
© 2015 IBM Corporation

SHARE San Francisco February 2013

Session 17093
SLIP Trap Bootcamp

Part 2

z/OS Systems Programming & zNextGen – March 3rd, 2015

Patty Little plittle@us.ibm.com
IBM Poughkeepsie

SHARE Seattle, March 2015

2© 2015 IBM Corporation SHARE Seattle, March 2015

Trademarks

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries.

•MVS
•OS/390®
•z/Architecture®
•z/OS®

* Registered trademarks of IBM Corporation

3© 2015 IBM Corporation SHARE Seattle, March 2015

SLIP
Examples

4© 2015 IBM Corporation SHARE Seattle, March 2015

Case 1

Key points:
Using COMP/REASON to qualify error

Using JOBNAME to qualify address space

Using ADDRESS to identify where error must occur

5© 2015 IBM Corporation SHARE Seattle, March 2015

� Some unidentified code is bad-branching to address 5000 and suffering an
ABEND0C4 PIC11, which we see in an IEA995I Symptom Dump message. This is
happening under job TESTJOB. You would like an SVC dump; however, none is
being produced.

� SLIP SET,COMP=0C4,RE=11,JOBNAME=TESTJOB,ADDRESS=(5000),
A=SVCD,END

� NOTES
� The PIC (Program Interrupt Code) on an ABEND0C4 is treated as a REASON code

by SLIP.

� The ADDRESS parameter is used on a non-PER trap to define the address where the
abend occurred or message was issued.

Case 1

6© 2015 IBM Corporation SHARE Seattle, March 2015

Case 2

Key points:
Using MSGID to qualify error

Using A=TRACE

Including STD,REGS on TRDATA

Using indirection to GTF trace specific data

7© 2015 IBM Corporation SHARE Seattle, March 2015

Case 2

� You have a program that runs frequently, issuing a message with message ID
STRT1 when it starts, and STOP2 when it ends. Your colleague thinks your program
is overlaying a fullword of data in the system CVT at offset +50. Write a pair of
SLIPs to defend your program’s honor by GTF tracing this CVT data on entry and
exit to your program. (Note: the CVT is pointed to by low core location 10.)

� SLIP SET,MSGID=STRT1,
A=TRACE,TRDATA=(STD,REGS,10?+50,10?+53),END

SLIP SET,MSGID=STOP2,
A=TRACE,TRD=(STD,REGS,10?+50,10?+53),END

� NOTES
� When using A=TRACE, always include TRDATA=(STD,REGS) for valuable debugging

information. Note that TRDATA can be abbreviated as TRD.

� In order for SLIP to write GTF trace records, GTF must be started with the SLIP option.

� The indirection could have been coded in “shorthand” as: 10?+50,+53

8© 2015 IBM Corporation SHARE Seattle, March 2015

Case 3

Key points:
Using PER SA to trap an overlay

Using indirection in the RANGE parameter

Using A=SYNCSVCD on a PER trap

9© 2015 IBM Corporation SHARE Seattle, March 2015

Case 3

� A real customer case:

The product FMID information in the CVTPRODI field of the CVT is being overlaid,
with surprisingly devastating system effect. This 8-byte field is in the CVT prefix at
offset –X’20’.This field content is established at IPL and should never get changed.
Take a dump when this field gets altered. (Note: Low core location X’10’ points to
the CVT. The CVT lives in common storage.)

� SLIP SET,SA,ASIDSA=SA,RA=(10?-20,10?-19),
A=SYNCSVCD,END

� NOTES
� ASIDSA=SA is used when monitoring alteration of common storage.

� The indirection in the RANGE is resolved when the SLIP is enabled.

� We could have written the range as: RA=(10?-20,-19).
� See APAR OA41190!

10© 2015 IBM Corporation SHARE Seattle, March 2015

Case 4

Key points:
Using REFBEFOR to correct corruption

Using REFBEFOR to copy corrupted data for diagnostic use

11© 2015 IBM Corporation SHARE Seattle, March 2015

Case 4

� Consider Case 3. If the field is static, we should be able to refresh it, thus preventing
the system impact.
Refresh the field back to its original content of ’HBB7780 ‘, before taking a dump.

� SLIP SET,SA,ASIDSA=SA,RA=(10?-20,10?-19),
A=(REFBEFOR,SYNCSVCD),
REFBEFOR=(10?-20,EQ,C8C2C2F7_F7F8F040),END

� NOTES
� An additional REFBEFOR triplet could be added prior to the existing one if we want to

copy the corruption, thereby preserving it for diagnostic purposes, prior to refresh:
� REFBEFOR=(targetaddr,EQC(8),10?-20,…)

� Use REFAFTER in the case of an overlay where the damage does not need to be
immediately corrected, so that you can see the content of the overlay in the dump.

� SLIP will update storage a max of 8 bytes at a time.

� The underscore within the REFBEFOR source value is optional and strictly cosmetic.

12© 2015 IBM Corporation SHARE Seattle, March 2015

Case 5

Key points:
Using a direct address in the RANGE parameter

Ramifications of using or omitting JOBNAME

Using DATA comparison to filter

13© 2015 IBM Corporation SHARE Seattle, March 2015

Case 5

� You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“WXYZ” control block keeps getting overlaid. This control block
lives in common storage at address 1E123000, and its eyecatcher is at
offset +0. Take a dump when the storage gets corrupted.

� SLIP SET,SA,ASIDSA=SA,RA=(1E123000,1E123003),
DATA=(1E123000,NE,E6E7E8E9),A=SYNCSVCD,END

� NOTES
� ASIDSA=SA is used when monitoring alteration of common storage.
� We don’t want to add JOBNAME to the SLIP as that would filter out an

overlay done by another job.
� The DATA compare will make sure that we don’t match on the case where

job BADLUCK is initializing the control block eyecatcher.

14© 2015 IBM Corporation SHARE Seattle, March 2015

Case 6

Key points:
Trapping a Private storage overlay

Using JOBNAME with MODE=HOME

Ramifications of JOBNAME=,MODE=HOME

15© 2015 IBM Corporation SHARE Seattle, March 2015

Case 6

� You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“ABCD” control block is being overlaid. You believe the application
itself is responsible for the overlay. The overlaid control block always
lives at private storage address 6000, and the eyecatcher of “ABCD” is
at offset +0. Take a dump when the storage gets corrupted.

� SLIP SET,SA,ASIDSA=‘BADLUCK’,RA=(6000,6003),
JOBNAME=BADLUCK,MODE=HOME,
DATA=(6000,NE,C1C2C3C4),A=SYNCSVCD,END

� NOTES
� MODE=HOME restricts a match to a non-cross memory environment. If

work in JOB BADLUCK PC’s to another address space, then corrupts the
control block in private storage of job BADLUCK, this SLIP won’t catch that.

� Length of constant determines how many bytes of DATA are compared.

16© 2015 IBM Corporation SHARE Seattle, March 2015

Case 7

Key points:
Common place scenario of wanting to monitor storage for

alteration after it is GETMAINed

Using dynamic PER (A=TARGETID)

Use of registers in the indirection in the RANGE parameter

Using PVTMOD

Using ID to name a SLIP

The BPER symbolic

Setting SLIPs as disabled originally then enabling desired SLIP

17© 2015 IBM Corporation SHARE Seattle, March 2015

Case 7

� Same as Case 6 except that this time we don’t know where the private storage-
resident “ABCD” control block lives until after it is GETMAINed. It is
GETMAINed by private load module GETSTOR at offset +X’1B0’. On return
from a GETMAIN, register 1 contains the address of the GETMAINed storage.
Once we have this information, we can set up the SA SLIP.

� SLIP SET,IF,DISABLE,P=(GETSTOR,1B0),ID=SLP1,
JOBNAME=BADLUCK,MODE=HOME,
A=TARGETID,TARGETID=SLP2,END

SLIP SET,SA,DISABLE,RA=(1R?+0,1R?+3),ASIDSA=‘BADLUCK’,
DATA=(BPER?+0,NE,C1C2C3C4),ID=SLP2,
A=SYNCSVCD,END

SLIP MOD,ENABLE,ID=SLP1

18© 2015 IBM Corporation SHARE Seattle, March 2015

Case 7: Notes

� Notes:
� When one PER trap targets another as it matches and disables, this is called

dynamic PER.
� We have given each SLIP an ID, which can be a maximum of 4 characters.

� The RANGE of the second SLIP is resolved at the time the SLIP is enabled,
using the value in register 1 at the time the first SLIP matched and disabled.

� The DATA parameter of the second SLIP is resolved when a PER event
occurs for that SLIP, that is, when the specified range is altered.

� The symbolic BPER can be used to indicate the Beginning address of the PER
range.

� When using dynamic PER, it is helpful to set all SLIPs disabled originally, then
enable the first in the chain.

� We do not need to specify JOBNAME and MODE on the second SLIP. The
environmental specifications on the first SLIP automatically apply to
all SLIPs in a dynamic PER chain. This cannot be overridden!

19© 2015 IBM Corporation SHARE Seattle, March 2015

Case 8

Key points:
Trapping a Private storage overlay that could originate from

outside the address space

Ramifications of omitting JOBNAME=,MODE=HOME

Qualifying a direct address with a jobname

20© 2015 IBM Corporation SHARE Seattle, March 2015

Case 8

� You have an application named BADLUCK which runs in its own address space of
the same name. The eyecatcher of the application’s “ABCD” control block is being
overlaid. This application interfaces with a number of other address spaces,
any of which could have done the overlay. The overlaid control block always
lives at private storage address 6000, and the eyecatcher of “ABCD” is at offset +0.
Take a dump when the storage gets corrupted.

� SLIP SET,SA,RA=(6000,6003),ASIDSA=‘BADLUCK’,
DATA=(‘BADLUCK’.6000,NE,C1C2C3C4),
A=SYNCSVCD,END

� NOTES
� Since we don’t know what address space or cross memory environment the overlayer is

running in, we have removed JOBNAME=BADLUCK and MODE=HOME.

� Since we don’t know which address space will be current when the SA occurs, we must
qualify the address of the DATA compare to indicate that address 6000 is within job
BADLUCK.

21© 2015 IBM Corporation SHARE Seattle, March 2015

Case 9

Key points:
Using an Instruction Fetch PER trap

Using LPAMOD to define the RANGE of a PER trap

Using registers as part of indirection in DATA parameter

22© 2015 IBM Corporation SHARE Seattle, March 2015

Case 9

� CSECT MYMOD lives at offset X’A00’ thru X’AFF’ in LPA load
module MYLOAD. To debug a logic problem, you want to trace the
instruction flow through the entire CSECT, writing a GTF record for
each instruction. You want to trace the X’20’ byte work area pointed
to by Register 11, as well as basic environmental information.

� SLIP SET,IF,L=(MYLOAD,A00,AFF),A=TRACE,
TRDATA=(STD,REGS,11R?+0,+1F),END

� NOTES
� For A=TRACE, the default is to have no limit on how many times the SLIP can

match. Use the ML parameter in you want a match limit on the SLIP.
� Always specify STD and REGS to get fundamental diagnostic information.
� Note that the X’100’ byte range that we are trapping is not huge, but if the code

executes very frequently or loops, this could cause impact.

23© 2015 IBM Corporation SHARE Seattle, March 2015

Case 10

Key points:
Common scenario where SLIP is used to trace data on entry

to and exit from a routine

Using A=IGNORE to disregard intervening instructions

Specifying multiple data pairs in TRDATA

Using 64-bit register notation

Using wildcarding to enable a set of SLIPs

24© 2015 IBM Corporation SHARE Seattle, March 2015

Case 10

� The results from the Case 9 SLIP suggest the problem is related to bad
parameter list content. Trace the parameter list ONLY on entry to and
exit from MYMOD. (Assume the last instruction of MYMOD is offset
X’FE’ into the CSECT.) The parameter list is pointed to by Register 1,
is X’10’ bytes long, and lives above the bar. Also trace the last X’20’
bytes of the X’30’ byte control block pointed to by the second word of
the parameter list. This block lives below the bar.

� SLIP SET,IF,D,L=(MYLOAD,A00,AFF),ID=SLP1,A=TRACE,
TRDATA=(STD,REGS,1G!+0,+F,1G!+4?+10,+2F),END

SLIP SET,IF,D,L=(MYLOAD,A01,AFD),ID=SLP2,
A=IGNORE,END

SLIP MOD,ENABLE,ID=SLP*

25© 2015 IBM Corporation SHARE Seattle, March 2015

Case 10: Notes

� This is not a violation of the rule that you can only monitor one PER
range at a time.
� Software parsing of SLIP syntax detects:

� The SLP2 range is a subset of the SLP1 range
� SLP2 has A=IGNORE

� PER CR10 and CR11 will hold the range from SLP1
� Software filtering will determine whether a PER event has occurred within the

subset range defined by SLP2 and take action accordingly.
� PER EVENT ignored for all but the first and last instruction
� First and last instruction produce trace data

� The order of SLIP entry is important! SLIP software processes traps in
a LIFO order, and we want it to encounter the A=IGNORE trap first.

� Enter both SLIPs disabled with similar IDs, use wildcarding to enable
simultaneously.

� In TRDATA we must use “xG!” instead of “xR?” to perform 64-bit
interpretation of the register.

26© 2015 IBM Corporation SHARE Seattle, March 2015

Case 11

Key points:
Using SLIP A=SUBTRAP to take different actions in

different subsets of the range being monitored

27© 2015 IBM Corporation SHARE Seattle, March 2015

Case 11

� What if we want to combine our actions from cases 9 and 10? Let’s trace the
parameter list on our first and last entries, let’s trace the X’20’ byte work area
pointed to by Register 11 for all the in between entries, and let’s take a dump and
stop the GTF trace if, on exit from MYMOD, we have a non-zero value in Reg15!

� SLIP SET,IF,D,L=(MYLOAD,A00,AFF),ID=SLP1,A=TRACE,
TRDATA=(STD,REGS,1G!+0,+F),END

SLIP SET,IF,D,L=(MYLOAD,A01,AFD),ID=SLP2,
A=(SUBTRAP,TRACE),TRDATA=(STD,REGS,11R?+0,+1F),END

SLIP SET,IF,D,L=(MYLOAD,AFE),ID=SLP3,
A=(SUBTRAP,SYNCSVCD,STOPGTF),DATA=(15R,NE,0),END

SLIP MOD,ENABLE,ID=SLP*

28© 2015 IBM Corporation SHARE Seattle, March 2015

Case 11: Notes

� This is not a violation of the rule that you can only monitor
one PER range at a time.
� Software parsing of SLIP syntax detects:

� The SLP2 and SLP3 RANGEs are subsets of the SLP1 RANGE

� SLP2 and SLP3 have A=SUBTRAP

� PER CR10 and CR11 will hold the RANGE from SLP1.
� Software filtering will determine whether a PER event has

occurred within the subset RANGEs defined by SLP2 or SLP3 and
take action accordingly.

� Once again the order of SLIP entry is important!

� Once again we enter the SLIP set disabled, then use
wildcarding to enable all simultaneously.

29© 2015 IBM Corporation SHARE Seattle, March 2015

Case 12

Key points:
Using a Successful Branch PER trap

Using NUCMOD (N) to define RANGE on a PER trap

Using NUCMOD with no offsets specified

Using A=STRACE,STDATA=

Using MATCHLIM

30© 2015 IBM Corporation SHARE Seattle, March 2015

Case 12 (a breather!)

� You are suffering an abend in your nucleus module SVC201. An SVC dump is
being produced by your recovery. However, in order to better understand the code
flow leading up to the abend, you would like to see all branches within SVC201 in
the system trace table. Include the X’10’ byte area pointed to by Register 6 in the
trace data.

� SLIP SET,SBT,N=(SVC201),
A=STRACE,STDATA=(6R?,+F),ML=10000,END

� NOTES
� A=STRACE causes an SPER system trace entry to be written.

� A maximum of X’14’ bytes of data may be written in an SPER entry.

� Default MatchLim for A=STRACE varies depending on SLIP parameters specified.
For this example, the default is 50, so we code our own to be much larger.

� When no starting/ending offset is specified on NUCMOD (or LPAMOD or
PVTMOD), the entire module is monitored.

31© 2015 IBM Corporation SHARE Seattle, March 2015

Case 13

Key points:
Using A=RECOVERY

Using BEAR symbolic

32© 2015 IBM Corporation SHARE Seattle, March 2015

Case 13

� A rogue program keeps branching into your code at offset +B0 in
LPA module MYLOAD. The rogue program moves around in
storage, but it has the eyecatcher ‘BADGUY’ at offset +0 and makes
the branch to your code at offset +X’3C’. You want to abend this
program whenever it branches to your code.

� SLIP SET,SBT,L=(MYLOAD,B0),A=RECOVERY,ML=1000,
DATA=(BEAR?-3C,EQ,C2C1C4_C7E4E8),END

� NOTES
� A=RECOVERY results in the interrupted unit of work being targeted with an

ABEND06F.

33© 2015 IBM Corporation SHARE Seattle, March 2015

Any questions??

