
Insert

Custom

Session

QR if

Desired.

Expose Existing z Systems Assets as

APIs to extend your Customer Reach

Unlocking mainframe assets for mobile and cloud

applications

Asit Dan
z Services API Management, Chief Architect

asit@us.ibm.com

mailto:asit@us.ibm.com

Discussion points

 Business drivers/opportunities for leveraging z

Assets as APIs
o API Economy, Mobile, Quick Wins and Improving consumability and

governance

 End-to-end Architecture and Roles
o z/OS Connect and REST enablement

 Discovery of z based Services

 Collaboration across teams & crossing

organizational boundaries

 Incremental adoption

3

Insert

Custom

Session

QR if

Desired.

• API Economy

• Unlocking z assets for mobile and cloud
applications

• Consumability and governance

Exposing z Assets as APIs

6

6

Creating new opportunities by extending

customer “reach” by exposing z based

core business functions as APIs

1. Consumability of the APIs is Key:

 Easier creation and assembly of API from existing assets/services

 Visibility of APIs to internal and external developers

 Easier registration (by consuming applications) and set up including managing entitlement

2. Retaining business control (e.g., enforcing entitlement, accountability/chargeback) and gaining

business insight in API invocation

 Securing APIs using a secure GW from unwanted external invocations (mapping to application level

security) and enforcing workload entitlement

 Business Monitoring of API access in gaining business insight on the use of APIs by external

applications, and for accountability/chargeback

E

n

t

e

r

p

ri

s

e

S

e

r

v

i

c

e

s

CICS

IMS

WAS

TPF

On-Premise

Enterprise APIs

Cloud APIs

Mobile

Applications

Cloud-based

Services

Mobile, Cloud and Third-party Applications invoking z Services using APIs

Why API Management?
Business challenges addressed with APIM in exposing z based services/assets

7

Making APIs consumable requires publishing not just what
business functions they perform, but various additional details
on their use, and making it easy for app developers to sign up

• Listing and categorizing APIs for easy to find

• Describing details on how to invoke an API

An example public site
listing its published APIs
(similar to many others
Twitter, Amazon, etc.)

8

Exposing Enterprise Services as APIs

• Improving consumability includes listing APIs in a

browsable/searchable catalog, and making it easy to register

applications with the right entitlement level

• Retaining control includes not only enforcing entitlements and

managing workloads, but also providing insight based on access

history and accountability for chargeback.

9

SOA efforts have been driven by achieving developers’ productivity

gain and enabling reuse of functions, i.e., focused on development of

services.

API Management, on the other hand, is driven by consumption of

these services, i.e., improving consumability of these services for both

external and internal developers of applications accessing these APIs,

while also retaining control by the providers of these APIs

1. APIM for Mobile
- Client is looking to start/expand a mobile deployment

- Mobile app requires access to backend services
- Client requires the ability to monitor and manage usage of backend
services by new mobile applications

2. APIM for Cloud
- As for mobile, client is looking to develop new applications but in this
case in the cloud.

- As above, these applications require access to backend services and
they need to monitor and manage usage of these existing services.
- Additionally, the client need the ability to publish these services so the
cloud developers (internal or external) can find and access services

3. APIM for Existing Services
- Client is seeking improved consumability and governance of existing
services

- Looking for the ability to charge back usage of existing services
- May be working with partners to provide access to existing services

- Client is seeking quick wins spurring business innovation

APIs for z Assets Adoption Scenarios

Insert

Custom

Session

QR if

Desired.

• Architecture and Roles for API creation
and consumption

• Discovery protocol

End-to-end Architecture for Discovering and
Accessing z Assets

Roles in Three-tier Architecture for API Creation

and Consumption

1. Development of enterprise services from existing z assets,

making it easy to invoke these applications (Bob)
• z application environments (CICS, IMS, WAS) provides tools and runtimes to develop

and invoke Web and REST based services from applications based on COBOL and

PL/I

• IT role (Bob) is knowledgeable about this SW stack

2. Development and management of APIs exposing existing

enterprise services (Shavon)
• Addressing consumption and governance of APIs

• Create an API , discover a suitable existing service, and assemble this API from this

service

3. Development of Mobile, Cloud or Third-party applications

consuming APIs (Jane)
• Browse catalog and identify APIs to consume

• Register an application that will consume a specific API at a specified entitlement level

• Use of developer portal to test APIs

12

End-to-End Architecture for Mobile, Cloud and Third-party

Applications accessing z Assets/Services using APIs

1. Develop Services
(Web or REST)

On-Premise API Management

Cloud APIs

Mobile

Applications

Cloud-based

Services

Enterprise
Transaction
Processing

E

n

t

e

r

p

ri

s

e

S

e

r

v

i

c

e

s

CICS

IMS

WAS

TPF

Access to systems of

records and enterprise

data via APIs

Jane - Mobile app developer

Uses APIs to access Back-End services

Bob – developer of z based Services

Develops services from CICS, IMS and

other z applications

2. Develop
Enterprise API s

3. Mobile/Cloud
App Enablement

Service Enablement
• Enables invocation of z applications by
remote applications using standard protocols
(WSDL, REST)

• Converts SOAP or JSON into application
specific (e.g., COBOL, PL/I) data and invokes
applications

API Management
• Consumability by internal and external
developers (creation and look up)
• Entitlement Management (securing, workload
enforcement)
• Usage monitoring & Analytics

Mobile/Cloud/Third-party
Application Development
• Invokes APIs for accessing SOR

Shavon – API developer
Develops APIs from z based services

Enterprise APIs

Security & Integration API Gateway

(IBM DataPower Appliance)

Create, Publish, Manage

& Socialize APIs

(IBM API Management)

zServices API

APIM Communication with GW

13

Businesses are transforming themselves to

participate in the API economy

Provide self-service API

portals to external/internal

app developers

Expose business services

securely as APIs to developer

communities, and analyze API

usage

Manage & monitor the entire

API platform

On-premise

private
Off-premise

SaaS
Off-premise

private
Hybrid

IBM API ManagementHow do you rapidly and

securely expose your

business to this

developer ecosystem?

Share with
developers

3

Create, assemble
and define an API

1

Manage growth &
analyze results

4

Secure & scale
the API

2

IBM API Management:
“A Complete API Management Solution”

15

1. Defining APIs
- Adding resources

- Importing service definition

- API assembly definition

- Testing API definition

2. API Entitlement

- Definition of entitlement levels and rate

limits

3. API Security

- Basic authentication, Certificate,

OAuth, etc.

4. Versioning and promoting APIs

1. Registration and sign in
- Configurable Home page and sign up

page

2. API documentation
- List of APIs, and resources for each

API

3. Registration of a consuming

application

- Generation of app id, app secret

- Selection of entitlement level for an

API to be consumed

- Testing and using APIs

- Measuring your API usage -

dashboard

Life-cycle of APIs and Services

Manage like a product

Identify

business

need for an

API

Define,

Discover

assets &

Assemble

an API

Test &

Publish an

API

Publish to

Catalogs/

Developer

communities

Manage as an asset

Consume &

Provide

feedback by

communities

Identify a

Service

Implement a

Service

Test, Deploy

and Publish

a service

Integrate

with

Business

Processes

Consume &

provide new

requirements

API Life-cycle Service Life-cycle

May involve

component

reuseAsset

Discovery

New asset

requirements

Roles and Development Tasks for enabling Mobile and

Third-party Applications accessing Enterprise Assets

Bob
Creates enterprises services from existing z assets (CICS, IMS, WAS…)

 Uses an asset specific tool to generate service deployment artifacts (e.g., bindfile, WSDL) starting with an
existing asset, and deploys the generated artifacts in an appropriate runtime environment (e.g., z/OS Connect,
CICS TS/TG, IMS SOAP GW)

 Additionally, using an appropriate tool (e.g., CICS or IMS Explorer), explores asset details, and captures key
service metadata for later understanding of its business function (such as, description of business function,
business classification of this function, association of keywords, etc.)

 May also publish this service to an external registry (e.g., WSRR or other existing registries in customer
environments)

Shavon
Creates an API from an existing service, as well as various entitlement policies

 Discovers deployed services from various back-end application environments in determining an appropriate
service to expose

- Queries existing services based on matching business functions (i.e., service metadata)
- Navigates service list and views service description, other metadata and interface definition in understanding and

selecting an appropriate service

 Defines an API starting with the selected service interface
- Defines API name, description and resource
- Defines an appropriate transformations in mapping an API resource to an existing service interface definition
- Defines various entitlement policies

 May syndicate this API to multiple marketplaces (e.g., BlueMix)

Jane
Creates a mobile app invoking APIs
• Navigates and views APIs using the developer portal

• Develops app code invoking selected APIs

What is Service Discovery?

Identifying an existing service for performing a specific
intended business function, and getting detailed
definition of the service

1. Identifying: Searching, browsing, understanding and eventually,
selecting a service from a set of services
 Querying to retrieve a list of matching services
 Browsing information on retrieved services
 Getting additional details as necessary in understanding a service
 Selecting a service when a service is deemed a good match

2. Getting detailed service definition: Retrieving various details
of a selected service
 Service schema and description (e.g., WSDL or JSON) for API definition
 Getting additional technical details for API assembly including details on

runtime invocation and security protocols

Why is Discovering a Matching Service

Challenging?

Identifying a service or code for reuse

 Need to ensure that the code performs the intended functions for

the consuming application

 A good service documentation needs to include
• not just the technical details on the interface,

• but also the semantics of the terms, constraints on use,

• and description of business functions it performs

 Even for code reuse by the same development organization, needs

to look back at the associated business requirements, unless key

information is codified as associated business metadata, e.g.,

business classification of transactions, such as Payment, credit,

etc.

https://www-304.ibm.com/connections/blogs/aim/entry/ensuring_service_reuse_with_soa_governance?lang=en_us

Why is Discovering a Matching Service

Challenging?

 Searching on technical information regarding a service, e.g., service interface
definition (WSDL), is not sufficient, as it doesn’t provide a lot of understanding on
the business function a service implements
• Names of z services may be auto-generated from cryptic names of CICS and IMS transactions
• However, names of services and parameters, and even any presence of certain parameters in the definition (e.g.,

“interest rate”) can narrow the searches to likely reusable services (e.g., for “loan payment” business function)
• Based on a prior knowledge, searching for a specific technical attribute can be useful in identifying a service

 Detailed textual description of a service helps to distinguish business functions
amongst a set of closely related services
• Even with SOA governance, various trade-offs in the reuse of code may result in multiple closely related service

definitions
• Evolution in supporting new requirements, ownership and impact on the deployed services, performance

considerations, etc.

• Business glossary can be helpful in understanding meaning of parameters

 Business classification on services can help narrow the search to a small list of
services
• Business may define a prior categorization of business functions (e.g., “Payment”, “Loan application”)

• Annotating services with business tags can help identify services that may be relevant

 Key word search in any aspects of service - definition, description and other
metadata and even code - can help at the initial stage of discovery
• Customers already make use of such functions for reuse for code development

Identifying a service or code for reuse, i.e., ensuring that it performs the
intended function is always challenging

How to Search for a Matching Business

Service?

Searching on various service attributes

 Keyword search
 Search on keywords on any field on service definition, especially the textual description

of service
• Example: serviceKeyWord= interest rate or loan application

 Technical attributes:
 Search on well-known attributes of a service: serviceName, operationName,

messageFieldName, serviceSchemaType (WSDL or JSON), etc.

• Example: serviceName=loanPayment & serviceSchemaType = WSDL

 Business service classification (not supported)

 Search on a list of queryable business tags

Example: serviceClassification=loanApplication or addressValidation or creditCheck

 Search and navigate across pre-defined service classification hierarchy: z customers

may support a pre-defined grouping of services (with business service classification),

and a specific application environment may also provide the ability to navigate/query sub-

groups
• Example:ServiceClassificationGroup=loanApplication

z System

z/OS
Connect

JSON

WAS Liberty

Security & Integration API Gateway

IBM DataPower Appliance

On Premise
API Management

CICS

API

Invocation

Create, Publish, Manage &

Socialize APIs

(IBM API Management)

Discovery
services

Web

Services

REST
Services

Discovery and Invocation of z Systems based

Services

WOLA based
services

Web

Services IM
S

 S
O

A
P

G

a
te

w
a

y

CICS

E

n

t

e

r

p

r

i

s

e

S

e

r

v

i

c

e

s

Discovery of z Services for API Development

1. Get a list of deployed services (Service Identification)
- Filter based on technical and business service attributes

2. Get schema for a specific service (API Definition)
3. Get additional deployment details for a service (API Assembly)

- E.g., security protocol support, invocation uri

Service Development Tool and
Enablement Runtimes

 Web Services
CICS and IMS provides separate tools and

runtimes; TPF provides runtime libraries

 REST/JSON
CICS and IMS use common z/OS Connect runtime

22

NEW

NEW

NEW

New integrated capabilities in APIM and in z System for
easier streamlined creation of APIs

APIM and z Systems service discovery

23

Mobile apps

SOAP

Service

z/OS Connect

(*IMS, etc..)

API

API

API Management

Web apps

System z

IMS

ES IMS SOAP

Gateway

etc…

SOAP

ServiceSOAP

Service

REST

ServiceREST

ServiceREST

Service
2. Create API

Cloud /

Bluemix

apps

Development Time

Run Time

API

1. Discover

z SOR

Others…

:

* = Intended support

1. Define Service Registry in APIM

 Add SOAP Gateway as a custom

registry in APIM

 Specify host, port and the context

root of the SOAP Gateway

service registry

 Test and save connection

2. Discover, search and add API for z System

services

 With the SOAP Gateway registry selected, discover services by clicking the

search icon

 You can specify a text string to search for specific service. Or leave the search

field blank to retrieve all services.

 Once the list of matching services returned, select check box for the desired

service to create API.

2b. A list of service containing the

search text “IMS” is returned

2c. Select the desired

service to create API

2a. Specify text to search for

specific service or leave blank for

all services
Click icon to Search

3. API for z System service is created

 A new API is created for the IMS SOAP service. It is added to the list of APIs managed by

APIM

 APIs can be published and make visible publicly for internal or external users

APIM and Bluemix Integration

• APIM integrates with Bluemix to enable Bluemix developer to discover

APIs in APIM

27

• APIs in APIM can be published and accessible by Bluemix applications

as Custom APIs

Insert

Custom

Session

QR if

Desired.

• Lessons learned through POC

• Incremental adoption

Collaboration across Teams and
Incremental Adoption

 Need buy-in from the asset owners to champion and agree to

expose APIs
• Asset owners must see the new business opportunity and/or benefits of exposing as APIs in

improving consumability and governance

• Asset owners also must overcome their apprehensions in exposing business critical assets,

and be assured of APIM capabilities in retaining control for access to these assets

• Develop roadmap with an incremental approach for developing and consuming APIs (by

Mobile, Cloud and other third-party or internal app developers)

 Need collaboration across IT roles for developing z assets as APIs
• z Architects must participate in developing enterprise services from the existing applications

• Enterprise Architects must participate in designing, assembling and managing APIs using

APIM

29

Key Lessons Learned so far #1

Collaboration across key stakeholders, i.e., z Asset owners,

z Architects and Enterprise Architects are essential in

exposing z assets as APIs

Source: 3456A Leveraging z Systems Assets with API Management at Humana, InterConnect

Conference 2015, Craig Whitaker, Asit Dan

30

Key Lessons Learned so far #2

Two ends of the opportunity spectrum – Quick win spurring

innovation and improving consumability and governance

of existing assets

 Quick wins spurring Innovation
• Build APIs to expose newly developed simpler extensions to existing apps
• Mostly for simpler look up or retrieving real-time data
• Alternatively, incrementally creating new channels for updates by end-customers
• Simple APIs, however, with huge potential
• Simple REST based APIs are ideal
• Consumption via mobile apps

 Improving consumability and governance of existing assets
• Start with existing services (most likely Web services) if SOA approach is already in place
• Alternatively, identify/refine the components to be exposed as services/APIs (using the service

identification methodology)
• Define a roadmap for incremental adoption of APIs

• Co-exist with other application integration/invocation approaches until the newly defined APIs are fully adopted
by all consumers

Source: 3456A Leveraging z Systems Assets with API Management at Humana, InterConnect

Conference 2015, Craig Whitaker, Asit Dan

31

Key Lessons Learned so far #3

Considerations of both REST/JSON and Web Services are

appropriate

• REST/JSON based services
• For new APIs for simple data look ups or updates by end-consumers
• For consumption by Mobile apps and/or exposing to third-party apps
• Little constraints imposed by existing services, or adoption by existing consuming

applications
• When required, REST based APIs can be created easily from existing Web services using IBM

APIM

• Simpler datasets and/or validation schema requirements

• Web Services collaboration across IT roles for developing z
assets as APIs

• Continue with APIs based on existing Web Services when
• Significant changes are needed to adopt any new REST based APIs
• Complex dataset or complex Schema based validation is required
• No new consuming apps that demands simple REST based APIs

Source: 3456A Leveraging z Systems Assets with API Management at Humana, InterConnect

Conference 2015, Craig Whitaker, Asit Dan

Call to Action

 Leverage existing z assets by exposing as APIs

 Reach out to z asset owners in exploring scenarios around the
three entry points

1. Reach new customers and markets with new applications and solutions
accessing core business functions, through business partners

2. Improve experience of existing customers and/or deliver new services with
Mobile applications

3. Gain more business control and insight over access to the enterprise
services, while improving consumability and simplifying access to z assets

 Team up with enterprise architects and z architects - both
from the customer side and IBM – for designing an end-to-end
solution architecture

 Work with IBM through POC
 Use IBM APIM and z product capabilities in developing API based solution

 Identify/define incremental business scenarios, and try out through POCs

32

API Management Resources

• Product Page

– ibm.com/apimanagement

• API developer community

– developer.ibm.com/api

• Follow us on Twitter

– @ibmapimgt

• YouTube Channel

– youtube.com/ibmapimanagement

33

http://ibm.com/apimanagement
http://developer.ibm.com/api
http://youtube.com/ibmapimanagement

3/2/2015 34

MOBILE

Thank You

