

DS8000 Replication Performance Considerations

Lisa Gundy DFSMS Copy Services Architect IBM Systems Division

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Copyright (c) 2014 by SHARE Inc. C () (S) (D) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

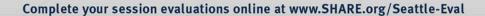
Agenda

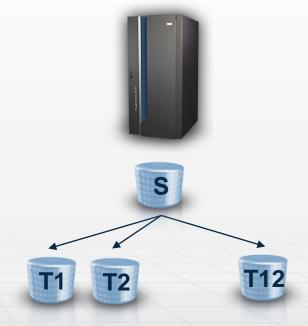
E Actions 11.1 **Replication Review** Multiple Incremental FlashCopy Multi-Target PPRC Performance • **PPRC** Synchronization • **Global Copy Collision Enhancement** zHyperWrite © Workload Based z/OS Global Mirror (XRC) Write Pacing Easy Tier Heat Map Transfer

DS8000 Replication Review

FlashCopy	Metro Mirror		Global Mirror		<u>Metro Global Mirror</u> Metro z/OS Global Mirror	
Point in Time	Synchronous		z/OS Global Mirror		<u>Nietro z/US</u>	<u>Giodal Mirror</u>
Сору	Mirroring		Asynchronous Mirroring		Three site and Four Site Synchronous & Asynchronous Mirroring	
Within the same Storage System	Primary Site A	Metro distance Site B	Primary Site A	Out of Region Site B	Primary Site A	Out of Region Site C/D
	Unit leaves		The grant weight		Met Site	
Complete your session eva		www.SHARE.org/Seattle	-Eval			SHARE in Seattle 2015

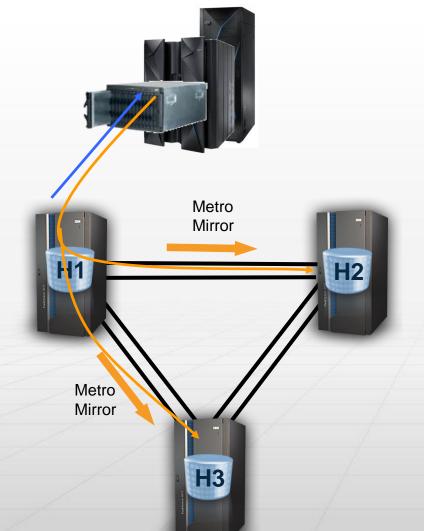
© Copyright IBM Corporation 2014


Multiple Incremental FlashCopy



Multiple Incremental FlashCopy

- Previously only a single incremental FlashCopy was allowed for any individual volume
- This provides the capability for up to 12 incremental FlashCopies for any volume
- A significant number of clients take two (or more) FlashCopies per day for database backup both of which can now be incremental
- The Global Mirror journal FlashCopy also counts as an incremental FlashCopy so the testing copy can now also be incremental
- The functionality is also available as an RPQ from R7.1.5

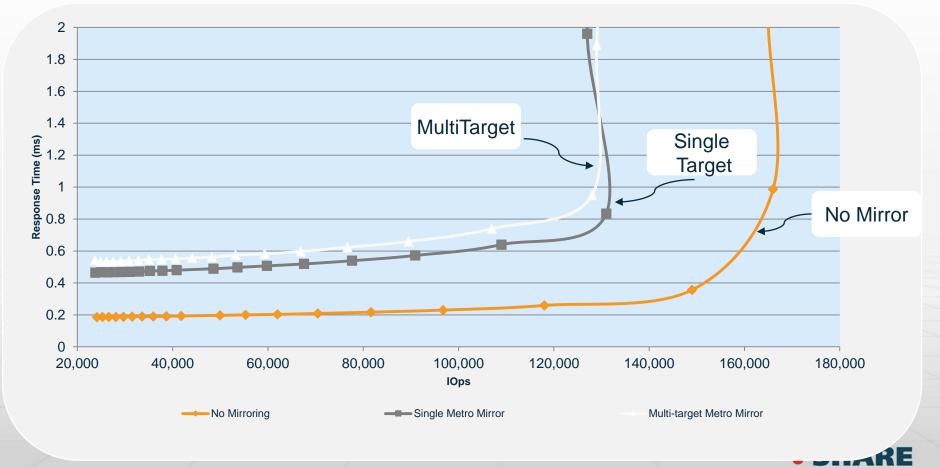


MultiTarget Metro Mirror Performance

Multi-Target Metro Mirror

Complete your session evaluations on me at www.SHARE.org/Seattle-Eval

- Allow a single volumes to be the source for more than one PPRC relationship
- Provide incremental resynchronization functionality between target devices
 - Use cases include
 - Synchronous replication within a datacentre combined with another metro distance synchronous relationship
 - Add another synchronous replication for migration without interrupting existing replication
 - Allow multi-target Metro Global Mirror as well as cascading for greater flexibility and simplified operational scenarios
 - Combine with cascading relationships for 4-site topologies and migration scenarios

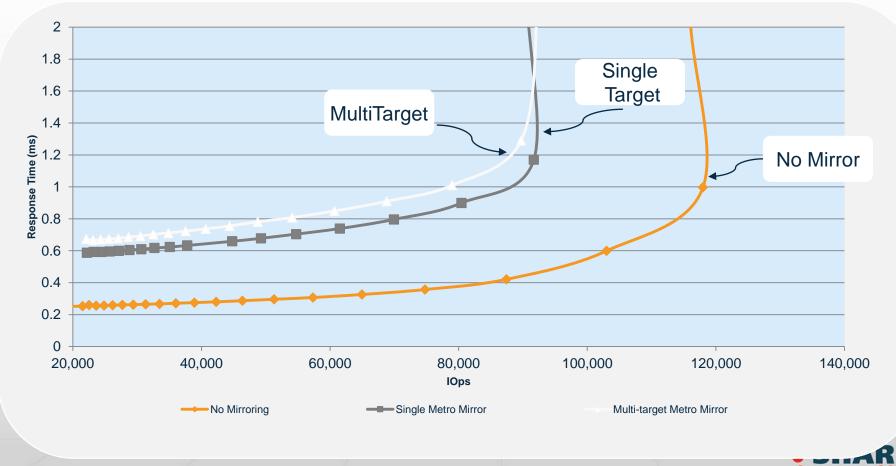


MultiTarget Metro Mirror Performance

in Seattle 20

4KB Writes

Complete your session evaluations online at www.SHARE.org/Seattle-Eval


© Copyright IBM Corporation 2014

MultiTarget Metro Mirror Performance

in Seattle 2

27KB Writes

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

© Copyright IBM Corporation 2014

PPRC Synchronization

PPRC Synchronization

- The asynchronous copying of data from a PPRC primary to a secondary.
- Copies data that is out-of-sync between primary and secondary
 - Initial copy when a pair is established or resumed
 - Global Copy / Global Mirror to asynchronously transfer updated data

H1

Pre-7.4 Design

- Volume based
 - When a volume spans ranks, only the part on one rank copied at a time
- Did not scale with volume size
 Resources allocated per volume, regardless of size
- No priority mechanism
- Unable to handle multiple relationships on a volume for MultiTarget PPRC

Objectives

- Support MultiTarget PPRC
- Finish the copy as quickly as possible
 - Fully utilize the PPRC links
- Minimize the impact on other work
 - Do not overdrive the ranks on the primary
 - Minimize impact on host I/O

Do the most important work first

Priority scheme

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

© Copyright IBM Corporation 2014

H2

H1

New Design

- Balances workload across:
 - PPRC Ports
 - Extent Pools
 - Device Adapters
 - Ranks
- Assigns priorities

 For example, forming GM consistency groups > Resynchronization

Unit of work is an extent – Scales with volume size

Global Copy Collision Avoidance

Global Copy Collision

Collision definition:

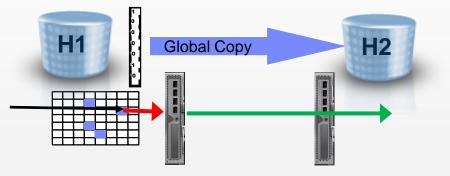
- Track is locked for Global Copy to transfer it to the secondary
- Host write occurs for same track.

Result:

- Host write must wait for Global Copy transfer to complete
- Impact to application

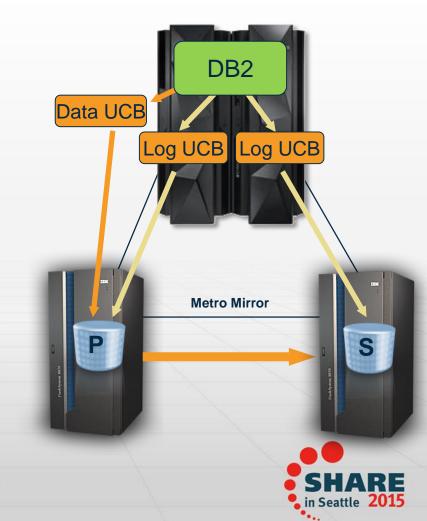
Track in the process of being sent is locked to prevent writes from occurring

- Not usually a problem except for situations with
 - Have unstable networks
 - Have high latency / long distance networks
 - Have workloads with a high rate of data rereference (e.g. logging)
 - Have very latency sensitive applications

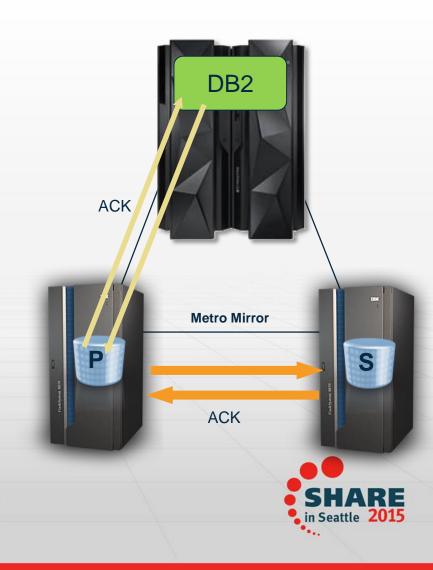

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

Global Copy Collision Avoidance

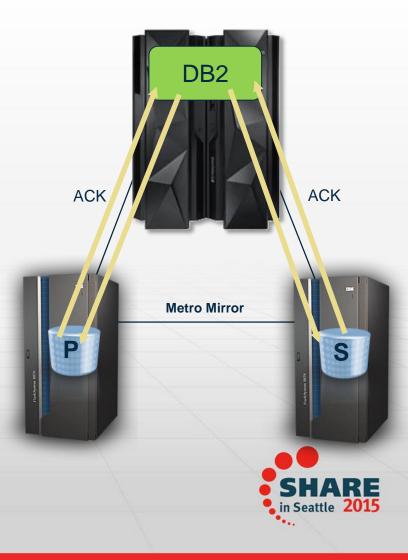
- Global Copy releases track lock after transfer of data to local host adapter
- Allows Host Write to access track immediately without waiting for Global Copy transfer to complete
- Global Copy detects when track has been modified by another host write
 - Available with R7.4 and as RPQ on R7.2 and R6.3


IBM zHyperWrite

zHyperWrite

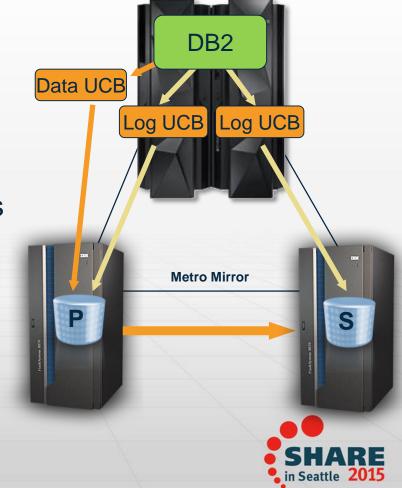

- Improved DB2 Log Write Performance with DS8870 Metro Mirror
 - Reduces latency overhead compared to normal storage based synchronous mirroring
- Reduced write latency and improved log throughput

DB2 Log Write with Metro Mirror


- 1. DB2 Log Write to Metro Mirror Primary
- 2. Write Mirrored to Secondary
- 3. Write Acknowledged to Primary
- 4. Write Acknowledged to DB2

Write with zHyperWrite

- 1. DB2 Log Write to Metro Mirror Primary and Secondary in parallel
- 2. Writes Acknowledged to DB2
- 3. Metro Mirror does <u>not</u> mirror the data.

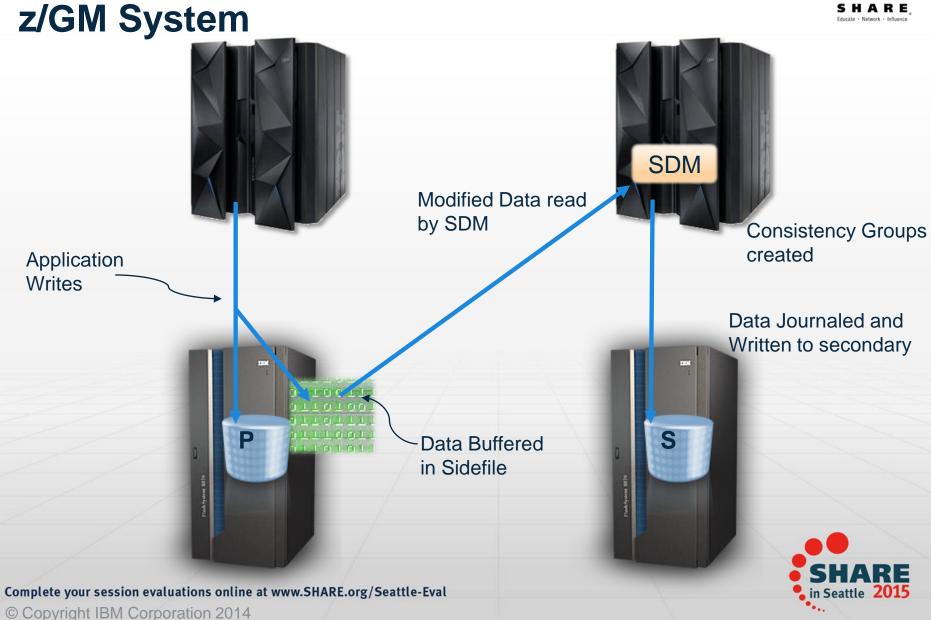


IBM zHyperWrite

- Supports HyperSwap with TPC-R or GDPS
- Enabled through

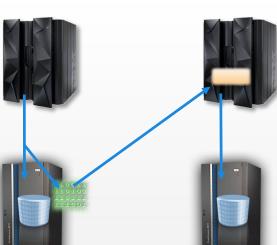
- SYS1.PARMLIB(IECIOSxx)
- SETIOS command
- DS8870 R7.4, IOS, DFSMS PTF's

z/OS (XRC) Global Mirror Workload Based Write Pacing



z/GM (XRC) Workload Based Write Pacing

- Need for Write Pacing
- Current Write Pacing
- Limitations of Current Write Pacing
- Requirements
- Use of Workload Manager (WLM)
- Example
- Implementation Requirements

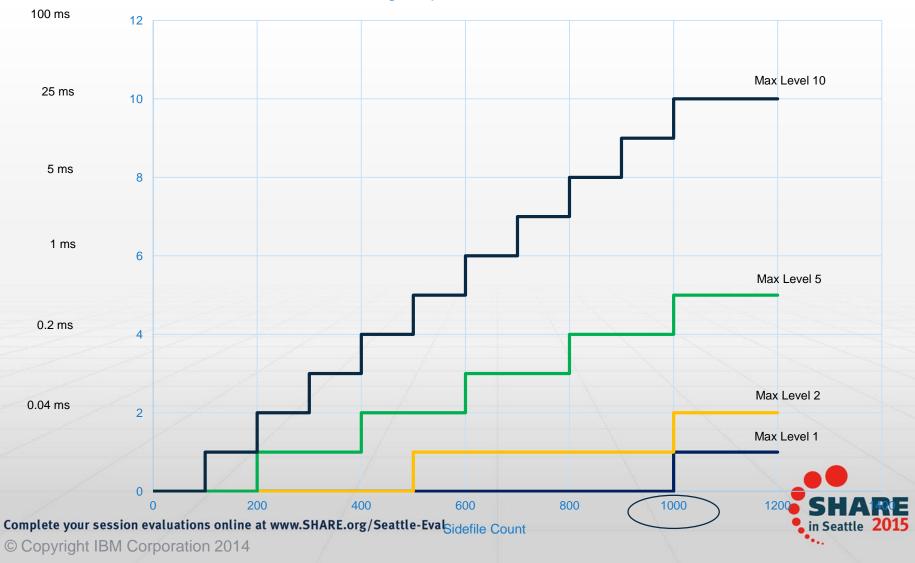


Need for Write Pacing

- Write data is buffered in the DS8000 sidefiles
 - Maximum sidefile size is finite
- Burst write rates can exceed capacity to offload data
 - Sidefiles grow
 - RPO increases
 - Possible suspension if persists
 - Write Pacing monitors sidefile size and injects delays to flatten out peaks of the write rate

Previous XRC Write Pacing

- Volume based
 - Sidefile count monitored for each volume
- Thresholds and Maximum Delay are specified for each volume
 - Different volumes may have different values
- If the sidefile count for a volume grows:
 - Delays injected for writes to that volume
 - Delay starts very small
 - Delay increased if sidefile count increases, up to maximum allowed
 - Delay reduced if sidefile count decreases



Write Pacing Step Function

Delay / Level

Write Pacing Step at Threshold = 1000

Limitations to Previous Write Pacing

- Different applications have different response time requirements
- These requirements are currently met by:
 - Assigning different pacing threshold and limits to different volumes
 - Placing data on volumes with the appropriate pacing levels
 - Requires significant planning for data placement

If requirements change, data must be moved to different volume

Write Pacing Requirements

- Meet application response time and performance objectives
- Maintain disaster recovery capability within desired Recovery Point Objective (RPO)
- Minimize the amount of manual planning and intervention

Automatically adapt to changing application needs

Workload Manager

- z/OS Workload Manager (WLM) provides ability to set performance goals
- Applications with similar goals are grouped into Service Classes
- WLM assigns resources to maximize goal achievement
- One part of the resource management is that I/O has an importance value
 - Six importance values:
 - 1 = Highest
 - 5 = Lowest
 - 6 = Discretionary (or default, when not part of a service class)

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

© Copyright IBM Corporation 2014

Workload Based z/GM Write Pacing

- Takes into account the I/O's importance value from WLM when determining the amount of pacing
- Each importance level is mapped to a Maximum Pacing Level
- Pacing levels are set so that higher importance I/O is paced less then lower importance I/O

Example with WL Based Pacing

- Given:
 - Threshold level = 1000
 - Sidefile count = 500
 - Volume Pacing level = 8

Importance Level	Pacing Level	Workload Pacing Delay	Volume Pacing Delay
1 (high)	4	0.04ms	0.2ms
3 (med)	8	0.2ms	0.2ms
5 (low)	12	1.0ms	0.2ms

Delay varies based on I/O's importance

Implementation Requirements

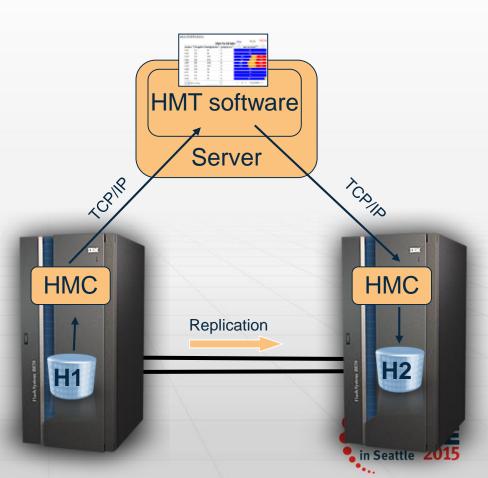
- Configure WLM
- Define Workload Classes
- Enable IO Priority Management
- Determine maximum delay for each workload class
- Specify these values in the XRC PARMLIB

Easy Tier Heat Map Transfer

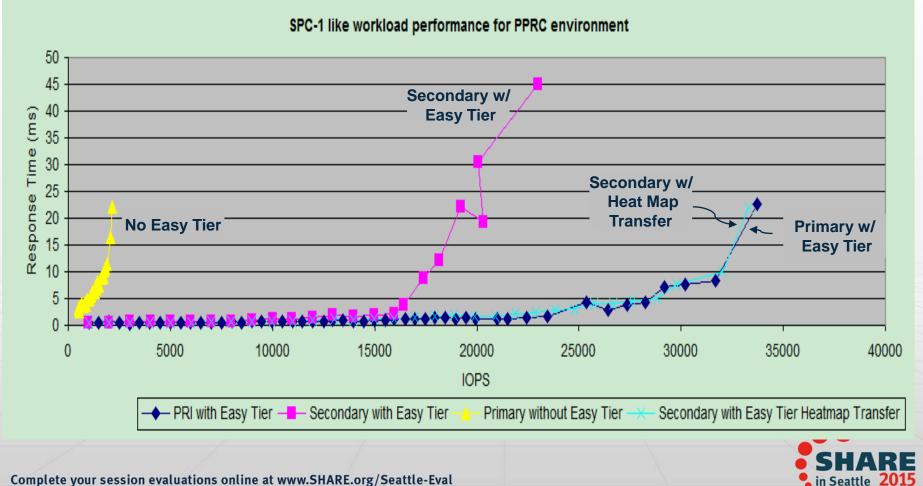
Easy Tier Heat Map – With PPRC

- Heat Map maintained at both the primary and the secondary
- But... I/O at the secondary is different from that at the primary

SHARE in Seattle 2015

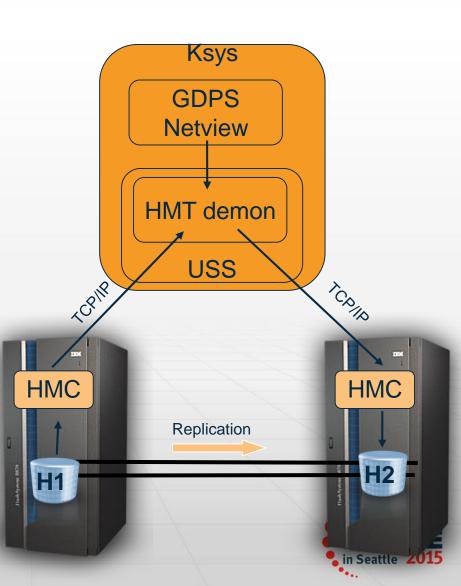

H2

Replication


Easy Tier Heat Map Transfer

- Transfers Easy Tier Heat Map information for a volume
- Out of band software implementation
- TPC-R and GDPS support as well as standalone utility

Heat Map Transfer Measurement


Complete your session evaluations online at www.SHARE.org/Seattle-Eval

© Copyright IBM Corporation 2014

Easy Tier Heat Map Transfer

- GDPS/PPRC support available in an SPE with GDPS 3.10 and GDPS/GM support available with GDPS 3.11
- GDPS/XRC support is planned to be released next
- 3 and 4 site support planned by combining the different functions

Session Summary

- Replication Overview
- Multiple Incremental FlashCopy
- MultiTarget PPRC Performance
- PPRC Synchronization
- Global Copy Collision Enhancement
- zHyperWrite
- Workload Based z/OS Global Mirror Write Pacing
- Easy Tier Heat Map Transfer

