

©2015 IBM Corporation

*

Abstract

�This presentation will explore the functions and at tributes of the
Subsystem Interface (SSI) including new function be ing
introduced in z/OS 2.2.

©2015 IBM Corporation

*

What is the SSI?

�Interface to share information

�You may (synchronously) request information from a subsystem

�You may (synchronously) send information to a subsy stem
– Directed to one specific subsystem
– Broadcast to all (interested) subsystems

� The system manages the interactions – the target mi ght not
exist or might not be interested

©2015 IBM Corporation

*

What is the SSI?

�A subsystem is represented by an “SSCVT” (AKA SSCT) mapped
by IEFJSCVT

�CVTJESCT → JESCT. JESSSCT → first SSCVT
– Primary JES is the first subsystem
– MSTR is the second

�The SSCVT provides 8 bytes for user data. This was used as a
way to get an “anchor”. There have been much better ways to
accomplish that for a long time, now.

– System level name/token
– A slot in the “customer anchor table” (used by many ISV's)

©2015 IBM Corporation

*

What are some subsystems?

�The master subsystem MSTR

�The primary subsystem (JES2 or JES3)

�Some other IBM-defined subsystems
– AXR
– IRLM
– RACF
– SMS

�There are also other IBM-defined subsystems as well as non-
IBM-defined subsystems

©2015 IBM Corporation

*

Defining Subsystems (IEFSSNxx)

�SSN system parameter and IEFSSNxx parmlib member

�The subsystem name is 1-4 characters. In parmlib, it must be
alphanumeric or national (this is not true for IEFS SI).

�IEFSSNxx has a “positional” format. This is the “ol d” format. You
really ought to use the “keyword” format. There is an ISPF edit
macro in 'SYS1.SAMPLIB(IEFSSNXX)' to convert from o ld to new.

– Positional format does not have dynamic functionali ty
� IEFSSNxx “keyword” format

– Subsystem is dynamic (can be activated, deactivated)

©2015 IBM Corporation

*

Defining Subsystems (IEFSSNxx)

�Defaults to IEFSSN00

�Must identify a “primary” subsystem

�Defined in the provided order (except that the prim ary subsystem
is the first SSCVT and the MSTR subsystem is the se cond)

– But as of z/OS 1.12 “BeginParallel” is provided, so
subsystems are not necessarily initialized in the o rder
defined

©2015 IBM Corporation

*

Defining Subsystems (IEFSSNxx)

Keyword format (subsystem is considered “dynamic”)

�SUBSYS SUBNAME(subname)
– [INITRTN(initrtn) [INITPARM(initparm)]]

• Must be accessible via LNKLST or LPA
– PRIMARY(NO | YES)
– START(YES | NO)
– [CONSNAME(consname)]

• For initialization messages

�BeginParallel
– Initialization routines from this point onward are invoked in

parallel

©2015 IBM Corporation

*

Defining/Manipulating Subsystems (SETSSI command)

�Subsystems defined via SETSSI are considered dynami c

�ADD subname,CONSNAME=c,INITRTN=i,INITPARM=ip

�ACTIVATE subname

�DEACTIVATE subname

�DELETE subname (z/OS 2.2 only)

©2015 IBM Corporation

*

Defining/Manipulating Subsystems (IEFSSI macro)

Subsystems defined via IEFSSI are considered dynami c

�REQUEST=ADD,SUBNAME=s,
CONSNAME=c,INITRTN=i,INITPARM=ip,INITPLEN=ipl

�REQUEST=ACTIVATE,SUBNAME=s,INTOKEN=i

�REQUEST=DEACTIVATE,SUBNAME=s,OUTTOKEN=o

�REQUEST=OPTIONS,SUBNAME=s
[,COMMAND={NO|YES}] [,REQDSUB={MSTR|PRI}]
[,EVENTRTN=e] <z/OS 2.2 only>

�REQUEST=SWAP,SUBNAME=s,INTOKEN=i,OUTTOKEN=o

�REQUEST=PUT,SUBNAME=s,SUBDATA=s1,SUBDATA2=s2

�REQUEST=GET,SUBNAME=s,SUBDATA=s1,SUBDATA=s2

©2015 IBM Corporation

*

Defining/Manipulating Subsystems (IEFSSI macro)

�INTOKEN: token representing SSVT (subsystem vector table) to
be used (from IEFSSVT CREATE, IEFSSI DEACTIVATE, IE FSSI
SWAP)

�OUTTOKEN: output token representing SSVT for later use

�COMMAND: Does subsystem respond to SETSSI
activate/deactivate? If not, error message if attem pted.

�REQDSUB: For “S subname”, start under MSTR or prima ry
subsystem

�EVENTRTN: An “exit” routine to learn of such custom er-initiated
events as “delete”

�SUBDATA1: get/put 1 st 4 bytes of user data

�SUBDATA2: get/put 2 nd 4 bytes of user data

©2015 IBM Corporation

*

EVENTRTN (z/OS 2.2)

�Events that it gets control for: currently, only DE LETE

�Data for the events is mapped by IEFJSEPL

�Must be accessible by LNKLST / LPA at the time of t he IEFSSI
OPTIONS function

�EVENTRTN is provided only for IEFSSI, not for IEFSS Nxx and
SETSSI definitions. Regardless of how the subsystem is defined,
the INITRTN can use IEFSSI to add the EVENTRTN.

�Gets control in supervisor state, key 0, event issu er's address
space, primary ASC mode, P=H=S, AMODE 31, task mode ,
enabled for I/O and external interrupts, no locks held

©2015 IBM Corporation

*

EVENTRTN (cont)

�Input regs:
– 0 – contains no information for use by the exit rou tine
– 1 – address of area mapped by IEFJSEPL
– 2 – 12 contain no information for use by the exit r outine
– 13 – address of 72-byte savearea
– 14 – return address
– 15 – entry point address

�Output regs:
– 0-15 – not part of the interface, need not be prese rved

©2015 IBM Corporation

*

Defining the Subsystem Vector Table

�IEFSSVT and IEFSSVTI macros are provided to help (t hey
supplanted IEFJSVEC when introduced 20 years ago)

�SSVT identifies for which functions the subsystem i s to get
control (and identifies the function routine)

– Starts with 256 1-byte entries then 1 or more 8-byt e routine
entries.

– The 1-byte entries correspond to the subsystem func tion
code. When the entry is 0, there is no function rou tine and
the subsystem is not interested. When the entry is non-0, it
identifies which “routine entry” (the first such en try would be
identified by value 1, etc.)

– The “routine entry” may identify the name (and the system
will locate this name in LPA or use LOADTOGLOBAL=YE S). I
strongly recommend that you use LOADTOGLOBAL=YES
only if your address space can never terminate.

©2015 IBM Corporation

*

Defining the Subsystem Vector Table (cont)

�The “routine entry” may contain the 4-byte entry po int address
(in bytes 4-7 of the 8-byte entry, with bytes 0-3 h ex zeroes).

�The AMODE of the function routine is determined as follows
– When name is provided, the AMODE of the directory e ntry

(24 or 31)
– When address is provided, bit 0 of the address (whe n on,

AMODE 31; otherwise AMODE 24). This bit can be set
according to the FUNCAMODE keyword of IEFSSVTI

©2015 IBM Corporation

*

Defining the Subsystem Vector Table (IEFSSVTI)

Static definition

�IEFSSVTI TYPE=INITIAL,SSVTDATA=ssd,TABLEN=t

�(one or more) IEFSSVTI TYPE=ENTRY,
 [FUNCNAME=fn, | FUNCADDR=fa,]
 NUMFCODES=nf,
 [FCODES=(f0,...,fn)]

�IEFSSVTI TYPE=FINAL

©2015 IBM Corporation

*

Defining the Subsystem Vector Table (IEFSSVTI)

Dynamic manipulation

� IEFSSVTI TYPE=COPY,SSVTDATA=sd,SOURCE=ssd

� (one or more)
IEFSSVTI TYPE=SET,SSVTDATA=sd,
 SOURCE=ssd,ENTRYDATA=n,
 [FUNCNAME=fn, | FUNCADDR=fa, [FUNCAMODE=fam,]]
 [FCODES=(f0,...,fn)]

Dynamic data definition

� IEFSSVTI TYPE=LIST (this creates a DSECT so put wit hin your
data definitions)

� IEFSSVTI TYPE=RESERVE,SSVTDATA=sd,
 {TABLEN=t | MAXFCODES=mf}

©2015 IBM Corporation

*

Defining the Subsystem Vector Table (cont)

�IEFSSVT SUBNAME=s,REQUEST=CREATE,
 SSVTDATA=sd,OUTTOKEN=o,
 SUBPOOL={s|241},
 MAXENTRIES=m,
 LOADTOGLOBAL={NO|YES},
 ERRFUNCT=e

�SSVTDATA=sd: table defined by IEFSSVTI

�OUTTOKEN=o: output token representing this SSVT

�MAXENTRIES=m: maximum number of “routine entries”

�LOADTOGLOBAL: NO – routine is asserted to be in LPA ; YES –
use LOAD with GLOBAL=YES (see previous warning!)

�ERRFUNCT=e: function routine name being processed w hen (if)
error occurred

©2015 IBM Corporation

*

Defining the Subsystem Vector Table (cont)

�IEFSSVT SUBNAME=s,REQUEST=DISABLE,
 SSVTDATA=sd,INTOKEN=i

– Deactivate specific function codes

�IEFSSVT SUBNAME=s,REQUEST=ENABLE,
 SSVTDATA=sd,INTOKEN=i,LOADTOGLOBAL={NO|YES},
 ERRFUNCT=e

– Activate (or re-activate) function codes

�IEFSSVT SUBNAME=s,REQUEST=EXCHANGE,
 SSVTDATA=sd,INTOKEN=i,LOADTOGLOBAL={NO|YES},
 ERRFUNCT=e

– Exchange function routines to respond to currentyl enabled
function codes

©2015 IBM Corporation

*

Initializing the subsystem

�System LINKs to INITRTN, passing the SSCVT and a pa rameter
list (which identifies the INITPARM)

– R1 → 2-word area,
• Address of SSCVT
• Address of subsystem initialization parameter list

(mapped by IEFJSIPL)

©2015 IBM Corporation

*

Implementing your subsystem

�Broadcast calls that your subsystem might listen fo r
– (4) Late end-of-task (after many RESMGRs)
– (8) End of memory (end of address space)
– (9) WTO(R)
– (10) SVC 34 (command)
– (14) Delete Operator Message (DOM)
– (48) Help
– (50) Early end-of-task (before most RESMGRs)
– (78) Tape device selection

� Directed calls that a subsystem might listen for
– (54) Request subsystem version info
– (58) SMF SUBPARM option change

©2015 IBM Corporation

*

Interacting with the subsystem (IEFSSREQ)

�IEFSSREQ (no parameters)
– User builds “SSOB” (header: IEFSSOBH)

• SSOBID = 'SSOB'
• SSOBLEN = length of SSOB header
• SSOBFUNC = function code
• SSOBSSIB = address of SSIB or 0 (0 indicates to use the

“life of job” SSIB which identifies the primary sub system)
– User builds “SSIB” (IEFJSSIB)

• SSIBID = 'SSIB'
• SSIBLEN = length of SSIB
• SSIBSSNM = subsystem name

� User sets up R1 with address of one-word parameter list,
where that word contains the address of the SSOB an d has bit
0 on

©2015 IBM Corporation

*

Interacting with the subsystem (IEFSSREQ)

Output from IEFSSREQ

�There is an SSI return code (in reg 15)
– SSRTOK – 0
– SSRTNSUP – 4 - subsystem does not support this

function
– SSRTNTUP – 8 – subsystem exists but is not up
– SSRTNOSS – 12 – subsystem does not exist
– SSRTDIST – 16 – disastrous error
– SSRTLERR – 20 – logical error (bad format)
– SSRTNSSI – 24 – SSI not available

�There is a subsystem return code (in SSOBRETN)

�There may be function-dependent data returned by th e
subsystem

©2015 IBM Corporation

*

Interacting with the subsystem (IEFSSREQ)

�System SSI “router” runs in key (any), state (probl em or
supervisor), task/SRB mode (either), cross-memory e nvironment
(any) of invoker.

�R15 return code is “general”. SSOBRETN is the funct ion-specific
return code

�Types of call
– Directed – target subsystem is identified in SSIBSS NM
– Broadcast – target subsystem is MSTR. System builds a

unique SSOB/SSIB for each intended subsystem, and
provides back to the caller the smallest reg 15 val ue and the
largest SSOBRETN value across all the calls

©2015 IBM Corporation

*

Interacting with the subsystem (IEFSSREQ)
�Requests that you might make of the primary (JES) s ubsystem

– (1) Process Sysout data sets
– (11) User Destination Validation/Conversion
– (20) Request job ID
– (21) Return job ID
– (54) Request subsystem version information
– (70) Scheduler Facilities Services
– (71) JES Job Information
– (75) Notify user message service
– (79) SYSOUT Application Program Interface (SAPI)
– (80) Extended Status Function Call
– (82) JES properties
– (83) JES Device information services
– (85) JES Job Modify

©2015 IBM Corporation

*

Notify SSI

� Sends notification message to user
� Use SSI Function 75 (IAZSSNU Macro)
� Callers are not required to have a job structure

associated with JES
� Destination can be a user on another node or member

within the MAS

©2015 IBM Corporation

*

SYSOUT Application Program Interface SSI

� Obtains information related to SYSOUT

� Use SSI Function 79 (IAZSSS2 Macro)

� SYSOUT Selection Criteria for filtering

� Can be used with Spool Browse

©2015 IBM Corporation

*

Extended Status SSI

� Obtain JOB and SYSOUT Information

� Use SSI Function 80 (IAZSSST Macro)

� Information in the JES2 Checkpoint is returned

� 3 call types

� Get JOB data

� Get SYSOUT and JOB data

� Release Memory

� Filters control the returned data

� Supports directed SSIs and Broadcast

©2015 IBM Corporation

*

JES Properties - SSI

� Sends notification message to user

� Use SSI Function 82 (IAZSSJP Macro)

� Callers are not required to have a job structure
associated with JES (Directed SSI)

� Information Returned
� NJE Nodes

� Spool Information

� Initiator Information

� JESPlex Information

� Job Class Information

©2015 IBM Corporation

*

JES Device Information SSI

� Sends notification message to user
� Use SSI Function 83 (IAZSSJD Macro)
� Callers are not required to have a job structure

associated with JES (Directed SSI)
� Obtain information about and filter on:

� Printers (local and remote)
� Punches (local and remote)
� Readers (local and remote)
� LOGON devices
� NETSRV devices
� Line devices
� Job / SYSOUT transmitters and receivers (NJE and offload)

©2015 IBM Corporation

*

Modify Job Function SSI

� Sends notification message to user

� Use SSI Function 85 (IAZSSJM Macro)

� Required to have a job structure associated with JE S

� Allows modification of job characteristics

©2015 IBM Corporation

*

Interacting with the subsystem (IEFSSREQ)

�Requests that you might make of other subsystems (e very
subsystem ought to document the functions that it p rovides)

– (15) Verify subsystem function (send to MSTR, with
SSIBJBID's 1 st 4 bytes identifying the subsystem) to be
verified (JES does support this)

– (54) Request subsystem version information
– (80) Extended Status Function Call (each subsystem

may define the data it supports and behavior that i t
provides for this function)

©2015 IBM Corporation

*

IEFSSI QUERY

Extract data about one or more subsystems
IEFSSI REQUEST=QUERY,SUBNAME=s,

 WORKAREA=w,WORKASP=wsp
� Subsystem name may be wildcarded. Info is returned

for all matching names (e.g., active or inactive, d oes it
respond to commands, what are the function codes)

� Workarea is mapped by IEFJSQRY
� WORKASP identifies the subpool to use (the system

obtains the storage; the user is responsible for fr eeing
the storage)

©2015 IBM Corporation

*

SSI DELETE (z/OS 2.2)

The problems
� If the INITRTN has a basic problem (such as “does n ot

exist”) it is not possible to “re-do”
� If a subsystem is installed, there is no way to cha nge

its init parameters and start over

The solutions
� Do some preliminary checking of INITRTN so that on

some normal problems the subsystem is not even
defined

� Provide a logical deletion function

©2015 IBM Corporation

*

SSI DELETE (cont)

INITRTN problem detection
� If the LOAD fails (name is wrong, or name is right but is

not in the LNKLST, or not in an APF-authorized data
set), the subsystem define is rejected:
IEFJ027I SUBSYSTEM INITIALIZATION ROUTINE
initialization-routine NOT FOUND FOR
SUBSYSTEM ssname

� This occurs for all subsystem defines (whether by
IEFSSNxx parmlib member, SETSSI command, IEFSSI
macro)

©2015 IBM Corporation

*

SSI DELETE (cont)

Logical Deletion
� Does not free storage related to the subsystem
� Does not terminate subsystem routines currently in

control
� Does stop making new calls to subsystem routines
� Does remove from the SSCVT chain
SETSSI DELETE,SUBNAME=s,FORCE
� Subsystem does not need to be dynamic
� Use at your own risk (especially if you're going to try

again, as perhaps the initrtn “did something” that will
not play well with a second try)

� EVENTRTN is driven if subsystem is dynamic
� Special SSCVT entries are created (SSCTSNAM has

!DEL or !DMY)

©2015 IBM Corporation

*

SSI etc

� Some subsystems support the concept of a
“subsystem data set”

� IEFJFRQ installation exit
� Subsystem affinity service (SSAFF) – largely

supplanted by task-level name/token

©2015 IBM Corporation

*

Summary

�The subsystem interface provides mechanisms to comm unicate
with the primary subsystem (and other subsystems) a nd also to
interact with certain system events.

�With a dynamic subsystem, you can change between ha ving the
subsystem be active and inactive.

�With z/OS 2.2, you can address some InitRtn errors and “try
again” and can get rid of a subsystem that was temp orarily
added such as for test purposes.

©2015 IBM Corporation

*

References

Publications
� z/OS V2R1 MVS Authorized Assembler Services

Reference
� z/OS V2R1 MVS Initialization and Tuning Reference
� z/OS V2R1 MVS System Commands
� z/OS V2R1 MVS Using the Subsystem Interface

©2015 IBM Corporation

*

Questions?

