

©2015 IBM Corporation

*

Ultra-short Presentation

Does my address space have enough storage for me?

Answer: Yes !!

©2015 IBM Corporation

*

Abstract

�This presentation will explore aspects of z/OS's vi rtual storage
interfaces, concentrating on what is referred to as “extended
addressability” (namely those functions not availab le in the
“normal” 31-bit address space)

©2015 IBM Corporation

*

History

�Pre-MVS/XA – highest address was 2**24-1

�Pre-MVS/XA SP1.2 - cross-memory was introduced

�MVS/XA (SP2.1.0) – highest address is now 2**31-1

�MVS/ESA (SP3.1.0) – introduction of data spaces and AR mode

�z/Architecture (OS/390 R10) – highest real address is now
(architecturally) 2**64-1

�z/Architecture (z/OS 1.3) – 64-bit virtual support

©2015 IBM Corporation

*

How much storage can my task access?

�Pre-MVS/XA without cross-memory: 2**24 bytes

�Pre-MVS/XA with cross-memory: 2**24 bytes across yo ur
address space and however many spaces you can acces s at that
time. Let's think of that as home + primary + secon dary, so “3”
spaces, and thus 3 * 2**24.

� MVS/XA – analogous, with 2**31 bytes for each of t hose address
spaces, so 3 * 2**31.

�MVS/ESA – add in as many data spaces as can fit on your
dispatchable unit and primary address space access lists (let's
think of that as 512 * 2**31)

�z/Architecture – 64-bit virtual support. Data space s are still
limited to 2**31, but your address space could acce ss 2**64 bytes
(and you could access other address spaces' 2**64 b ytes).

©2015 IBM Corporation

*

But....

Of course there are limitations such as
– the amount of real and auxiliary storage available (including

Flash),
– Limits set by customer exit (typically overrideable by

authorized programs) such as Region and Memlimit.

©2015 IBM Corporation

*

Agenda

� 31-bit storage

� Data space (AR-mode) storage

� 64-bit storage

� Cross-memory (XM) access

©2015 IBM Corporation

*

How is the 31-bit Address Space storage organized?

Highest to Lowest
�X'7FFFF000'-X'7FFFFFFF' not addressable by software c onvention
�Extended Private
�Extended CSA
�Extended LPA
�Extended SQA
�Extended read-write nucleus
�Extended read-only nucleus
�Read-only nucleus
�Read-write nucleus
�SQA
�LPA
�CSA
�Private
�Prefix Save Area (PSA)

©2015 IBM Corporation

*

How do I manage 31-bit Address Space storage?

�Get/Obtain: GETMAIN (or STORAGE OBTAIN). Note that
STORAGE OBTAIN,LINKAGE=SVC is the same as GETMAIN;
STORAGE OBTAIN,LINKAGE=BRANCH is the same as GETMAI N
BRANCH=YES
�Free/Release: FREEMAIN (or STORAGE RELEASE). STORAG E
RELEASE,LINKAGE=SVC is the same as FREEMAIN; STORAG E
RELEASE,LINKAGE=BRANCH is the same as FREEMAIN
BRANCH=YES
�Pooled storage: CPOOL (you can also use CSRPGET et al)
�Attributes: storage key, fetch-protection, subpool, “ownership”
(e.g., task)

©2015 IBM Corporation

*

How is a data space organized?

�Mostly organization of a data space is irrelevant – it is organized
in whatever way the exploiter chooses (just as is t he case with
the organization of private storage)
�Data spaces are allocated in 4K blocks
�As of z/Architecture, Page 0 is always available
�But we recommend avoiding use of page 0 (due to the frequent
error of using a pointer that is 0).

– As of z/OS 2.1, when you create your data space, sp ecify
HIDEZERO=YES

– Prior to z/OS 2.1 (this still works in z/OS 2.1), a fter you create
your data space, use
IARVSERV CHANGEACCESS,TARGET_VIEW=HIDDEN

�In both cases, accessing page 0 will blow up, after which you
can debug your error

©2015 IBM Corporation

*

How do I manage data space storage?

�Create the data space: DSPSERV CREATE
�Delete the data space: DSPSERV DELETE
�Pooled storage: CSRPGET (et al)
�Attributes: storage key, fetch-protection

©2015 IBM Corporation

*

“Space” Terminology

– “Space Token” (STOKEN). An STOKEN is unique across all
address spaces and all data spaces (past, current, and
future). An Address Space's STOKEN can be found in field
ASSBSTKN. A data space's STOKEN is returned by
DSPSERV CREATE.

– PASN (Primary Address Space Number) == PASID (Prima ry
Address Space ID = Primary ASID = P. CR4.48-63.

– HASN (Home ASN) = HASID = H. The initial dispatch s pace of
a work unit. PSAAOLD → ASCBASID.

– SASN (Secondary ASN) = SASID = S. CR3.48-63

©2015 IBM Corporation

*

How do I access data space storage?

�Access List and Access List Entry Token (ALET)
– An ALET locates an entry in an Access List which id entifies

“which space” to access.
– There are two types of access lists:

• Primary Address Space Number Access List (PASN-AL).
Every address space has one. Any work unit with tha t
address space as its PASN can access it.

• Dispatchable Unit Access List (DU-AL). Every work u nit
has one.

– Add an entry to an access list and get an ALET back :
ALESERV {ADD | ADDPASN},STOKEN=s,ALET=a
The ALET may reference an address space or a data s pace

– Remove an entry from an access list:
ALESERV DELETE,ALET=a

©2015 IBM Corporation

*

How do I use an access register?

�Set the ALET into the AR corresponding to a GR
�Be in “AR ASC Mode” (SAC X'200'). AKA “AR Mode”
�Use an instruction with that GR as a base register
�Special ALETs

– 0 – primary address space
– 1 – secondary address space. Could use MVCP, MVCS

instead; suggest not using secondary ASC mode
– 2 – home address space (software convention). Could use

home ASC mode instead, if authorized
�AR does not apply when GR is used as an index regis ter
(references primary address space)

– L x,0(0,y) y is base reg, AR y applies
– L x,0(y,0) y is index reg, AR y does not apply

©2015 IBM Corporation

*

AR Mode Miscellany

�Don't forget the AR-mode linkage convention
� Unless otherwise defined by the individual interfac e,

users of Access Registers are responsible for prese rving
their caller's ARs 2-13.

� If you use any macros, be sure that SYSSTATE is set properly to
indicate your AR mode state. For example,
SYSSTATE ASCENV=AR vs SYSSTATE ASCENV=PRIMARY

©2015 IBM Corporation

*

How is the 64-bit Address Space storage organized?

Highest to Lowest
�HV High private up to x'FFFFFFFF_FFFFFFFF'
�HV Shared
�HV Common
�HV Low private
�HV Local system area
�HV Storage for Java (2G-32G-1)
�31-bit address space (extended private, extended CS A, extended
LPA, extended SQA, extended read-write nucleus, ext ended
read-only nucleus, read-only nucleus, read-write nu cleus, SQA,
LPA,CSA, private, PSA)

©2015 IBM Corporation

*

How do I manage high virtual (64-bit) storage?

�Allocate storage: IARV64 GETSTOR | GETCOMMON |
GETSHARED – 1M units

– IARST64 – smaller units, still power-of-2
�Delete the storage: IARV64 DETACH
�Pooled storage: CSRC4GET et al, IARCP64
�Attributes: storage key, fetch-protection, dumping attribute

©2015 IBM Corporation

*

IARV64 REQUEST=GETSTOR
�COND={NO|YES}
�SEGMENTS / UNITS (and UNITSIZE)
�PAGEFRAMESIZE
�TYPE={PAGEABLE | DREF | FIXED}
�ORIGIN=o
�KEY=k
�FPROT={YES|NO}
�MEMLIMIT={YES|NO|COND}
�DUMP={LIKERGN | LIKELSQA | NO}
�CONTROL={UNAUTH | AUTH}
�GUARDSIZE=g, GUARDSIZE64=g, GUARLOC={HIGH | LOW}
�TTOKEN=t
�Is it local system area?

©2015 IBM Corporation

*

IARV64 REQUEST=GETCOMMON

�COND={NO|YES}
�SEGMENTS / UNITS (and UNITSIZE)
�PAGEFRAMESIZE
�TYPE={PAGEABLE | DREF | FIXED}
�ORIGIN=o
�KEY=k
�FPROT={YES|NO}
�OWNERCOM={HOME | PRIMARY | SYSTEM | BYASID w/
OWNERASID}
�DUMP={LIKECSA | LIKESQA}
�GUARDSIZE=g, GUARDSIZE64=g, GUARDLOC={LOW | HIGH}

©2015 IBM Corporation

*

Other IARV64 functions
� DETACH – free a memory object
� PAGEFIX / PAGEUNFIX
� PCIEFIX / PCIEUNFIX – fix for PCIE I/O
� PAGEOUT / PAGEIN – page out to auxiliary storage
� DISCARDDATA – “release” the data
� CHANGEGUARD – change amount, attributes
� LIST – information about memory objects
� COUNTPAGES – 4K pages backing the virtual range
� GETSHARED – HV that can be shared by multiple users
� SHAREMEMOBJ – gain access to shared HV
� CHANGEACCESS – VIEW={READONLY | SHAREWRITE |

HIDDEN}
� PROTECT / UNPROTECT – PROTECT makes it read-only

©2015 IBM Corporation

*

IARST64

Fast service to deal with storage in smaller chunks than
the 1M minimum of IARV64 (the system rounds up to a
power of two)
� Register-only interface (no parameter list). It clo bbers

just about every register unless caller provides a
savearea and uses REGS=SAVE

� Get or Free
� Common=NO

� OwningTask, MEMLIMIT applies, Is it LocalSysArea?
� Common=YES

� Owner
� Attributes

� FPROT, Pageable | Dref | Fixed, Key, Abend or RC

©2015 IBM Corporation

*

IARCP64

Simple pool services for cell sizes <= 520192 (the system
rounds up to a power of two)
� BUILD the pool (options similar to IARV64

REQUEST=GETSTOR to define storage attributes)
� The cells may be defined with a “trailer” area that

allows for setting on GET and checking on FREE
� GET an element (you may allow the pool to expand or

not)
� FREE an element
� DELETE the pool

©2015 IBM Corporation

*

AMODE 64 miscellany

�To get into AMODE 64: SAM64
�To get back to AMODE 31: SAM31
�To test your AMODE: TAM instruction
�If entered in AMODE 31 and then switching to AMODE 64, don't
forget to clear the high halves of any base regs th at might be
used in that AMODE. For example, LLGTR 12,12
�Don't forget the 64-bit GR linkage convention

– Unless otherwise defined by the individual interfac e, users of
64-bit GRs are responsible for preserving their cal ler's GR
high halves 2-14

�If you use any macros, be sure that SYSSTATE is set properly to
indicate your AMODE 64 state. For example,
SYSSTATE AMODE64=YES vs SYSSTATE AMODE64=NO

©2015 IBM Corporation

*

AMODE 64 miscellany (cont)

�An AMODE 64 routine should not rely on register 15 on entry
containing the entry point address (and it will not when control is
passed via such interfaces as ATTACH and LINK); it should use
relative branching.

©2015 IBM Corporation

*

AMODE 64 Considerations

�When using an interface, be sure to check that it s upports not
only your AMODE but also the type of storage you ar e intending
to provide. If the interface does not mention AMODE 64 and 64-
bit storage, it's wise not to assume that the servi ce accepts 64-
bit storage even if it supports AMODE 64. Use of “a ny” for
AMODE may indicate the pre-z/Architecture meaning o f “any”
(namely, 24- or 31-bit).

– I encourage you to bring to ID's attention any AMOD E 64
service that does not make it clear whether data ca n be
above 2G.

�My guess is that more services currently support da ta in data
spaces (input 31-bit address plus ALET) than suppor t data above
2G. It is often easy to upgrade a service to allow an AMODE 64
caller but considerably more difficult for that ser vice to support
data above 2G.

©2015 IBM Corporation

*

XM terminology

– PC instruction may be space-switch (changes PASN) o r non-
space-switch (PASN remains unchanged)

• Secondary may be set to old-PASN or new-PASN
– Cross-Memory mode (XM) when it is not true that H=P =S

• Work unit starts with H=P=S, lets say “27”
• Issues space-switch PC to 35. Now H=27, P=35, S=27

(when S is set to old-PASN which was 27)
• Issues space-switch PC to 42. Now H=27, P=42, S=35

– PR instruction (or PT when not-stacking)

©2015 IBM Corporation

*

XM terminology (cont)

�Key-mask: a 16-bit area in which each bit correspon ds to the
corresponding key (bit 0 to key 0, etc.)
�PSW-key mask (PKM). 16-bits in CR3. PKM is ignored if in
supervisor state. It can confer additional authorit y.

– For example: If you are “key 8” problem state but y our PKM
has the “key 0” bit on, then you are allowed to swi tch to PSW
key 0.

– z/OS must be very careful in managing the PKM to ma ke sure
that unwanted bits do not get set.

�There are also “AKM” (Authorization key mask) and “ EKM”
(Entry key mask)

©2015 IBM Corporation

*

XM terminology (cont)

�Linkage Table (also Linkage First Table, Linkage Se cond Table,
Linkage Index or LX): involved in resolving a PC nu mber to its
definition (including the target routine)
�Entry Table (also Entry Table Entry, Entry Index or EX): involved
in resolving a PC number to its definition
�PC Number: consists of 12-/16-/24-bit LX, 8-bit EX and
(optionally) 32-bit sequence number

©2015 IBM Corporation

*

Basic PC vs Stacking PC interface

�Basic PC interface requires caller to save regs, an d requires
target to use PCLINK
�Stacking PC uses the linkage stack
�Prior to z/OS 1.6, many routines used non-stacking PC (they had
been created before there was a linkage stack). In z/OS 1.6 most
of the z/OS non-stacking PC's were changed to stack ing.
�Macro expansions, to allow for compilation with “ne w” macros
but execution on “old” releases remained unchanged unless told
“OK to rely on z/OS 1.6”

©2015 IBM Corporation

*

SYSSTATE OSREL
� Introduced in z/OS 1.6
� For example, SYSSTATE OSREL=ZOSV1R6
� Recommended to use the newest release that you can be sure

accurately reflects your possible execution environ ments
� Sample LXRES expansion fragments

� With SYSSTATE OSREL=ZOSV1R6: L / L / L / PC
� Without: STM / ESAR / ST / L / L / L / PC / L / SSAR / LM / L

©2015 IBM Corporation

*

Authority Table (AT) and Authority Index (AX)

�Located by ASTE (which is located by control regist er or access
list entry or entry table entry)
�2 bits per entry (P for Primary, S for SSAR), uses AX (CR4.32-47)

– P bit: Are you allowed to make this space your prim ary?
– S bit: Are you allowed (with SSAR or SSAIR) to make this

space your secondary?
�Also, for access list permission may use EAX (CR8.3 2-47)
�PC routine may define the EAX
�Authority Index (AX)

– Special value 0: neither Primary nor SSAR authority
– Special value 1: both Primary and SSAR authority
– Other values assigned via AXRES service

©2015 IBM Corporation

*

XM services

�AXRES, AXSET, AXFRE, ATSET
�LXRES – reserve an LX
�ETDEF – define entry table entries for PC routines
�ETCRE – create an entry table
�ETCON – connect user to an entry table
�ETDIS – disconnect user from an entry table
�ETDES – destroy (delete) an entry table
�LXFRE – free a previously-reserved LX
�PCLINK – applies only to non-stacking PC. Stay away if at all
possible. Don't use non-stacking PC if at all possi ble.

©2015 IBM Corporation

*

XM services: AXRES

AXRES – reserve an Authorization Index (AX)
�Typically not used if you are using a system LX
�AXRES AXLIST=al
�AXLIST=al identifies a list of halfwords that indic ates the number
of AX's to reserve (usually 1) and room to return t he reserved
AX's

©2015 IBM Corporation

*

XM services: AXSET

AXSET – set the AX of home
�AXRES AX=ax
�AX=ax specifies the new AX value

©2015 IBM Corporation

*

XM services: AXFRE

AXFRE – free an Authorization Index (AX)
�AXFRE AXLIST=al
�AXLIST=al identifies a list of halfwords that indic ates the number
of AX's to free and the AX's to free

©2015 IBM Corporation

*

XM services: ATSET

ATSET – set an Authority Table entry for an Authori ty Index
�ATSET AX=ax,PT={NO|YES},SSAR={NO|YES}
�AX=ax identifies the AX which in turn identifies th e AT entry
�PT=p indicates how to set the Authority Table entry P bit
�SSAR=s indicates how to set the Authority Table ent ry S bit

©2015 IBM Corporation

*

XM services: LXRES
LXRES – Reserve one or more Linkage Indexes (LX's)
�LXRES {LXLIST=l | ELXLIST=el},
 [LXSIZE={12|16|23|24},]
 [REUSABLE={NO|YES},]
 [SYSTEM={NO|YES},]
�A system LX is automatically available to all addre ss spaces (the entry
table creator does the ETCON). All users of non-sys tem LX must
“connect”.
�Z/OS 1.6 introduced the concept of a “reusable LX” and an LX bigger
than 12 bits. Z/OS supports LX's up to 16 bits. But you should use
LXSIZE=23 or 24 if you can, to accommodate future e xpansion.
�A “reusable LX” has an LX > 12 bits and also has a sequence number.
When PC is issued, the PC number is used “normally” and the
sequence number is placed in the high 32 bits of GR 15. This LX can be
reused upon termination of the owner.
�If running on z/OS 2.1 or later, reusable LX is kno wn to be available.

©2015 IBM Corporation

*

XM services: LXRES (cont)

�For a non-reusable LX, reuse can still happen – if there are no
more connectors. Until that happens, the LX is temp orarily non-
reusable. But if this was a system LX and there wer e space-
switch entries, it is considered that there are alw ays connectors
and the LX is permanently non-reusable. However, fo r a system
LX, a newly restarted “owner” can re-connect, allow ing
“continued” use.
�LXLIST=l identifies a list of fullwords that indica tes the number
of LX's to reserve and provides room to return the reserved LX's
�EXLIST=el identifies an area that starts with a ful lword indicating
the number to reserve and provides room to return t he 8-byte
extended LX's (consisting of a sequence number and the LX)

©2015 IBM Corporation

*

XM services: ETDEF

ETDEF – build/define an entry table descriptor (ETD)
�The ETD consists of a header and one or more ETD en tries
�ETDEF TYPE=INITIAL creates a static header
�ETDEF TYPE=ENTRY creates a static ETD entry
�ETDEF TYPE=FINAL terminates the static ETD
�If modification is needed, you would define a suita ble area and
copy the static ETD there before modifying.
�The address of the resulting ETD is input to ETCRE
�ETDEF TYPE=SET,ETEADR replaces fields in an existin g
(potentially copied) ETD entry (often used with the ROUTINE
parameter)
�ETDEF TYPE=SET,HEADER changes the number of entries in an
existing (potentially copied) ETD header

©2015 IBM Corporation

*

XM services: ETDEF TYPE=ENTRY

ETDEF TYPE=ENTRY – define an ETD entry
�[AKM=a] – identifies the authority key mask. E.g., AKM=(2,3,5:8)
�[ARR=arr] – provide the 8-char name in quotes, or t he routine
address. The system will attempt to locate the rout ine in LPA
�[ARRCOND={NO |YES}] – YES indicates that the ARR is
conditional and should be ignored if found in an en vironment
(FRRs) where ARRs are not allowed
�[ASYNCH={YES |NO}] – NO indicates that the ARR cannot be
interrupted by asynchronous exits
�[CANCEL={YES |NO}] – NO indicates that the ARR cannot be
interrupted by cancel
�[ASCMODE={PRIMARY |AR}] – the PC routine is to be given
control in this ASC mode

©2015 IBM Corporation

*

XM services: ETDEF TYPE=ENTRY (cont)

�[EAX=e] – identifies the EAX for the stacking PC
�[EK=ek] – the PC routine is to be given control in this key
�[EKM=ek] – identifies the entry key mask (EKM). E.g .,
EKM=(0,4:6). See PKM
�[PARM1=p1] – 4 bytes to be placed in first 4 bytes of “latent
parameter”
�[PARM2=p2 – 4 bytes to be placed in second 4 bytes of latent
parameter
�[PC=STACKING |BASIC] – the PC is stacking or basic
�[PROGRAM=pname | ROUTINE=raddr] – identifies the pr ogram
name (the system will look for this in LPA or nucle us) or the
routine address (see RAMODE)

©2015 IBM Corporation

*

XM services: ETDEF TYPE=ENTRY (cont)

�[PKM={OR |REPLACE}] – create the PKM by OR with the EKM or
by replacing with the EKM
�[RAMODE={31 |24|64}] – the AMODE when the routine address is
provided
�[SASN={OLD |NEW}] – Upon the PC, set SASN to the OLD PASN
or to the NEW PASN
�[SSWITCH={NO|YES}] – YES indicates that the PC is a space-
switch PC, into the address space of the entry tabl e creator
�[STATE={PROBLEM|SUPERVISOR}] – the PC routine is to get
control in this ASC mode. If the PC can be issued i n supervisor
state, do not use STATE=PROBLEM. This could lead to
unexpected undesirable results. z/OS does not suppo rt
“authority decreasing” PC's (this is a not-well-kno wn fact)

©2015 IBM Corporation

*

XM services: ETCRE

ETCRE – create an entry table
�ETCRE ENTRIES=e
�ENTRIES=e identifies an area formed by ETDEF macro
invocations that comprise the Entry Table Descripto r that is to be
made into an entry table
�Register 0 on return from ETCRE is a token that is to be provided
via the TKLIST parameter of ETCON
�The owner of an entry table must be non-swappable

©2015 IBM Corporation

*

XM services: ETCON

ETCON – connect to an entry table
�ETCON TKLIST=tk,
 [LXLIST=l | ELXLIST=el]
�TKLIST=tk identifies a list of fullwords

– The first word is the number of entry tables to be connected
– Each subsequent word is the output token from a pre ceding

ETCRE
�LXLIST=l | ELXLIST=el identifies an area that is ou tput from a
corresponding LXRES service

©2015 IBM Corporation

*

XM services: ETDIS

ETDIS – Disconnect from an entry table
�ETDIS TKLIST=tk
�TKLIST=tk identifies a list of fullwords

– The first word is the number of entry tables to be
disconnected

– Each subsequent word is the output token from a pre ceding
ETCRE that indicates the entry table to disconnect

©2015 IBM Corporation

*

XM services: ETDES

ETDES – Destroy an entry table
�ETDES TOKEN=t[,PURGE={NO|YES}]
�TOKEN=t identifies the output token from a precedin g ETCRE
that indicates the entry table to disconnect
�PURGE=p specifies whether the entry table is first to be
disconnected from all linkage tables before being d estroyed.
Unless PURGE=YES, if any outstanding connections ex ist, the
caller of ETDES is abended.

©2015 IBM Corporation

*

XM services: LXFRE

LXFRE – Free one or more LX's
�LXFRE {LXLIST=l | ELXLIST=el}[,FORCE={NO |YES}]
�LXLIST=l | ELXLIST=el: identifies an area such as u sed on a
previous LXRES request that identifies the LX's to be freed
�FORCE=YES indicates that the linkage index is to be freed even
if entry tables are connected to it. Any connected entries are
disconnected before the linkage index is freed.

©2015 IBM Corporation

*

Create a server address space available to “some”

Setup
�LXRES ELXLIST=elxl,REUSABLE=YES,SYSTEM=NO,LXSIZE=23
�AXRES AXLIST=axl
�AXSET AX=a
�ATSET AX=a,PT=YES,SSAR=YES
�ETDEF's to define theETD
�ETCRE ENTRIES=theETD
�ETCON TKLIST=TKL,ELXLIST=elxl
Client would use:
�ATSET, ETCON

©2015 IBM Corporation

*

A server address space available to “some” (cont)

Cleanup
�ETDIS TKLIST=TKL, ATSET AX=a,PT=NO,SSAR=NO
�ATSET AX=a,PT=NO,SSAR=NO
�ETDES TOKEN=t
�AXSET AX=ax_0
�AXFRE AXLIST=axl
�LXFRE ELXLIST=elxl

©2015 IBM Corporation

*

Create a server address space available to “all”

Differences from “some”
�Instead of LXRES with SYSTEM=NO, use SYSTEM=YES. If the
intent is not to terminate (and if on abnormal term ination you
restart and re-connect), there is no need to use RE USABLE=YES
�Instead of AXRES, AXSET with returned AX, and ATSET , use
AXSET to set to an AX of 1:

 LHI 0,1

 AXSET AX=(0)

�For cleanup, there is no need to ATSET and AXFRE, b ut you
should AXSET to AX of 0:

 SLR 0,0

 AXSET AX=(0)

©2015 IBM Corporation

*

Create a server address space available to “all”
Setup
�AXSET AX=ax_1
�LXRES ELXLIST=elxl,REUSABLE=YES,SYSTEM=YES,LXSIZE=2 3
�ETDEF's to define theETD
�ETCRE ENTRIES=theETD
�ETCON TKLIST=tkl,ELXLIST=elxl

Cleanup
�AXSET AX=ax_0

If the server terminates and restarts, it would iss ue AXSET for the
new space and re-issue ETCON (and thus must make su re that
the TKLIST and ELXLIST areas are accessible). It wo uld not re-
issue LXRES.

©2015 IBM Corporation

*

Example: Server “some”: Static Data

@STAT DS 0D

ETD_Stat ETDEF TYPE=INITIAL

ETD0 ETDEF TYPE=ENTRY,AKM=(0:15), *

 ASCMODE=PRIMARY,EK=8, *

 ROUTINE=1, PROGRAM=MYMOD,ARR='MYMODA RR', *

 PKM=OR,EKM=8, *

 PC=STACKING,SASN=OLD, *

 SSWITCH=NO,STATE=SUPERVISOR

* ETD1 will be modified using ETDEF TYPE=SET, so

* provides the minimum to make the macro happy

ETD1 ETDEF TYPE=ENTRY, *

 ROUTINE=0,AKM=0

 ETDEF TYPE=FINAL

ETD_Stat_Len EQU *-ETD_Stat

LXRESLS LXRES MF=L

ETCONLS ETCON MF=L

ETDESLS ETDES MF=L

LXFRELS LXFRE MF=L

AX0 DC H'0'

 LTORG

©2015 IBM Corporation

*

Example: Server “some”: Dynamic Data

@DYN DSECT

ETD_Dyn DS CL(ETD_Stat_Len)

ETD1_Dyn EQU ETD_Dyn+(ETD1-ETD_Stat)

TermECB DS F

AXL DS 2H AXList

AX EQU AXL+2 AX

TKL DS 2F TKList

TK EQU TKL+4 Token

ELXL DS 3F Extended LXList

LXSeq# EQU ELXL+4 LX Seq#

LX EQU ELXL+8 LX

LXRESL LXRES MF=L

 ORG LXRESL

ETCONL ETCON MF=L

 ORG LXRESL

ETDESL ETDES MF=L

 ORG LXRESL

LXFREL LXFRE MF=L

 ORG ,

@DYNSIZE EQU *-@DYN

©2015 IBM Corporation

*

Example: Server “some”: Module Start

SERVSOME CSECT

SERVSOME AMODE 31

SERVSOME RMODE 31

 IEABRCX DEFINE

 IEABRCX ENABLE

 SYSSTATE OSREL=SYSSTATE,ARCHLVL=OSREL

 BSM 14,0

 BAKR 14,0

 LARL 12,@STAT

 USING @STAT,12

 SLR 13,13

 MODESET MODE=SUP

 STORAGE OBTAIN,LENGTH=@DYNSIZE,CALLRKY=YES

 LR 11,1

 USING @DYN,11

 MVHI TermECB,0

©2015 IBM Corporation

*

Example: Server “some”: LXRES, AXRES, AXSET

 MVHI ELXL,1

 MVC LXRESL,LXRESLS

 LXRES ELXLIST=ELXL,LXSIZE=23,SYSTEM=NO, *

 MF=(E,LXRESL)

 LTR 15,15

 JNZ IssueAbend

 MVC AXL(2),=H'1'

 AXRES AXLIST=AXL

 LTR 15,15

 JNZ IssueAbend

 AXSET AX=AX

 LTR 15,15

 JNZ IssueAbend

 LA 0,ETD_Dyn

 LA 14,ETD_Stat

 LA 15,ETD_Stat_Len

 LR 1,15

 MVCL 0,14

©2015 IBM Corporation

*

Example: Server “some”: ETDEF, ETCRE, ATSET, ETCON
 LARL 2,ETD1_Routine

 LARL 3,ETD1_Routine_ARR

 ETDEF TYPE=SET,ETEADR=ETD1_Dyn, *

 AKM=0, *

 ROUTINE=(2),RAMODE=31,ARR=(3), *

 ASCMODE=PRIMARY,EK=8, *

 PKM=OR,EKM=8, *

 PC=STACKING,SASN=OLD, *

 SSWITCH=YES,STATE=SUPERVISOR

 ETCRE ENTRIES=ETD_Dyn

 LTR 15,15

 JNZ IssueAbend

 ST 0,TK

 ATSET AX=AX,PT=YES,SSAR=YES

 LTR 15,15

 JNZ IssueAbend

 MVHI TKL,1

 MVC ETCONL,ETCONLS

 ETCON TKLIST=TKL,ELXLIST=ELXL, *

 MF=(E,ETCONL)

 LTR 15,15

 JNZ IssueAbend

©2015 IBM Corporation

*

Example: Server “some”: Sample Issuing PC

* Example of forming PC# from LX and EX, using Seq#

 L 15,LX Get LX

 OILL 15,X'01' Apply EX

 LMH 15,15,LXSeq#

 PC 0(15)

* Server might now wait to learn of need to cleanup

 WAIT ECB=TermECB

©2015 IBM Corporation

*

Example: Server “some”: Cleanup
 ETDIS TKLIST=TKL

 LTR 15,15

 JNZ IssueAbend

 ATSET AX=AX,PT=NO,SSAR=NO

 LTR 15,15

 JNZ IssueAbend

 MVC ETDESL,ETDESLS

 ETDES TOKEN=TK, *

 MF=(E,ETDESL)

 LTR 15,15

 JNZ IssueAbend

 AXSET AX=AX0

 LTR 15,15

 JNZ IssueAbend

 AXFRE AXLIST=AXL

 LTR 15,15

 JNZ IssueAbend

 MVC LXFREL,LXFRELS

 LXFRE ELXLIST=ELXL, *

 MF=(E,LXFREL)

 LTR 15,15

 JNZ IssueAbend

©2015 IBM Corporation

*

Example: Server “some”: End of module, etc

 STORAGE RELEASE,ADDR=(11),LENGTH=@DYNSIZE

 DROP 11

 MODESET MODE=PROB

 PR

IssueAbend ABEND 1

ETD1_Routine DS 0H

 PR

ETD1_Routine_ARR DS 0H

 BR 14

©2015 IBM Corporation

*

Summary

�There are lots of storage options available to you
�31-bit services
�AR-mode services
�64-bit services

And you may get to play with storage across multipl e address
spaces via XM services.

You will likely have plenty of storage available to your application
(customer-permitting); the decision of which form t o use lies with
you.

©2015 IBM Corporation

*

References

Publications
� z/OS V2R1 MVS Assembler Services Reference
� z/OS V2R1 MVS Authorized Assembler Services

Reference
� z/OS V2R1 MVS Extended Addressability Guide
� z/Architecture Principles of Operation

©2015 IBM Corporation

*

 Questions?

