
Managing Linux Resources with cgroups

Thursday, August 13, 2015: 01:45 PM - 02:45 PM,

Dolphin, Americas Seminar

Richard Young
Executive I.T. Specialist

IBM Systems Lab Services

• Control groups overview

• Control groups what is new?

• Control groups configuration

• Assignment and display of cgroup

2

• CPU resource examples

• Memory resource examples

• Namespaces and containers

2

Agenda

Linux Control Groups

• What are they?

– Finer grain means to control resources among different processes in a

Linux instance. Besides limiting access to an amount of resource, it can

also prioritize, isolate, and account for resource usage.

– Control groups are also known as “cgroups”

– Allow for control of resources such as
• CPU

• Memory

• Network

– libcgroup package can be used to more easily manage cgroups. Set of

userspace tools. It contains man pages, commands, configuration files,

and services (daemons)

• Without libcgroup all configuration is lost at reboot

• Without libcgroup tasks don’t get automatically assigned to the proper cgroup

– Two configuration files in /etc

• cgconfig.conf and cgrules.conf

3

• IO

• Others…

Where might they be of value?

• Linux servers hosting multiple applications, workloads, or middleware

component instances

• Resource control or isolation of misbehaving applications

 Memory leaks or spikes

 CPU loops

 Actively polling application code

• Need to limit an application or middleware to a subset of resources

 For example 2 of 10 IFLs

 2 of 40 GB of memory or memory and swap (includes limiting filesystem

cache)

 Assign a relative priority to one workload over another

 Throttle CPU to a fraction of available CPU.

• Making more resource available to other workloads in the same server

• Making more resource available to other server in the same or other

z/VMs or LPARs.

4

Where might they be of value?

• Security Isolation

 Help prevent or limit scope of a denial of service attack

 Resource usage by a given process(s) made finite

 Name space container isolation also limits what other processes can see in

terms of pids, network (unique IPs and unique loopback), UTS (hostname

domain), filesystem mount (remount root readonly), IPC and user

information

5

Linux Control Groups – Subsystems

• Subsystems – aka Resource Controllers

– blkio – control/limit IO from block devices

– cpu - uses the kernels scheduler to control access to cpu resource

– cpuacct – reporting of cpu usage

– cpuset – assignment of cpu and memory nodes
• cpusets.cpus (mandatory)

• cpusets.mems (mandatory)

• others optional

– devices – allow or deny device access

– freezer – suspend or resume tasks

– hugetlb – controls and reporting on hugepages

– memory – limit and report on memory usage by tasks

– net_cls – tags network packets with class id

– net_prio – by network interface set priority of network traffic

– ns – namespace subsystem

• lssubsys - list hierarchies containing subsystem

6

Hierarchy Concepts

• cgroup are groups and they have sub groups much like a directory
structure with subdirectories.

• The hierarchy is mounted as a virtual file system you can view and
work with directly

• Initially everything belongs to the root level control group hierarchy and
resources at that level would typically be unlimited.

• Children of processes inherit cgroup assignments from their parent.
After the child has been created, it is managed independently of the
parent.

• A control group hierarchy can have one or more subsystem associated
with it

• A subsystem (resource) can only attach to one cgroup hierarchy unless
the additional cgroup hierarchies contain only the same subsystem.

• If a task is added to a 2nd cgroup in a hierarchy, it is removed from the
first cgroup

7

cgroups Hierarchy

Hierarchy

ADHOCJ2EE

root

REPORT

8

• An example of workloads broken in to three distinct categories

cgroups Hierarchy

Hierarchy

ADHOC

PAYMENTS SCHEDULE RETURN

J2EE

root

REPORT

9

• The J2EE hierarchy extended in to three distinct subgroups

cgroups Hierarchy

Hierarchy

ADHOC

15% CPU

PAYMENTS

40%

SCHEDULE

15%

RETURN

5%

J2EE

60% CPU

root

REPORT

25% CPU

10

• Resource allocations applied based upon business need of workloads

• Control groups overview

 Control groups what is new?

• Control groups configuration

• Assignment and display of cgroup

11

• CPU resource examples

• Memory resource examples

• Namespaces and containers

Agenda

Systemd and control groups

12

• Starting with RHEL 7/ SLES 12, systemd is primarily responsible for application

bindings. You can use systemctl commands or modify systemd unit files directly

• https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-

Introduction_to_Control_Groups.html

• “This package is now deprecated and it is not recommended to use it since it can easily

create conflicts with the default cgroup hierarchy. However, libcgroup is still available to

cover for certain specific cases, where system is not yet applicable, most notably for

using the net-prio subsystem”

• All processes on the system are children of systemd init

• Command systemd-cgls shows cgroup hierarchy in a tree

• Documentation in kernel doc /usr/share/doc/kernel-doc-

<version>/Documentation/cgroups

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-Introduction_to_Control_Groups.html

Systemd and cgroups overview

• Systemd provides three main unit types:

– Services contain one or more processes that are started and stopped by

systemd based on configuration.

– Scopes contain one ore more processes that are started by arbitrary

processes via fork()

– Slices are used to group services and scopes together

• Service, scope and slice units map to objects in the cgroup filesystem.

13

Systemd control group list and slices

• Command systemd-cgls

– User and System slice shown.

– Machine slice (for virtual services and containers) not shown

– Processes automatically placed slices

14

Systemd and control groups

15

• Two types of cgroups

• Transient

• Via systemd-run or API calls to systemd

• Removed when service is stopped

• Persistent

• Created by editing unit configuration files

• systemctl enable

• systemctl set-property

• Persistently change resource controls during application runtime

• systemctl set-property was.service CPUShares=800

MemoryLimit=1500M

Systemd and control groups

• Edit service file in /usr/lib/systemd/system/ <xxx>.service

• Make/Change resource control entry in file:

[Service]

CPUShare=2000

MemoryLimit=1500M

ControlGroupAttribute=memory.swappiness 70

• systemctl daemon-reload

• systemctl restart <xxx>.service

• systemd-cgtop – top control groups by resource usage

16

Systemd and control groups

• The cpu controller is enabled by default in the kernel

 Every system service receives the same amount of CPU no matter how

many processes

17

Systemd’s support cgroup attributes is evolving

• Systemd unit file can set the following cgroup related parameters

– CPUAccounting=

– CPUShares=weight

– MemoryAccounting=

– MemoryLimit=bytes, MemorySoftLimit=bytes

– BlockIOAccounting=

– BlockIOWeight=weight

– BlockIODeviceWeight=device weight

– BlockIOReadBandwidth=device bytes, BlockIOWriteBandwidth=device

bytes

– DeviceAllow=

– DevicePolicy=auto|closed|strict

– Slice=

18

Systemd and cgroup attributes

• Where no high level cgroup attribute is available in systemd, there is:

• ControlGroupAttribute=<<attribute>> <<value>>

• A service file example, might look like:

[Service]

ControlGroupAttribute=memory.swappiness 70

19

The only constant in the universe is change

• https://bugzilla.redhat.com/show_bug.cgi?id=1172890

• Lukáš Nykrýn 2014-12-11 01:35:42 EST This option was removed in 208 From

208 release notes:* As discussed earlier, the low-level cgroup configuration

options ControlGroup=, ControlGroupModify=, ControlGroupPersistent=,

ControlGroupAttribute= have been removed. Please use high-level attribute

settings instead as well as slice units. And some other info

http://lwn.net/Articles/555923/

20

A look at the cgroup sys fs

21

C
P

U
M

e
m

o
ry

B
lk

io
h

u
g
e

tlb

• Control groups overview

• Control groups what is new?

 Control groups configuration

• Assignment and display of cgroup

22

• CPU resource examples

• Memory resource examples

• Namespaces and containers

Agenda

Control Group Configuration

• Cgroup can be configured three main ways (without the user writing code)

– Manually via the /sys/fs/cgroup

– Via libcgroup commands

– Via systemd commands

• Remember you don’t generally mix systemd and libcgroup implementations

23

libcgroup summary

• Commands

– cgclassify – Assign processes to specific control groups

– cgcreate/cgdelete - create/delete a control group

– cgexec – start a process with a cgroup assignment

– cgget/cgset – Set or retrieve parameter values on a control group

– cgsnapshot – Capture the current control group to a file

– lscgroup – List the control group

– lssubsys – List the hierarchies containing the subsystems

• System V init services

– cgconfig

– cgred

24

Control group configuration - definition

• cgcreate command to create new cgroups

 Basic format cgreate –g subsytem: path

 Does NOT add the new cgroup to the cgconfig.conf

• cgdelete command to delete cgroups

 cgdelete subsystem: path

 -r option to recursively delete subgroups

• cgconfig service mounts hierarchy based on /etc/cgconfig.conf

 Changes to cgconfig.conf requires a restart of the service to become effective

 Hierarchy could be mounted manually but it is recommend to use the configuration

file and supplied service

25

Control Group Configuration

• A more complex cgconfig.conf

mount { cpuset = /cgroup/cpu_and_mem;

cpu = /cgroup/cpu_and_mem;

cpuacct = /cgroup/cpu_and_mem;

memory = /cgroup/cpu_and_mem;

}

group blue-subgroup {

cpu { cpu.cfs_period_us="100000";

cpu.cfs_quota_us=“1000"; }

memory { memory.swappiness="0"; }

}

group red-subgroup {

cpu { cpu.cfs_period_us="100000";

cpu.cfs_quota_us="-1"; }

memory { memory.swappiness="60"; }

}

26

Setting cgroup parameters

• The cgset command allows you to the parameter values or limits for a

given control group

– cgset –r parm=value <cgroup path>

– cgset –r memory.limit_in_bytes=2m red-subgroup

– Does not update cgconfig.conf

• Be aware that some resources controllers have mandatory parameters that

must be set

27

• Control groups overview

• Control groups what is new?

• Control groups configuration

 Assignment and display of cgroup

28

• CPU resource examples

• Memory resource examples

• Namespaces and containers

Agenda

Control group configuration - task assignment

• The cgred service assigns processes to cgroups based on

/etc/cgrules.conf

– File has two formats

• User susbystems cgroup

• User:command susbystems cgroup

– Can identify a user or group

– Supports wild cards

29

Control group configuration - task assignment

• Processes can be directly assigned to a control group at invocation via

cgexec.

cgexec –g subsystem:cgroup command

• Running processes can be moved dynamically to a control group

cgclassify –g subsystem:cgroup pid

30

Control group configuration - assignment

• cgexec used to start apache and assign it to the “blue-subgroup” for the

cpu resource manager

• The results can be confirmed with ps –eO cgroup

31

Display process cgroup assignment

32

ps –eO cgroup

Display process cgroup assignment

• Another method to display processes in a cgroup is to cat the “tasks” file in

the given part of the hierarchy. The root level cgroup for CPU is shown.

33

Display cgroups example

• lscgroup lists all defined control groups

• red-subgroup and blue-subgroup defined under root level cpu

controller

35

Control group configuration

• cgsnapshot – generate new cgroups configuration file (cgconfig.conf) based

on current runtime environment. Variables displayed can be blacklisted or

whitelisted.

36

• Control groups overview

• Control groups what is new?

• Control groups configuration

• Assignment and display of cgroup

37

 CPU resource examples

• Memory resource examples

• Namespaces and containers

37

Agenda

CPU resource examples

• cpusets and cpu.shares

 A cpuset assigns a processor or memory node

 cpusets typically only have one memory node, except for NUMA

architectures

 cpu share assigns a relative portion of the CPU

• cpu controlgroups support both realtime and non-realtime

scheduled processes

 CFS vs RT schedulers

 cpu.cfs_period_us and cpu.cfs_quota_us vs. cpu.rt_period_us and

cpu.rt_runtime_us

 CPU control group “Share” settings are not scheduler specific

38

Our business application simulator

After 1 minute of R&D we have a new agile program to simulate all new applications 

linux-f6pd:~ # cat cpuhog.sh

#!/usr/bin/env bash

dd if=/dev/zero of=/dev/null

linux-f6pd:~ #

39

systemd-run

• systemd-run provides a means to run our program in a transient systemd unit

in which is assigned to a default cgroup configuration

• The transient unit exists until the program or service completes

linux-f6pd:~ # vi cpuhog.sh

linux-f6pd:~ # systemd-run /root/cpuhog.sh

Running as unit run-25847.service.

linux-f6pd:~ #

40

Simulator program consumption baseline

• A view from top

41

Systemctl show

systemctl show run-25847.service provides detailed information about the service

42

CPU attributes of a system services

• Default CPUShares of 1024 assigned

• Notice there is no cpu period or quota

• LimitCPU like ulimit –t, or z/OS TIME=

43

Systemd control groups

• Start a second simulated application

• And take a look at the resource assignment

44

Systemd and control groups

• Both program running with the defaults CPUShare value

• Both programs using the same amount of CPU

45

Systemctl set-property and show

• Setting a lower CPUShare

46

Systemd and CPUShares

• Shares of 256 and default of 1024

47

Defining a persistent system services

• To be persistent, the control group are placed in systemd unit files

• Our base application simulator service, with no control group attributes yet.

50

Our running systemd service

• Default system slice assignment shown

51

Three system services

• Shares of 1024,1024, and 256

52

Systemctl share adjustment

• Adjust from default of 1024 to 8192 via set-property

• The property was set for CPUShares=8192, where does that reside?

53

CPUShares

• 8192, 1024, 256 ?

• The change did NOT dynamically take effect

54

Cgroups pseudo filesystem

• Four different locations on the system exist related to our “cpuhog” application

service

linux-f6pd:~ # find / -name "*cpuhog*“

/etc/systemd/system/cpuhog.service.d

/sys/fs/cgroup/cpu,cpuacct/system.slice/cpuhog.service

/sys/fs/cgroup/systemd/system.slice/cpuhog.service

/usr/lib/systemd/system/cpuhog.service/root/cpuhog.sh

linux-f6pd:~ #

55

CPUShares.conf systemd file

• Our systemctl set-property for CPUShares resulted in a specific configuration

file being created under /etc/system/system/<<service>>.service.d

linux-f6pd:/etc/systemd/system/cpuhog.service.d # ls

90-CPUShares.conf

linux-f6pd:/etc/systemd/system/cpuhog.service.d # cat 90-CPUShares.conf

[Service]

CPUShares=8192

56

Systemctl and CPUShares

57

CPUShares

• Shares of 8192, 1024, and 256

58

Control group queries and manipulation

• Via systemctl unit files and commands

• Via libcgroup commands

• Manually via sys/fs

– Reset cpu.shares from 8192 to 1024

59

CPUShares

• Share adjusted manually

60

CPU and cgget

• Default CPUShare of 1024 and no quota set

61

CPUShares

• Baseline - Shares of 1024, 1024, 256

62

libcgroup - cpuget/cpuset

63

• Alter cpu.share via

cgset

CPUShare

• Share adjustment impact immediate, but not persistent

64

CPU - Period & Quota

• CPU Period

– Is the period of time in microseconds that CPU resources are allocated or

evaluated

• CPU Quota

– The amount of CPU time in microsecond the control group is allowed to

consume before it is throttled

– A value of -1 means no time restriction

• cpu.stat

– contains information about how many intervals have occurred, how many

times throttling of CPU has occurred and the amount of CPU time throttled.

65

CPU Period and Quota

• Running at ~100%

66

CPU Period and Quota

• Quota is now

10% of period

67

CPU Period and Quota

• Using exactly 10%

68

• Control groups overview

• Control groups what is new?

• Control groups configuration

• Assignment and display of cgroup

71

• CPU resource examples

 Memory resource examples

• Namespaces and containers

Agenda

Memory resource

• With memory, each page has a cgroup “owner” assigned at allocation

• Features such as per group swapiness and out of memory management

– Limit memory of user space process

– Kernel space memory remains unlimited (well sort of)

– Memory accounting in addition to controls

• Example shows initially ~1900MB of a 2GB virtual server consumed for

filesystem cache as part of a simple dd command writing to a file

• Use cgroups to limit memory, specifically file system cache usage in this case.

• Can help to avoid system level out of memory condition by also limiting swap

space usage.

72

Memory resource

• Like other resource controllers both accounting and control fields exist

73

Swap memory

• swapaccount kernel parameter can enable/disable the memsw function in

the cgroups memory controller

74

Where is my shell running?

• systemd-cgls

75

Memory subsystem

76

• Since nothing memory related has been set in systemd so far the controller or

subsystem is not found yet.

Memory subsystem

• Baseline view behavior

– 1.9 GB of cache consumed by file copy

77

Memory subsystem

• 10 MB limit imposed on user session-578

78

Memory subsystem

• Memory usage (including filesystem cache) limited by cgroups for session 578

79

• Control groups overview

• Control groups what is new?

• Control groups configuration

• Assignment and display of cgroup

80

• CPU resource examples

• Memory resource examples

 Namespaces and containers

80

Agenda

Namespaces

• Lightweight process isolation/virtualization aka Containers

• Each group of processes can have different view of system resources

• No hypervisor layer

• Common namespaces

– mnt (mountpoints and filesystems)

– pid (processes)

– net (networking) independent IP stack, routing, firewall

– ipc (System V ipc)

– uts (hostname information)

– user (uids)

• Namespaces can be created with the unshare command or syscall, or with

clone syscall

81

Examples of technology using cgroups or containers

• Systemd

• Docker http://www.ibm.com/developerworks/linux/linux390/docker.html

• Hadoop yarn – Hadoop cluster resource control

• LXC (LinuX Containters)

• Kubernetes – Container cluster manager from Google

• Lmctfy (Let me contain that for you) (Google)

• Apache Mesos and Mesosphere (Mesosphere Inc)

• Openstack – Starting with Havana

• libvirt-lxc – libvirt driver for Linux containers

• Cloud Foundry’s Garden

• Trove - DBaaS

• Google – Joe Beda @ Gluecon 2014 “everything at google runs in a container”

and “we start over 2 billion containers per week” see

http://www.enterprisetech.com/2014/05/28/google-runs-software-containers/

82

http://www.ibm.com/developerworks/linux/linux390/docker.html
http://www.enterprisetech.com/2014/05/28/google-runs-software-containers/

Namespaces

• Composed mostly of syscalls and a few user space commands such as ip ns

• ls -l /proc/<pid>/ns
– [root@localhost /]# ls -la /proc/self/ns/

total 0

dr-x--x--x 2 root root 0 May 11 11:43 .

dr-xr-xr-x 9 root root 0 May 11 11:43 ..

lrwxrwxrwx 1 root root 0 May 11 11:43 ipc -> ipc:[4026531839]

lrwxrwxrwx 1 root root 0 May 11 11:43 mnt -> mnt:[4026531840]

lrwxrwxrwx 1 root root 0 May 11 11:43 net -> net:[4026532451]

lrwxrwxrwx 1 root root 0 May 11 11:43 pid -> pid:[4026531836]

lrwxrwxrwx 1 root root 0 May 11 11:43 user -> user:[4026531837]

lrwxrwxrwx 1 root root 0 May 11 11:43 uts -> uts:[4026531838]

• nsenter – run program with namespace of another process (if no program

specified, runs your shell)

83

Namespaces – network examples

84

 unshare with new shell (could be any program) with unique network namespace

[ryoung@localhost /]$ ifconfig

em1: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

ether f0:de:f1:61:bb:02 txqueuelen 1000 (Ethernet)

RX packets 255301 bytes 134457758 (128.2 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 203692 bytes 39939401 (38.0 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

device interrupt 20 memory 0xf2600000-f2620000

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 0 (Local Loopback)

RX packets 6049694 bytes 6661154950 (6.2 GiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 6049694 bytes 6661154950 (6.2 GiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[ryoung@localhost /]$ sudo su

[root@localhost /]# unshare --net /bin/bash

[root@localhost /]# ifconfig

[root@localhost /]# Runs in its own network

name space

Namespaces – network example

[root@localhost ryoung]# ip netns add mynet
[root@localhost ryoung]# ip netns exec mynet ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

[root@localhost ryoung]# ip netns exec mynet bash
[root@localhost ryoung]# ifconfig
[root@localhost ryoung]# ping ibm.com
ping: unknown host ibm.com
[root@localhost ryoung]# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
[root@localhost ryoung]# exit

[root@localhost ryoung]# ip netns exec mynet ifconfig veth1 10.3.2.1/24 up
[root@localhost ryoung]# ifconfig veth0 10.3.2.2/24 up

[root@localhost ryoung]# ip netns exec mynet ping 10.3.2.2
PING 10.3.2.2 (10.3.2.2) 56(84) bytes of data.
64 bytes from 10.3.2.2: icmp_seq=1 ttl=64 time=0.134 ms
64 bytes from 10.3.2.2: icmp_seq=2 ttl=64 time=0.108 ms
^C
--- 10.3.2.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.108/0.121/0.134/0.013 ms

[root@localhost ryoung]# ip netns exec mynet route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.3.2.0 0.0.0.0 255.255.255.0 U 0 0 0 veth1
[root@localhost ryoung]#

85

New

namespace

Running in the new

namespace

Connection to new

name space

Cgroups and containers

• Docker is a container technology that greatly simplifies management of

namespaces, container management, and operation

• Unlike KVM virtualization, the container isolation is via namespaces

• With containers the OS is shared and only the application is started. (very fast

to start up and low overhead)

• Cgroups has integration in to container technologies

• Lets take a look…

8/4/2015 86

Starting the Docker daemon

• Notice the cgroup swap limit message

• Cgroup “swapaccount=1” kernel parameter would address

87

Docker Host IP configuration

• The host has an automatically assigned interface and IP for the container to

talk to and through

88

Network Namespace

• Unique IP namespaces used for host and guest container

• IP, hostname, and routing are all unique

89

Network Namespace

90

• Guest container can communicate thru host and beyond if allowed

• Docker uses firewall rules and not cgroups to control IP connectivity

• Cgroup control of network traffic is about resource priority

UTS hostname and filesystem namespace

91

• Unique hostfiles are used via a combination of network and filesystem

namesspaces

UID name space

• The container has a unique uid name space and unique /etc/passwd files

92

Filesystem Namespace

93

• The host and guest container have unique filesystem namespaces

• Because the docker image lives in /var, that same filesystem is mounted in to

the containers namespace

• Notice the /etc/hosts mountpoint in the container display

PID name space

• Guest container vs host processes

8/4/2015 94

• Install our application simulator program

• Image “withhog” created with our application simulator

• Launch container with cpu-share resource assignment

Cgroup resource controls

95

Cgroups resource controls

• Add 2nd container and run in a single CP environment, to observe contention

96

systemd-cgls with containers

• Docker container in “system-slice”

8/4/2015 97

Docker command parameter resource controls

• -m, --memory="": Memory limit (format: <number><optional unit>, where unit =

b, k, m or g)

• --memory-swap="": Total memory limit (memory + swap, format:

<number><optional unit>, where unit = b, k, m or g)

• -c, --cpu-shares=0: CPU shares (relative weight)

• --cpu-period=0: Limit the CPU CFS (Completely Fair Scheduler) period

• --cpuset-cpus="": CPUs in which to allow execution (0-3, 0,1)

• --cpuset-mems="": Memory nodes (MEMs) in which to allow execution (0-3,

0,1). Only effective on NUMA systems.

• --cpu-quota=0: Limit the CPU CFS (Completely Fair Scheduler) quota

• --blkio-weight=0: Block IO weight (relative weight) accepts a weight value

between 10 and 1000.

• --oom-kill-disable=true|false: Whether to disable OOM Killer for the container or

not.

8/4/2015 98

Docker command parameter resource controls

• docker run -m 128m (MB of memory)

• by default the memory.memsw.limit_in_bytes value is set to twice as

much as the memory parameter specified while starting a container

• memory.memsw.limit_in_bytes is the sum of memory and swap

8/4/2015 99

Questions ???

Thanks for attending today!

100

• Docker on z Systems
 http://www.ibm.com/developerworks/linux/linux390/docker.html

• Github Linux Kernel Documentation
 https://github.com/torvalds/linux/blob/master/Documentation/cgroups/cgroups.txt

• SLES 12

 https://www.suse.com/documentation/sles12/book_sle_tuning/data/cha_tuning_cgroups.html

• SLES 11 System Analysis and Tuning Guide
 https://www.suse.com/documentation/sles11/singlehtml/book_sle_tuning/book_sle_tuning.html

• RHEL 7
 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-

Introduction_to_Control_Groups.html

• RHEL 6 Resource Management Guide
 https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/

• Fedora Wiki
 http://fedoraproject.org/wiki/Features/ControlGroups

• OpenSuSE
 http://doc.opensuse.org/documentation/html/openSUSE/opensuse-tuning/cha.tuning.cgroups.html

101

References

http://www.ibm.com/developerworks/linux/linux390/docker.html
https://github.com/torvalds/linux/blob/master/Documentation/cgroups/cgroups.txt
https://www.suse.com/documentation/sles12/book_sle_tuning/data/cha_tuning_cgroups.html
https://www.suse.com/documentation/sles11/singlehtml/book_sle_tuning/book_sle_tuning.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-Introduction_to_Control_Groups.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
http://fedoraproject.org/wiki/Features/ControlGroups
http://doc.opensuse.org/documentation/html/openSUSE/opensuse-tuning/cha.tuning.cgroups.html

102

Richard G. Young

Executive I.T. Specialist

IBM STG Lab Services

Virtualization & Linux on z Team

Lead

777 East Wisconsin Ave

Milwaukee, WI 53202

Tel 414 921 4276

Fax 414 921 4276

Mobile 262 893 8662

Email: ryoung1@us.ibm.com

