SHARE 9¢ o
in Orlando 2015 LI L]

#17321

Memory Management in the TB Age

Scott Chapman
Enterprise Performance Strategies, Inc.

scott.chapman@epstrategies.com

#SHAREorg
OO@@ that provides education, professional networkmg and mdustry influence.

SHARE is an independent volunteer-run information technology association

Copyright (¢) 2015 by SHARE Inc. € @ @ © ms

Contact, Copyright, and Trademark Notices @

Questions?

Send email to Scott at scott.chapman@EPStrategies.com, or visit our website at http://www.epstrategies.com or
http://www.pivotor.com.

Copyright Notice:

© Enterprise Performance Strategies, Inc. All rights reserved. No part of this material may be reproduced,
distributed, stored in a retrieval system, transmitted, displayed, published or broadcast in any form or by any
means, electronic, mechanical, photocopy, recording, or otherwise, without the prior written permission of
Enterprise Performance Strategies. To obtain written permission please contact Enterprise Performance
Strategies, Inc. Contact information can be obtained by visiting http://www.epstrategies.com.

Trademarks:

Enterprise Performance Strategies, Inc. presentation materials contain trademarks and registered trademarks
of several companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check®, Reductions®,
Pivotor®

The following are trademarks of the International Business Machines Corporation in the United States and/or
other countries: IBM®, z/OS®, zSeries® WebSphere®, CICS®, DB2®, S390®, WebSphere Application
Server®, and many others.

Other trademarks and registered trademarks may exist in this presentation

Peter Enrico : www.epstrategies.com © Enterprise
Performance

mailto:Peter.Enrico@EPStrategies.com
http://www.epstrategies.com/
http://www.pivotor.com/
http://www.epstrategies.com/

EPS Sessions at Share

Peter Enrico

Day Time Location Presentation

Wed 11:15 Asia 3 SMF 113 Processor Cache Counter Measurements — Overview,
Update, and Usage

Wed 1:45 Asia 3 WLM - Effective Setup and Usage of WLM Report Classes

Thu 11:15 Asia 3 zProcessor Consumption Analysis (including z13), or What is
Consuming All the CPU?

Scott Chapman

Day Time Location Presentation

Tue 11:15 Asia 3 Memory Management in the TB Age

Tue 3:15 Southern Lessons Learned from implementing an IDAA
Hemisphere 4

Fri 11:15 Asia 3 WLM in One Page

Agenda @

* Review of processor speed
 Hierarchy of data accesses
* Review of processor caches and DAT

» Considerations: uses for more memory and things to watch out
for

* Measurements you might want to track

Processors get faster and smarter

2000
1800
1600
1400
1200
1000
800
600
400
200

79 to z13 Processor Capacity Trends

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

il Max Uni PCI

= Max 1 book PCI

40000
36000
32000
28000
24000
20000
16000
12000
8000

4000

How do we keep the processor busy? '@

* Disk storage has gotten denser but not significantly faster in
last 10 years
—Average access times in low single-digit ms now common

—But 10 years ago we were pushing access times into low single-digit ms
range as well, just not as consistently

Clock cycles and effective capacity @

* |deally, you'd like to get real work done each clock cycle

 Z Processor speeds are really fast
—~210 — 4.4 Ghz —

—2196 - 5.2Ghz Billions of cycles per second
—7EC12 - 5.5Ghz 1 Clock cycle = fraction of a
— 713 — 5.0 Ghz] nanosecond

« S0 1ms to wait for an I/O = millions of clock cycles

How long Is a cycle again?

« Just over 2 inches

—Light, in a vacuum
—Electrical signal in a circuit is much slower (40-70% of c¢)
—1 meter in fiber ~ 5 ns

* Need to make a round trip

* Signal paths aren’t as the mosquito flies
— 7.7 Miles of wire in a zEC12 chip, >13 in z13

* Physical distance matters!

Data access hierarchy

N

Closer to CPU Core

» Register

* Memory
— L1 Cache
— L2 Cache

— L3 Cache

— L4 Cache

* Local
« Remote

— Real
 Storage Class Memory
* Disk

— Cache

— SSD

— Spinning
* Network

The farther the data is away
from the processor, the more
clock cycles will be spent
accessing it.

Optimal performance &
capacity utilization =
keeping data as close to
processor as possible!

The only good I/Ois no I/O @

* To keep the processor fed, data needs to be close and ready

—Disk controller cache can help
—SSDs can help read response times for cache misses
—But the disk subsystem is still a long ways away

* Best way to improve 1/O performance is to not do the 1/O

—Keep the data in memory
—Finite limits on memory of course

Why not 4 TB of memory for every LPAR? A’S

Memory costs @

 Memory on z has historically been very expensive
compared to other platforms

« Partly due to the robust nature of z memory

—RAIM greatly enhances error detection and avoidance

— Can sustain multiple component failures concurrently
* Bit, lane, DRAM, DIMM, socket, even complete channels

—Scott’s Mainframe Motto: Quick answers are nice, correct answers
are required

—Not an esoteric point: 2009 Google study: annual incidence of
uncorrectable memory errors: 1.3%/machine, 0.22%/DIMM

* But what's the biggest part of your mainframe budget?

—Almost always: software, usually by a wide margin
—(Not including staff costs, which can vary by geography)

Memory prices coming down, sizes going up é

€

Approx
Max
Memory/ Max Memory
Machine CEC / Book

2005 z9EC 0.5TB 128 GB
2008 z10EC 15TB 384 GB
2010 72196 3TB 768 GB
2012 ZEC12 3TB 768 GB
2015 z13 10TB 2560 GB

What can we do with more memory? @

* Process more data
— More data generated today, richer data types
— Support more dev/test environments
* Performance — I/O avoidance
— Meet business goals or exploit new business opportunities
— Offset other constraints

« CPU reduction — generally, it can be fewer cycles spent to get
data from memory than disk

— Also, avoids things being pushed out of cache while waiting on I/O
—Less CPU generally means less software cost

« Make ourselves more efficient — stop micro-managing storage
— Staff costs the other big piece of the mainframe budget

Hypothetical Improvements

« Improved response time may
give WLM more flexibility in
managing the work

« Or maybe we can constrain the
R4H

« Velocity goals may need
adjustment

Storage Class Memory (SCM) @

* Nowhere near as fast as main memory, but much faster than
going to disk
—Even SSD disk
—Physically closer (inside the CEC)
—Avoids going through FICON

* Cheaper than memory, more expensive than disk

- Large relative to current common memory sizes, small relative
to disk

—1.4TB increments (up to 4 increments/CEC)
* Initial uses:
—Paging, including pageable 1 MB pages
* |deal for large memory configurations
— CF List structure storage (MQ shared queues)

Exercising SCM (zeC12 4xx)

NUMBER OF SAMPLES =

PAGE
SPACE
TYPE

PLPA

\COMMON
ILOCAL
ILOCAL
ILOCAL
ILOCAL
ISCM N/A

VOLUME DEV
SERIAL NUM

N/A

* Note that "pages” really means 4K

884

DEVICE
TYPE
33903
33903
33903
33903
33903
33903
N/A

SLOTS
ALLOC MIN
179 179
71999 25227
599399 0
599399 0
599399 0
599399 0
8389K 425311

equivalent pages
« My calculations:

—Average paging rate of 14311/sec
—Average 1I/O rate of about 1056/sec

PAGE DATA SET AND SCM USAGE

-—== SLOTS USED ---
MAX AVG

179 179

25227 25227

0 0

0 0

0 0

0 0

1489k 1317K

IN
USE
0.00
0.00
0.00
0.00
0.00
0.00
90.61

PAGE V\
TRANS NUMBER PAGES |I™
TIME IO REQ XFER'DJO DATA SET NAME
0 000 0 PAGE.PLPAO
0. 000 1 1 PAGE . COMMONO
0.'000 0 oly PAGE.LOCALO
0.000 0 oly . PAGE. LOCAL1
0.000 0 oly _ PAGE.LOCAL2
0.0D0 ofly . PAGE.LOCAL3
0. OQO 950433 12.88M N/A AN

PAGE

TRANS NUMBER PAGES

TIME IO REQ XFER'D

0. 000 0 0

0. 000 1

0. 000 0

0. 000 0

| 0.000 0
0.000 0
{ 0.000 95043 12.88M

—Page transfer time was about 0.000063 (63 microseconds)
* Much slower than memory, much faster than disk

Remember... @

« Paging is not free—even with SCM!

* Avoid paging for production address spaces
—Even though DB2 supports pageable large pages, you're probably better
off page-fixing them
* But some SCM paging for dev/test regions might be acceptable
—Depending on usage patterns
—Allow idle environments to page out / in as they are needed
—Maybe allow more dev/test regions without more real memory

Going deeper in the hierarchy @

N

Closer to CPU Core

* Register

* Memory
— L1 Cache
— L2 Cache

— L3 Cache

— L4 Cache

e Local
« Remote

— Real
 Storage Class Memory
* Disk

— Cache

— SSD

— Spinning
* Network

The farther the data is away
from the processor, the more
clock cycles will be spent
accessing it.

Optimal performance &
capacity utilization =
keeping data as close to
processor as possible!

z13 Processor Chip Schematic

N N NN

N N NN

Approximation
based on IBM docs
Cache sizes scaled
relative to each
other

Physical location of
L1 cache unclear

z13 Storage Control Chip Schematic éPS

* Approximation
based on IBM docs

« NIC directory
embedded in the 4
L4 areas

* L4 Controller
schematic simplified

L4 Controller

Memory card
Memory card
Memory card
Memory card
Memory card

Not
to
Scal

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Memory card
Memory card
Memory card
Memory card
Memory card

Data locality — L4 / Memory
I

Memory address translation

Dynamic Address Translation & Prefixing: Virtual -> Real -> Absolute

Addres Address Address
S space space space

Address Address Addres @ Address
space space S space | Space

Dynamic Address Translation ég

* DAT performed using multiple tables that point to different
ranges of storage

* DAT is not free!

* Result of DAT cached in Translation Look-aside Buffers (TLB)
* TLBs are in L1 cache and managed by the hardware

* Relatively small

 Flushed when DAT table changes

*« 1MB & 2GB pages make TLBs more effective

z/OS 64-bit Address Translation

Address Space
Control Element

A
ST Oriain
ST Oriain

ST Oriain
ST Oriain
ST Oriain
ST Origin

PT Oriain
PT Oriain
PT Oriain
PT Oriain

Paoe address

Region E$ 8?0@2 Paae address
- igi
Third Table Paae address

Paaoe address
Segment Paae address

Table Page address
Page Table

Large Page Address Translation

Address Space
Control Element

A
ST Oriain
ST Oriain
ST Oriain
ST Oriain
ST Oriain
ST Origin

Region
Third Table

Paae address
Paae address
Paae address
Paae address
Paae address
Page address

Segment
Table

Giant Page Address Translation é

A 4
Paae address
Paae address
Paoe address
Paae address
Paoe address
Page address

Region
Third Table

Address Space
Control Element

TLB Misses attributed to PTE misses é

SMF 113 - Page Table Entry Misses as Pct of TLB Misses Average for Each System Over

Time on CEC
" n .
[\ m RN » "l
v i : u & | - A " ' m = " - - " " n .' L] ... n f "'.-' . -..
1/ ™ / | | .'I iy ! / 'II] !] N \ II | { ", 1 I'I ,I o
55 e L "l I' " W \ 'i'll'l I| -! F n .F o |! " Ny . \ L Ra®
S0 A

B
L]

b of b1_misses
—
3_____

—

E———
—— .,
LA
<

:;:.

=

e

'{k»;.
—
S :H
&

ha
n
-
i
—il-
el
-

Average of pie_pct

o
! —
L E—

—
=]

5.

u 1

2015054, <0159 2015 2015 2o 20y 201 209 20 20y 209
0 5 5.5 D5 S5 5055 5054 5054 S04 S04 505
00:14.99 g 02:2g mﬁ 04.-44_-005 N.—sg_-,ms 0‘9.14_-.,;,,05 1:20.09 S 344,09 - ls.-sir.-ms 1 E:H.-ms 2‘0:29.-005 22044 WM

Date, Time

Yaxis-1

- - = Severs Marker

Cache utilization & performance @

* Memory is far away from the processor core and relatively slow

* Effective use of processor cache is important to keeping the
processor “fed”

* Cache effectiveness measurements are in the Hardware
Instrumentation Services SMF 113 records

—Requires z/OS 1.8 +PTFs & z10 GA2

* Enable HIS and record the 113 records
—Required for effective capacity planning on upgrade

SMF 113 Cache Measurements @

* LIMP — Level 1 Misses per 100 Instructions

* CPI — Cycles Per Instruction

—Estimated Finite CPI — effectively: penalty cycles per instruction due to the
fact that caches are finite

— Estimated Instruction Complexity CPIl — CPI as if there were no penalty
cycles (completely effective L1 cache)

* RNI — Relative Nest Intensity
—Combined calculation for effect of overheads to get to cache and memory
—Used for capacity planning on upgrade

* TLB CPU Miss Percent of CPU — How much CPU time goes to
resolving DAT during TLB misses

SMF113 CPI

Average of Vanous Data Felds

11.0 4
10.5 1

SMF 113 - CPI and Estimated Finite CPI - For System Over Time

T D o R R R I HI HI HI I I i

9.5
9.0
B.5 |
8.0
7.5 |
7.0
6.5 |
6.0
5.5 |
5.0
4.5
40 4"
as5{ §
3.0
25

20 4%

0.5
0.0k

ARTa - .
V= -.'\.__ 5 "-.""-'"'"."'u'...-i .“"-u.

o

WSty

] u e
:: HW?'HN ':JQ}'W."’..'de"“"“. ﬂj&h%"‘-

2015045, 2015045, 2015045, 2015045, 2015045, 2015045, 2015045, 2015045, 2015045, 2015045, 2015045,

00:26.09

uE.‘ﬁ 00 W.ﬁﬂ;m

07 14 00

09:29,0¢

144 00 ! 3.‘59:{“

Date, Time

!6.‘!4_-0,,:,,

18 .'EQ_-W 20:44 06 285 00

- CP|

Yaxis-1

- Est_F_CPI|

= Severe Marker

EPS

L1MP by CPU

SMF 113 - Verbose - LIMP for Each CPU for System Over Time

Average of LIMP

11-zIIP-

2015-04-23 Z20153-04-23 2015-04-23 2015-04-23 Z2015-04-23 Z20153-04-23 Z2015-04-23 Z2015-04-23 Z2015-04-23 Z2015-04-23 20153-04-23 Z2015-04-23 Z2013-04-23 2013-04-23 Z20153-04-23 2015-04-23

00:29:00

03:29:00 04:55:00 06:29:00 07:59:00 09:29:00 10:59:00 12:29:00 13:59:00 15:29:00 16:59:00 18:29:00 15:59:00 21:29:00 22:59:00

01:59:00

Zoomed in on just CPs [EPS

))
0-CP-
* * @ 1-CP-
* * . $ 2-CP-
* 8 3-CP-
* & & ..
. . ® o s ® . 4-cp-
& - * ®_ @ v “
. L9 o * & 4 * . & oo 5-CP-
'y * : b4 e * o
* . . so? s & ® e * 6-CP-
4 # * . $ * . ® ® o *e . 7-CP-
® e : oe *® ' - e * *2 g *
‘e ‘. . @ . . o 9 *
4 . o ., & L * *®
8 ¢ oge . o ©® . o * P .4
24 - e Go0, & - . o ¢ %iee v 08, o, Te
» * & & " e, 8 & T v
jie *ge.0 ot o, . £, R - ¢ s o ® .
‘ " ; $ ® . N ’ - ’ ¢
3 % 83 o s e e o * L 4 . . o . o ¢ $ ¢ 0.;.
b4 : . ’ . . @ & * ®
@ . * Py - $. ‘
3 IR T TR A : — A 1
‘ . . FY * LY & & L L4 *
? o * : * o o en v . . L S ¢ *
- - . L .
. o* .03_ * * 0. L . e * oo
* o 7 $ ¢ L& . *e L +Ve0 o ¢ :
. SR IR 144 * o0 * gyee ¢ *3 " . e $
‘- . 0 ee" o, LE D * 4 ® sape ‘e O
t S Yo : .3 e O 5. ®
. v *," oo @ s & L . al i *6 : ¢ *
$. . v 5 - .. &
v @ B .
& @ & P . 3 ® #
2 * * . . $ 3 s * ; e PN s 9 . . o @ . o
. $e8,, ¢ $ * . e ' ® ”
$ *. $: # # tos :0 4 *
A -~ Y & & o “ *
e . v + 95 * &
o s gog 1T ¢ ¢
' 0§ * L4 : 3¢ R ®. :
8 ® * *
2015-04-23 2015-04-23 Z013-04-23 2015-04-23 2015-04-22 Z013-04-23 2015-04-23 2015-04-22 Z013-04-23 Z2015-04-23 2015-04-22 Z013-04-23 2015-04-23 2015-04-23 Z013-04-23 Z20135-04-23
00:259:00 01:559:00 03:25:00 04:59:00 06:29:00 07:59:00 09:259:00 10:59:00 12:29:00 13:59:00 15:29:00 16:58:00 18:28:00 19:58:00 21:25:00 22:539:00

SMF 113 - Verbose - LIMP for Each CPU for System Over Time
Average of LIMP

Zoomed in on zIlIPs EPS

SMF 113 - Verbose - LIMP for Each CPU for System Over Time
Average of LIMP

*e

H
* e

L
L

L]

-t

2015-04-23 2015-04-23 Z20153-04-23 Z2015-04-23 Z20153-04-23 2015-04-23 Z20153-04-23 Z2015-04-23 2015-04-23 2015-04-23 20153-04-23 Z2015-04-23 2015-04-23 2015-04-23 2015-04-23 Z015-04-23
00:29:00 01:59:00 03:29:00 04:55:00 06:29:00 07:59:00 09:29:00 10:59:00 12:29:00 13:59:00 15:29:00 16:59:00 18:29:00 15:59:00 21:29:00 22:59:00

RNI — Evaluate over time /EPS\

SMF 113 - Verbose - RNI for Each CPU for System Over Time
Average of RNI

1.4
1.2 5
-]
* 5
.
»o .
¥ . ‘e ¥ ¢
. .
: N ®
3 . * @ " *®
b 4 . . ® . °®.
» : " ; * » ©
. & > & t. . ‘ ‘
0.8 L :000 3¢ $: x ..
s . ¢ o . .
. - “° ™ ¢ g . * ‘i'
4 b 4 L] . ®o » p > ¢ N o ¥ P
o 5 *0 s e e ie ete fe 6% . s . . s 2
: B L5 IR TR Mt SR L SR E R | 1ee 20,
. ., :6 '.. ¢ * o4 ®4 ’; bob snoe ®° . s PEY A 6‘0 ’ ®
. » " v @ 8 L P o 220 .o, . I 1 ¢
06 :"°0 o8 ot g '..3! ‘V.’ .*"0."30 o:’ ; .v:*@o 9"‘? - ek .-0.=?A..' * ;.0]
To sgotest * ¢ TR ARSI 1 *:%,¢ . 038" 80 .0 8¢ "o
N oo v .- * 2 @ * @ . ®. % t . ‘. & * v PR
8 'in Geo. s $° ® v 0?. J . 2e00 o Ree Leed <38 4
20285 o3% o °% ; $ & o3eg, ¢ ¢ 234 o o 78
i‘.. % 2 M $ ® s . - s ¢ o o’ : 2 ; o : *, 08
- * L] . _:" Y
& ® N . ® ® e ‘C.O! ¢ ‘ .’.
0.4 .8 ¢ & . * f
$ 3‘ .
¢ 4

2015-04-23 Z2015-04-23 2015-04-23 Z2015-04-23 2015-04-23 20153-04-23 2015-04-23 Z2015-04-23 2015-04-23 20153-04-23 2015-04-23 Z2013-04-23 2015-04-23 Z2015-04-23 Z2015-04-23 2015-04-23
00:29:00 01:539:00 03:29:00 04:53:00 06:29:00 07:59:00 09:29:00 10:59:00 12:29:00 13:59:00 15:29:00 16:39:00 18:29:00 15:59:00 21:29:00 22:59:00

Combine L1MP and RNI for workload “hint” é

SMF 113 - L1MP (L1 Miss Per 100 Instructions) Average for Shift for Each System

*** Workload
i L1IMP RNI Hint
<3% >=0.75 AVERAGE

e <0.75 LOW
3%t0 6% | >1.0 HIGH
06t01.0 |AVERAGE
SMF 113 - RNI (Relative Nest Intensity) Average for Shift for Each System (Where H is Hour <06 LOW
o >6% >=0.75 HIGH
- <0.75 AVERAGE

Average of RNI

How can you improve cache effectiveness?

« Enable HiperDispatch
» Make good use of large pages
« Upgrade to newer machine

Cache sizes (L4/book or drawer)

Per CP Per Chip| NIC dir | Shared
Year |Machine| L1 Data | L1Inst. | L2 Data | L2 Inst. L3 L4
2005 z9 EC | 256KB | 256KB 40MB n/a n/a
2008 | z10 EC | 128KB | 64KB 3MB n/a 48MB
2010 z196 128KB | 64KB 1.5MB 24MB 192MB
2012 ZEC12 96K 64K 1MB 1MB 48MB 384MB
2015 z13 128K 96K 2MB 2MB 64MB | 224MB | 480MB

* Consider more/slower CPUs instead of fewer/faster
—More CPUs = More L1/L2/TLB

Considerations

80,000
70,000
50,000
50,000
40,000
30,000

Are you using all your memory?
Central Storage Area Averages in Megabytes

210,000

200,000 I | |
190,000 I | |
180,000 I | |
170,000 I | |
160,000 I | |
150,000 I | |
140,000 I | |
130,000 I | |
120,000 | |

10,000

110,000
0] i i]]] i i i

100,000
90,000 -
8092, Wie0g2y M09y Viboaz, Vhogg, Visogy, “lhoeg, WVibogyy Viboey, D1004a; Wiooer
D000, P21504 53000 50n 0004 195,04 R T Bogy Ymop T2E00g

Average ofWarious Data Fields

Y axis-1
W Fixed_MB_Mucleus_Avg W CS_MEB_SOQA_Avg © CS5_MB_LPA_Avg CS5_MB_CSA Avg W CS_MEB_LSQA Avg C5_MEBE_HY_Shared_Avg
C5_ME_HY_Common_Avg W CS5_MEB_RegionsSWA_Avg B C5_MBE_OK_Threshold_Avg W C3_ME_Avail_less_OKThresh_Avg

Do you have reserved memory? @

* “Reserved” = “unused” = not allocated to any LPAR

» Some sites seem to have given all the memory to LPARS
—This makes responding to new requirements difficult

« Some sites hold back some memory

—Define some amount of reserved memory to each LPAR

—Total reserved across all LPARs can be > actual reserved
« Just means you can’t bring it all LPAR’s reserve elements online

« Make sure reserved by LPAR < actual reserved, or won'’t be able to bring that
LPAR’s reserve element online

— Consider specifying RSU=0OFFLINE to make it reconfigurable
« Then you can take all or part of it offline dynamically
« May limit use of the area, e.g. not preferred for long-term pages
» Scott’'s recommendation: don’'t immediately give away all your
memaory

How active will that new memory be? @

* How Is your total cache size going to increase relative to
your memory size?

* This may be a non-issue depending on how you plan on
using that new memory

 But it may be something to consider: consider
more/slower instead of fewer/faster processors
—More CPUs = more L1/L2 cache

—Be sure to investigate single-CP workloads running in
unconstrained times before doing this

* If they’re already suffering CPU delay, more/slower CPUs may be fine

* If you add a whole bunch of memory as 4K pages you may see
overhead due to TLB misses go up

—Again, workload-dependent of course
« Consider using 1M pages wherever possible

—Probably should be the default wherever you can

—Non-authorized allocation nonpageable large pages must be permitted to
IARRSM.LRGPAGES

* Plan your LFA size & check that you got what you thought you
were getting
—DISPLAY VIRTSTOR,LFAREA

* If you have giant amounts of storage, consider giant pages

TLB miss overhead

Estimated impact of TLB Misses é

FArerage oftbl_cpu_miss_pot of cpu

11.0 ¢
1059

10.0

9.5
9.01
8.5
8.0

75

7.0 |
85| " | |] |

sof /W I (] N‘ a\l
55 m i u ..'. | | I| \ oe) \ *
5.0 1
4.5 1
4.0 1
3.5 1
3.0
2.5 1
2.0 |
1.5
1.0 4

0.5

004

SMF 113 - TLB CPU Miss Pct of CPU Average for Each System Over Time on CEC

::gl-.!.!'-'!'- "- " E--.--.i.l.-!.- .-. --...-T .'III I-l -..-...- ':il... u' -...-J"\.

2015.05.95 Eﬂ!sosﬁ 30!54:5,.;,5 "—“0!5-05,.;,5 33!54:5..;,5 Eﬂ!sos% Eﬂisosﬁs 30'505,.;.5 2015.05.05 2‘5"54:5,05 Eo'5¢5{5
00:14.09 02:2959 04:44.64 08:50,09 09:14.00 11:20.09 13:44:00 155,09 18:14.09 20:26.0 22:4499

Date, Time

Yaxi-1

- = = Severe Marker

DB?2 Buffer Pools @

* Going “Biggie Size” on DB2 buffer pools probably a good use of
memory

« Start with BPs and/or objects that do the most I/O
—BPs that don’t do a lot of I/O won’t give you a lot of benefit

* Don’t forget about the group buffer pools

—Catterall’'s ROT is probably still good: sum(local BPs) * 0.4

—May get benefit from super-sizing the group BPs without increasing local
BPs, but I'd prefer to make locals bigger

« Keep the data as close to the CPU as possible
* Consider PGSTEAL(NONE) in DB2 10+ for pinning objects in a
BP

—DB2 will load the BP on first access and then assume no I/O needed for
subsequent access

« Use Large (v10+) or Giant (vl11+) pages

Other DB?2 areas @

* Prepared statement cache

* RID Pool

—DB2 10 default is 400 MB, will use workfile database if not enough space
In RID Pool

* Sort pool

— Careful: this is per concurrent sort
—V10 changed default to 10MB, max 128MB

» Utilities: consider giving more memory for improved
performance

Sort @

« Some shops restrict sort’'s use of memory, either all the time, or
perhaps at certain times of the day
* For example: restrict sort’'s use of memory during the online day

—This thinking made a lot of sense when memory was extremely precious

—Today, CPU cycles may be more precious than memory because
Increased CPU usage = increased software cost

* It may be time to rethink your sort memory limits
—But don’t crazy — Sort can run away with a lot of memory really quickly

Eliminate IEFUSI [imits?? @

* IEFUSI (SMF Step Initiation Exit) is often used to limit the
amount of memory a job (or STC) step can acquire

—The idea being to prevent something from running away with lots of
storage and causing severe performance issues

» Scott’s opinion: IEFUSI is still a good idea, but rethink limits

—It used to be that most application jobs wouldn’t need more than 10s of
MBs

—Today Java batch jobs could easily use a GB or more
* Don't forget to limit 64-bit storage

What about more Java®? @

 Java iIs definitely viable on the mainframe

« Java programmers may be more generally available than
COBOL

—JZOS API allows easy access to z/OS constructs
* Running on the specialty engines can save money

* One of the concerns in the past has been that Java will almost
certainly require more memory to run the same function

—If we have more memory, this is less of a concern, but...

Avoid unnecessarily large JVMs @

* If you give a long-running JVM an arbitrarily large heap, it will
use it

—Garbage collection may cause paging spikes if heap has been paged out

* Avoid micromanagement, but every application doesn’t need
GBs of heap space by default

* Avoid min heap = max heap until you've determined actual
heap requirements
—Smaller area of activity = better cache locality of reference

» Unfortunately, sizing requires testing

—But probably not required for many batch programs: give them a max of
128-256MB and many will likely be fine

—Choice of JDBC driver and settings may influence heap requirements
—Having IEFUSI enforce some limit is probably a good idea

Just a reminder...

Measurements to
monitor

Available storage - Average

Central Storage Area Averages in Megabytes

0-5 1 1 1 1 1 1 1 1 1 1

E{?{;ﬁ-{}?,g} 2015075, M507.5, 2015075, 2015075, “M507.5, 2015075, 205075, W1507.5, 2005075 2015075,

42,500

40.000
37.500
35.000
32,500
30.000
27.500
25.000
22.500
20.000
17.500
15.000

12.500 4

Average of Varnous Data Fiekls

10.000 4

7.500 4

5.000 4

2.500 4

Yaxis-1
W Fixed_MB_Mucleus_Avg B CS_MB_SQA_Awvg = CS_MB_LPA_Avg CS_MB_CSA_Avg W C5_MB_LSQA_Avg = CS_MB_HV_Shared_Avg
CS_MB_HV_Commen_Avg B C5_MB_RegionsSWA_Avg B C5_MB_OK_Threshold_Avg B C5_MB_Avail_less_OKThresh_Avg

Avali

lable storage - Minimum [EPS)

s_mb_awail_min

Average ofc

System Central Storage Areas - Minimum Available Central Storage in Megabytes

27 500 -—-In—l—.l__-'.—.---..-.-—.-ﬁ-.-——-!.--.—.—..——.vﬂi_..

25,000 4
22.500 1
20.000 -
17.500 4
15.000 4
12.500 4
10.000 4

7.500 4

5.000 4

2,500 1

05

2015.07.5, Eﬂ'54}?2? 2015.05, 27 20155, 27 201547, 27 Eﬂrso;— 27 Eﬂrso;— 27 20155, 27 33!54:-;— 27 Eﬂrso;—,ﬂ Eﬂr&u;—g?
00:15.09 02309y 044509 7000y M50y 13009 1345gy 80009 "85y 2030y 22459y

Yaxis-1

- cs_mb_avail_min

Available storage - Minimum [EPS\

System Central Storage Areas - Minimum Available Central Storage in Megabytes

27 500

. . FJF-H

22.500 1

S R O

17.500 4

| 15,000 -

s_mb_awail_min

12.500 4

10.000 4

Average ofc

7.500 4

5.000 4

2.500 4

i

201507 04 201507.55 20150705 2015075, 2015075, 2015075 2015075, 201507 5, 2015075, 201505, V150p,, 2015
g - o 2 -2 g 2 - -3 L E B, SR
W'W-WE& ' ?'W-W% 000,05 930009 ¢ 20:00,00 o 3-":'00029 ‘:"‘5-*':n:r:.n:n;f":r 2 3-00:0030 16.:00.00 ' 09,000 ' 02:00.00 2 9.00:00 ?

Yaxis-1

- cs_mb_avail_min

1 MB pages used / available

Large 1MB Fixed Frame Averages
r" -

2,100

2,000
1,800
1,800
1,700
1,600
1.500
1,400
1,300
1,200
1,100
1,000

a0
a0
70

o O

Average of Various Data Fields
(=]

G600
500

300
200
100
o 1

2 2 2 2 2 2 2 2 2 2
= oas 0422 g’ﬂﬂﬂ o Sﬂv-zz) 5"'5‘%?2 ”’5ﬂ¢zz f?”ﬂ*:ez ;’Mﬂ-zz f;ffwzz ‘:’;5%423 g;ﬁwzz 2150422
0%:00 1560 3000 g 0000 LR 30:nn A:0n e el 150 .00

Yaxis1

M Fixed_1MB_Frames_Avail_Avg ™ Fixed_1MB_Frames_In_Lse_Avg

Paging by workload

Pinit WLM Storage Analysis - Page Fault Rate for Top 10 Periods Over Time

5.50 -
5.25 -
5.00 -
475 -
4.50 -
4.25 -
4.00 -
3.75 -
3.50 -
3.25 -
3.00 -
2.75 -
2.50 - "

2.25 - I

2.00 - n
1.75 -
1.50 - [l

Sum of Pageln_Rate

[L
1.25 1 [| f

| I \
1.00 --.-—.--.-l—.-—.-q-.-l.—.-—.-—.-—.---1—.-|—-—.-—.-I—-—p—p—l-—.-l.-p—.-—i-,—.-—.-—p—p—p—.-—.-—p—p—.-—.-—.-—p—p—
h | | | 1

0.75 - --'.

050 1
0.25 | A
.00 & e

PS040, 160425 P15042; 150427 TlS0a2y 02,
V099 Y215g 30,090 509 Vo gy

2015.

3300, Masgn

0422

Q4.2
z 8.0 fr]y 20095 Erlr)

G4ps <015 2095 20180455 20150455
o

2203 0

Yaxis-1

B Imp1-STCHICC-Per! & Impd4-STCLO-Perl

Warning Marker = Good Marker

TLB overhead

FArverage oftbl_cpu_miss_pct of cpu

11.04
105

100

9.5
9.0 -
8.5
8.0 |
75
701 [\
8.5/

5.5
501
4.5
4.0
351
3.0
251
204
151
1.04

0.5

0oL

SMF 113 - TLB CPU Miss Pct of CPU Average for Each System Over Time on CEC

20150595 5“0!54:5,.;5 Eﬂvs-cs,.;,s 2‘:"'54:5,05 33!54:5{,5 5‘0!54:5,.;.5 30!54:505 "—"0'5-05,.;,5 2015.05.95 Eﬂwos,.;.s 5“0!54:5,.;.5
00:14.05 92205 O4dapg S0y 090405 112009 1344pp 15500y 1814pp 20200y 2244pg

Date, Time

Yaxis-1

- = = Severs Marker

Summary @

* Memory is getting cheaper, and is cheaper than CPU, so
leverage memory to save CPU

« SCM can reduce cost of paging
—Some paging may be acceptable for certain workloads
 Consider adjusting old memory limits

 Many memory statistics available, keep an eye on a few key
ones as you start using more memory

—And hopefully IBM will provide us with some more

