause paging spikes if heap has been paged out

* Avoid micromanagement, but every application doesn’t need
GBs of heap space by default

* Avoid min heap = max heap until you've determined actual
heap requirements
—Smaller area of activity = better cache locality of reference

» Unfortunately, sizing requires testing

—But probably not required for many batch programs: give them a max of
128-256MB and many will likely be fine

—Choice of JDBC driver and settings may influence heap requirements
—Having IEFUSI enforce some limit is probably a good idea



Just a reminder...

Measurements to
monitor
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1 MB pages used / available

Large 1MB Fixed Frame Averages
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Paging by workload
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TLB overhead
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Summary @

* Memory is getting cheaper, and is cheaper than CPU, so
leverage memory to save CPU

« SCM can reduce cost of paging
—Some paging may be acceptable for certain workloads
 Consider adjusting old memory limits

 Many memory statistics available, keep an eye on a few key
ones as you start using more memory

—And hopefully IBM will provide us with some more



