
Memory Management in the TB Age

Scott Chapman

Enterprise Performance Strategies, Inc.

scott.chapman@epstrategies.com

Insert

Custom

Session

QR if

Desired

#17321

© Enterprise

Performance

Strategies, Inc.

Peter Enrico : www.epstrategies.com

Contact, Copyright, and Trademark Notices

Questions?
Send email to Scott at scott.chapman@EPStrategies.com, or visit our website at http://www.epstrategies.com or

http://www.pivotor.com.

Copyright Notice:
© Enterprise Performance Strategies, Inc. All rights reserved. No part of this material may be reproduced,

distributed, stored in a retrieval system, transmitted, displayed, published or broadcast in any form or by any
means, electronic, mechanical, photocopy, recording, or otherwise, without the prior written permission of
Enterprise Performance Strategies. To obtain written permission please contact Enterprise Performance
Strategies, Inc. Contact information can be obtained by visiting http://www.epstrategies.com.

Trademarks:
Enterprise Performance Strategies, Inc. presentation materials contain trademarks and registered trademarks
of several companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check®, Reductions®,
Pivotor®

The following are trademarks of the International Business Machines Corporation in the United States and/or
other countries: IBM®, z/OS®, zSeries® WebSphere®, CICS®, DB2®, S390®, WebSphere Application
Server®, and many others.

Other trademarks and registered trademarks may exist in this presentation

mailto:Peter.Enrico@EPStrategies.com
http://www.epstrategies.com/
http://www.pivotor.com/
http://www.epstrategies.com/

EPS Sessions at Share

Day Time Location Presentation

Wed 11:15 Asia 3 SMF 113 Processor Cache Counter Measurements – Overview,

Update, and Usage

Wed 1:45 Asia 3 WLM – Effective Setup and Usage of WLM Report Classes

Thu 11:15 Asia 3 zProcessor Consumption Analysis (including z13), or What is

Consuming All the CPU?

Day Time Location Presentation

Tue 11:15 Asia 3 Memory Management in the TB Age

Tue 3:15 Southern

Hemisphere 4

Lessons Learned from implementing an IDAA

Fri 11:15 Asia 3 WLM in One Page

Peter Enrico

Scott Chapman

Agenda

• Review of processor speed

• Hierarchy of data accesses

• Review of processor caches and DAT

• Considerations: uses for more memory and things to watch out

for

• Measurements you might want to track

Processors get faster and smarter

How do we keep the processor busy?

• Disk storage has gotten denser but not significantly faster in

last 10 years

–Average access times in low single-digit ms now common

–But 10 years ago we were pushing access times into low single-digit ms

range as well, just not as consistently

Clock cycles and effective capacity

• Ideally, you’d like to get real work done each clock cycle

• z Processor speeds are really fast

–z10 – 4.4 Ghz

–z196 – 5.2Ghz

–zEC12 – 5.5Ghz

–z13 – 5.0 Ghz

• So 1ms to wait for an I/O = millions of clock cycles

Billions of cycles per second

1 Clock cycle = fraction of a

nanosecond

How long is a cycle again?

• Just over 2 inches

–Light, in a vacuum

–Electrical signal in a circuit is much slower (40-70% of c)

–1 meter in fiber ~ 5 ns

• Need to make a round trip

• Signal paths aren’t as the mosquito flies

–7.7 Miles of wire in a zEC12 chip, >13 in z13

• Physical distance matters!

Data access hierarchy

• Register

• Memory

– L1 Cache

– L2 Cache

– L3 Cache

– L4 Cache

• Local

• Remote

– Real

• Storage Class Memory

• Disk

– Cache

– SSD

– Spinning

• Network

C
lo

s
e
r

to
 C

P
U

 C
o
re

Optimal performance &

capacity utilization =

keeping data as close to

processor as possible!

The farther the data is away

from the processor, the more

clock cycles will be spent

accessing it.

The only good I/O is no I/O

• To keep the processor fed, data needs to be close and ready

–Disk controller cache can help

–SSDs can help read response times for cache misses

–But the disk subsystem is still a long ways away

• Best way to improve I/O performance is to not do the I/O

–Keep the data in memory

–Finite limits on memory of course

Why not 4 TB of memory for every LPAR?

$ €

Memory costs

• Memory on z has historically been very expensive
compared to other platforms

• Partly due to the robust nature of z memory

–RAIM greatly enhances error detection and avoidance

–Can sustain multiple component failures concurrently

• Bit, lane, DRAM, DIMM, socket, even complete channels

–Scott’s Mainframe Motto: Quick answers are nice, correct answers
are required

–Not an esoteric point: 2009 Google study: annual incidence of
uncorrectable memory errors: 1.3%/machine, 0.22%/DIMM

• But what’s the biggest part of your mainframe budget?

–Almost always: software, usually by a wide margin

– (Not including staff costs, which can vary by geography)

Memory prices coming down, sizes going up

Year Machine

Approx

Max

Memory /

CEC

Max Memory

/ Book

2005 z9EC 0.5 TB 128 GB

2008 z10EC 1.5 TB 384 GB

2010 z196 3 TB 768 GB

2012 zEC12 3 TB 768 GB

2015 z13 10 TB 2560 GB

$ €

What can we do with more memory?

• Process more data

– More data generated today, richer data types

– Support more dev/test environments

• Performance – I/O avoidance

– Meet business goals or exploit new business opportunities

– Offset other constraints

• CPU reduction – generally, it can be fewer cycles spent to get

data from memory than disk

– Also, avoids things being pushed out of cache while waiting on I/O

– Less CPU generally means less software cost

• Make ourselves more efficient – stop micro-managing storage

– Staff costs the other big piece of the mainframe budget

Hypothetical Improvements

CPU
CPU

Wait
I/O

G
o
a
l

• Improved response time may

give WLM more flexibility in

managing the work

• Or maybe we can constrain the

R4H

• Velocity goals may need

adjustment

Elapsed time

Storage Class Memory (SCM)

• Nowhere near as fast as main memory, but much faster than

going to disk

–Even SSD disk

–Physically closer (inside the CEC)

–Avoids going through FICON

• Cheaper than memory, more expensive than disk

• Large relative to current common memory sizes, small relative

to disk

–1.4TB increments (up to 4 increments/CEC)

• Initial uses:

–Paging, including pageable 1 MB pages

• Ideal for large memory configurations

–CF List structure storage (MQ shared queues)

Exercising SCM (zEC12 4xx)

• Note that “pages” really means 4K

equivalent pages

• My calculations:

–Average paging rate of 14311/sec

–Average I/O rate of about 1056/sec

–Page transfer time was about 0.000063 (63 microseconds)

• Much slower than memory, much faster than disk

Remember…

• Paging is not free—even with SCM!

• Avoid paging for production address spaces

–Even though DB2 supports pageable large pages, you’re probably better

off page-fixing them

• But some SCM paging for dev/test regions might be acceptable

–Depending on usage patterns

–Allow idle environments to page out / in as they are needed

–Maybe allow more dev/test regions without more real memory

Going deeper in the hierarchy

• Register

• Memory

– L1 Cache

– L2 Cache

– L3 Cache

– L4 Cache

• Local

• Remote

– Real

• Storage Class Memory

• Disk

– Cache

– SSD

– Spinning

• Network

C
lo

s
e
r

to
 C

P
U

 C
o
re

Optimal performance &

capacity utilization =

keeping data as close to

processor as possible!

The farther the data is away

from the processor, the more

clock cycles will be spent

accessing it.

z13 Processor Chip Schematic

L3

L2 L2 L2 L2

L2 L2

L2 L2L2 L2L2 L2

L2 L2

L2 L2

L3

• Approximation

based on IBM docs

• Cache sizes scaled

relative to each

other

• Physical location of

L1 cache unclear

z13 Storage Control Chip Schematic

L4 Controller

L4 L4

L4 L4

• Approximation

based on IBM docs

• NIC directory

embedded in the 4

L4 areas

• L4 Controller

schematic simplified

Data locality – L4 / Memory

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

M
e
m

o
ry

 c
a
rd

Not

to

Scale

Memory address translation

Address

space
0

20GB

0

20GB

Addres

s space
0

10GB

Address

space
0

4GB
Addres

s space
0

nGB

0

40GB

Address

space
0

nGB

Address

space
0

nGB

Addres

s space
Addres

s space
Address

space

64GB

0

LPAR A LPAR B

Dynamic Address Translation & Prefixing: Virtual -> Real -> Absolute

Address

space

Dynamic Address Translation

• DAT performed using multiple tables that point to different

ranges of storage

• DAT is not free!

• Result of DAT cached in Translation Look-aside Buffers (TLB)

• TLBs are in L1 cache and managed by the hardware

• Relatively small

• Flushed when DAT table changes

• 1MB & 2GB pages make TLBs more effective

z/OS 64-bit Address Translation

BX

12 bits

PX

8 bits

SX

11 bits

RTX

11 bits

RSX

11 bits

RFX

11 bits

52 6344 5133 4322 3211 210 10

Page address
Page address
Page address
Page address
Page address
Page address

PT Origin
PT Origin
PT Origin
PT Origin
PT Origin
PT Origin

ST Origin
ST Origin
ST Origin
ST Origin
ST Origin
ST Origin

RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin

RST Origin
RST Origin
RST Origin
RST Origin
RST Origin
RST Origin

Page Table

Segment

Table

Region

Third Table

Region

Second Table

Region

First Table

Address Space

Control Element

Real address

Large Page Address Translation

BX

20 bits

SX

11 bits

RTX

11 bits

RSX

11 bits

RFX

11 bits

634433 4322 3211 210 10

ST Origin
ST Origin
ST Origin
ST Origin
ST Origin
ST Origin

RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin

RST Origin
RST Origin
RST Origin
RST Origin
RST Origin
RST Origin

Segment

Table

Region

Third Table

Region

Second Table

Region

First Table

Address Space

Control Element

Real address

Page address
Page address
Page address
Page address
Page address
Page address

Giant Page Address Translation

BX

31 bits

RTX

11 bits

RSX

11 bits

RFX

11 bits

633322 3211 210 10

Real address

RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin
RTT Origin

RST Origin
RST Origin
RST Origin
RST Origin
RST Origin
RST Origin

Region

Third Table

Region

Second Table

Region

First Table

Page address
Page address
Page address
Page address
Page address
Page address

Address Space

Control Element

TLB Misses attributed to PTE misses

Cache utilization & performance

• Memory is far away from the processor core and relatively slow

• Effective use of processor cache is important to keeping the

processor “fed”

• Cache effectiveness measurements are in the Hardware

Instrumentation Services SMF 113 records

–Requires z/OS 1.8 +PTFs & z10 GA2

• Enable HIS and record the 113 records

–Required for effective capacity planning on upgrade

SMF 113 Cache Measurements

• L1MP – Level 1 Misses per 100 Instructions

• CPI – Cycles Per Instruction

–Estimated Finite CPI – effectively: penalty cycles per instruction due to the

fact that caches are finite

–Estimated Instruction Complexity CPI – CPI as if there were no penalty

cycles (completely effective L1 cache)

• RNI – Relative Nest Intensity

–Combined calculation for effect of overheads to get to cache and memory

–Used for capacity planning on upgrade

• TLB CPU Miss Percent of CPU – How much CPU time goes to

resolving DAT during TLB misses

SMF113 CPI

L1MP by CPU

Zoomed in on just CPs

Zoomed in on zIIPs

RNI – Evaluate over time

Combine L1MP and RNI for workload “hint”

How can you improve cache effectiveness?

• Enable HiperDispatch

• Make good use of large pages

• Upgrade to newer machine

• Consider more/slower CPUs instead of fewer/faster

–More CPUs = More L1/L2/TLB

Cache sizes (L4/book or drawer)

Per CP Per Chip NIC dir Shared

Year Machine L1 Data L1 Inst. L2 Data L2 Inst. L3 L4

2005 z9 EC 256KB 256KB 40MB n/a n/a

2008 z10 EC 128KB 64KB 3MB n/a 48MB

2010 z196 128KB 64KB 1.5MB 24MB 192MB

2012 zEC12 96K 64K 1MB 1MB 48MB 384MB

2015 z13 128K 96K 2MB 2MB 64MB 224MB 480MB

Considerations

Are you using all your memory?

Do you have reserved memory?

• “Reserved” = “unused” = not allocated to any LPAR

• Some sites seem to have given all the memory to LPARs

–This makes responding to new requirements difficult

• Some sites hold back some memory

–Define some amount of reserved memory to each LPAR

–Total reserved across all LPARs can be > actual reserved

• Just means you can’t bring it all LPAR’s reserve elements online

• Make sure reserved by LPAR < actual reserved, or won’t be able to bring that

LPAR’s reserve element online

–Consider specifying RSU=OFFLINE to make it reconfigurable

• Then you can take all or part of it offline dynamically

• May limit use of the area, e.g. not preferred for long-term pages

• Scott’s recommendation: don’t immediately give away all your

memory

How active will that new memory be?

• How is your total cache size going to increase relative to

your memory size?

• This may be a non-issue depending on how you plan on

using that new memory

• But it may be something to consider: consider

more/slower instead of fewer/faster processors

–More CPUs = more L1/L2 cache

–Be sure to investigate single-CP workloads running in

unconstrained times before doing this

• If they’re already suffering CPU delay, more/slower CPUs may be fine

TLB miss overhead

• If you add a whole bunch of memory as 4K pages you may see

overhead due to TLB misses go up

–Again, workload-dependent of course

• Consider using 1M pages wherever possible

–Probably should be the default wherever you can

–Non-authorized allocation nonpageable large pages must be permitted to

IARRSM.LRGPAGES

• Plan your LFA size & check that you got what you thought you

were getting

–DISPLAY VIRTSTOR,LFAREA

• If you have giant amounts of storage, consider giant pages

Estimated impact of TLB Misses

DB2 Buffer Pools

• Going “Biggie Size” on DB2 buffer pools probably a good use of
memory

• Start with BPs and/or objects that do the most I/O

–BPs that don’t do a lot of I/O won’t give you a lot of benefit

• Don’t forget about the group buffer pools

–Catterall’s ROT is probably still good: sum(local BPs) * 0.4

–May get benefit from super-sizing the group BPs without increasing local
BPs, but I’d prefer to make locals bigger

• Keep the data as close to the CPU as possible

• Consider PGSTEAL(NONE) in DB2 10+ for pinning objects in a
BP

–DB2 will load the BP on first access and then assume no I/O needed for
subsequent access

• Use Large (v10+) or Giant (v11+) pages

Other DB2 areas

• Prepared statement cache

• RID Pool

–DB2 10 default is 400 MB, will use workfile database if not enough space

in RID Pool

• Sort pool

–Careful: this is per concurrent sort

–V10 changed default to 10MB, max 128MB

• Utilities: consider giving more memory for improved

performance

Sort

• Some shops restrict sort’s use of memory, either all the time, or

perhaps at certain times of the day

• For example: restrict sort’s use of memory during the online day

–This thinking made a lot of sense when memory was extremely precious

–Today, CPU cycles may be more precious than memory because

increased CPU usage = increased software cost

• It may be time to rethink your sort memory limits

–But don’t crazy – Sort can run away with a lot of memory really quickly

Eliminate IEFUSI limits??

• IEFUSI (SMF Step Initiation Exit) is often used to limit the

amount of memory a job (or STC) step can acquire

–The idea being to prevent something from running away with lots of

storage and causing severe performance issues

• Scott’s opinion: IEFUSI is still a good idea, but rethink limits

– It used to be that most application jobs wouldn’t need more than 10s of

MBs

–Today Java batch jobs could easily use a GB or more

• Don’t forget to limit 64-bit storage

What about more Java?

• Java is definitely viable on the mainframe

• Java programmers may be more generally available than

COBOL

–JZOS API allows easy access to z/OS constructs

• Running on the specialty engines can save money

• One of the concerns in the past has been that Java will almost

certainly require more memory to run the same function

– If we have more memory, this is less of a concern, but…

Avoid unnecessarily large JVMs

• If you give a long-running JVM an arbitrarily large heap, it will

use it

–Garbage collection may cause paging spikes if heap has been paged out

• Avoid micromanagement, but every application doesn’t need

GBs of heap space by default

• Avoid min heap = max heap until you’ve determined actual

heap requirements

–Smaller area of activity = better cache locality of reference

• Unfortunately, sizing requires testing

–But probably not required for many batch programs: give them a max of

128-256MB and many will likely be fine

–Choice of JDBC driver and settings may influence heap requirements

–Having IEFUSI enforce some limit is probably a good idea

Measurements to

monitor

Just a reminder…

Available storage - Average

Available storage - Minimum

Available storage - Minimum

1 MB pages used / available

Paging by workload

TLB overhead

Summary

• Memory is getting cheaper, and is cheaper than CPU, so

leverage memory to save CPU

• SCM can reduce cost of paging

–Some paging may be acceptable for certain workloads

• Consider adjusting old memory limits

• Many memory statistics available, keep an eye on a few key

ones as you start using more memory

–And hopefully IBM will provide us with some more

