Session 17093 A
SLIP Trap Bootcamp “——

’, z/OS Systems Programming & zNextGen — March 39, 2015

Patty Little plittle@us.ibm.com
IBM Poughkeepsie

©2015 IBM Corporation SHARE Seattle, March 2015

Trademarks

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries.

‘MVS

*0S/390®
*zIArchitecture®
+Z/OS®

* Registered trademarks of IBM Corporation

Case 1

Key points:
Using COMP/REASON to quality error
Using JOBNAME to qualify address space
Using ADDRESS to identify where error must occur

Case 1

= Some unidentified code is bad-branching to address 5000 and suffering an
ABEND()L4 PI(] l w hich we see in an IEA99SI Sy mptorﬁ' Dump mcqqagc Thiq is

bemg produced

J y

m SLIP SET,COMP=0C4,RE=1 l,]()BNAME TESTL()B ADDRESS= (5()()()),
A=SVCD,END
. NOTES
s The PIC (Program Interrupt Code) on an ABENDOC4 is treated as a REASON code
by SLIP.

s The ADDRESS parameter is used on a non-PER trap to define the address where the
abend occurred or message was issued.

A=SYNCSVCD and A=SVCD default to a match limit (ML) of 1, meaning the
SLIP will disable after 1 match.

We don’t show the SDATA option on this SLIP. SDATA is used to specify what
general areas of storage are to be included in the dump. If SDATA is not
specified, SLIP A=SVCD or SLIP A=SYNCSVCD will use a default list of:
ALLPSA, CSA, LPA, NUC, RGN, SQA, SUMDUMP, and TRT. (Note: This list is
slightly different for A=<STDUMP or A=TRDUMP.) | personally like to use the
following list: SDATA=(RGN,CSA,LPA,SQA,ALLNUC,TRT,SUM,ALLPSA,GRSQ).

Case 2

Key points:
Using MSGID to quality error
Using A=TRACE
Including STD,REGS on TRDATA
Using indirection to GTF trace specific data

Case 2

You have a program that runs frequently, issuing a message with message ID

STRTT when it starts, and STOP2 when it ends. Your colleague thinks your program
is ov erla\ ing a fullword of data in the system CVT at offset +50. Write a pair of
SLIPs to defend your program ’s honor b} GTF tra(mg this CVT data on entry and
exit to your program (Note the CVT is pomted to b\ 10\\ core location 10.)

SLIP SET, MSGID= STRT]
A= TRACE TRDATA= (STD,REGS, 10°+50 107+53) END
V
SLIP SET, MSGID=STOP2,
A=TRACE,TRD=(STD,REGS,102+50,102+53), END

NOTES
= When using A=TRACE, always include TRDATA=(STD,REGS) for valuable debugging
information. Note that TRDATA can be abbreviated as TRD.
= In order for SLIP to write GTF trace records, GTF must be started with the SLIP option.

The indirection could have been coded in“shorthand” as: 102+50,+53

If these SLIPs are set specifying A=TRACE but GTF tracing is not active or has
not been started with the SLIP option specified, the SLIPs will still be accepted
and enabled. SLIP will put out a warning message that GTF is not active. These
SLIPs can still match, even if the action cannot be taken.

Sometimes a debugger will deliberately leave GTF off if they have coded
something such as: A=TRDUMP,ML=5 because they want a dump on the 5t
occurrence of something but don’t really care about the first 4 instances.

Case 3

Key points:
Using PER SA to trap an overlay

Using indirection in the RANGE parameter
Using A=SYNCSVCD on a PER trap

Case 3

A real customer case:

The product FMID information in the CVTPRODI field of the CVT is being overlaid,
with surprisingly devastating system effect. This 8-byte field is in the CVT prefix at
offset ~X"20".This field content is established at- IPL and should never get changed
Takp a dump when this field gets altered. (Note Low core location X"10’ points to

the CVT. lhe CVT liv es in common storage)

SLIP:S’ET,SA,ASIDSAZSA,RAZ(10?-20, 107-19),

A=SYNCSVCD,END
NOTES

= ASIDSA=SA is used when monitoring alteration of common storage.
m The indirectionin the RANGE is resolved when the SLIP is enabled.

h & ¥ AT— [L - l ranoce as A—lin‘) M 10\
Vve COuld nave writien wne rar 1gc as: —(lU =LU,y~1 7)

s See APAR OA41190!

A=SYNCSVCD and A=SVCD default to a match limit (ML) of 1, meaning the
SLIP will disable after 1 match.

Case 4

Key points:

Using REFBEFOR to correct corruption

Using REFBEFOR to copy Corrupted data for diagnostic use

10

10

Case 4

Consider Case 3. If the field is static, we should be able to refresh it, thus preventing
the system impact.
Rcfr(rsh the field back to its original content of "THBB7780 b(fore taklno a dump.

SLIP SET SA ASIDSA SA, RA (102-20,102-19), -
' . AZ (REFBEF()R SYNCSVCD),
“REFBEFOR= (107-20,EQ,C8C2C2F7_F7F8F040),END

NOTES

= Anadditional REFBEFOR triplet could be added prior to the existing one if we want to
copy the corruption, thereby preserving it for diagnostic purposes, prior to refresh:
REFBEFOR=(targetaddr,EQC(S),10?-20,. .)
= Use REFAFTER in the case of an overlay where the damage does not need to be
immediately corrected, so that you can see the content of the overlay in the dump.

SLIP will 11ndate storage a max of 8 h\ 'tes at a time.,

» The underscore within the REFBEFOR source value is optional and strictly cosmetic.

11

REFBEFOR and REFAFTER are extremely powerful. We recommend using this
option under the guidance of an experienced support representative.

11

Case 5

Key points:
Using a direct address in the RANGE parameter
Ramifications of using or omitting JOBNAME
Using DATA comparison to filter

12

192

Case 5

= You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“WXYZ” control block keeps getting ov erlaid. This control block
livesiin common storage at address 1E1 23000, and its eyecatcher is at
offset +0. Takc a dump when the storage gets corrupted.

m NOTES
s ASIDSA=SA is used when monitoring alteration of common storage.

= We don’t want to add JOBNAME to the SLIP as that would filter out an
overlay done by another job.

= The DATA compare will make sure that we don’t match on the case where
job BADLUCK is initializing the control block eyecatcher.

Case 6

Key points:
Trapping a Private storage overlay
Using JOBNAME with MODE=HOME
Ramifications of JOBNAME= MODE=HOME

14

14

Case 6

= You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“ABCD” control block is buno overlaid. You believe the application
itself is resp msll ¢ for the overlay The overlaid control block always
lives at priv ate storage address 6000, and the eyecatcher of “ABCD” i

at ()ffsct +0. Takc a dump When the storage gets corrupted.

v

. SLII? SET,SA,ASIDSA:‘BADL’UCK’ RA=(6000,6003),
' J()l NAME=BADLUCK MODBE —ll()ME,
“DATA=(6000,NE,C1C2C3C4),A=SYNCSVCD,END

= NOTES

s MODE=HOME restricts a match to a non-cross memory environment. If
work in JOB BADLUCK PC’s to another address space, then corrupte the

control block in private storage of job BADLUCK, this SLIP won’t catch that.

- Length of constant determines how many bytes of DATA are compared.

15

Remember that ASIDSA indicates the address space that the private storage
being monitored resides in. This is *not* a filter for who actually overlays the
storage. JOBNAME or ASID must be used to filter on who is doing the alteration.

15

Case 7

Key points:
Common place scenario of wanting to monitor storage for
alteration atter it is GETMAINed
Using dynamic PER (A=TARGETID)
Use of registers in the indirection in the RANGE parameter
Using PVTMOD
Using ID to name a SLIP
The BPER symbolic
Setting SLIPs as disabled originally then enabling desired SLIP

16

16

Case 7

Same as Case 6 except that this time we don’t know where the private storage-
resident “ABCD?” control block lives until after it is GETMAINed. It is
GETMAINed by private load module GETSTOR at offset +X"’1B0’. On return
from a GETMAIN, register 1 contains the address of the GETMAINed storage.

Once we have this information, we ¢an set up the SA SLIP.

SLIP‘ZV'SJ__ET,IF,DISABLE,P:((}EffST()R, 1B0),ID=SLP1,
JOBNAME=BADLUCK,MODE=HOME,
4A:TARGETID,TARGETID:SLPZ,END

SLIP SET,SA,DISABLE,RA=(1R2+0,1R?+3),ASIDSA=‘BADLUCK’,
DATA=(BPER?+0,NE,C1C2C3C4),ID=SLP2,
A=SYNCSVCD,END

SLIP MOD,ENABLE,ID=SLP1

17

In this example, we’re assuming that GETSTOR+1B0 points to the return point
from the GETMAIN.

If you accidentally try to enable both SLIPs simultaneously, SLIP processing will
detect that SLP2 is targeted by SLP1 and will leave it disabled.

A dynamic PER trap chain can consist of two or more traps. The chain cannot be
circular.

When PVTMOD=(modname,x,y) is specified but the “y” part is omitted, this is
equivalent to “y” = “x”, that is, the SLIP is targeting the single byte at offset x.
The same is true for PVTEP, LPAMOD/LPAEP, and NUCMOD/NUCEP.

17

Case 7: Notes

m Notes:

= When one PER trap targets another as it matches and disables, this is called
dynamic PER.

= We have given each SLIP an ID, which can be a maximum of 4 characters.

m The RANGE of the second SLIP is resolved at the time the SLIP is enabled,
using the value in register 1 at the time the first SLIP matched and disabled.

= The DATA parameter of the second SLIP is resolved when a PER event
occurs for that SLIP, that is, when the specified range is altered.

= The symbolic BPER can be used to indicate the Beginning address of the PER
range.

= When using dynamic PER, it is helpful to set all SLIPs disabled originally, then
enable the first in the chain.

= We do not need to specify]OBNAME and MODE on the second SLIP. The

wm e rE wes 2 2ae A ze a3~ P 4l £t CTTID mvsdonzand

~ ler azeseley ¢~
CI1VI1I Ulllllcllldl BPCLlllLdllUllb Oon lllc 11IDL OLIAT dulUllldllLdll)’ l)l)l)’ (80}

all SLIPs in a dynamlc PER chain. This cannot be overridden!

18

There is one other SLIP symbolic: BEAR . This is set up to be the Breaking
Event Address from the Breaking Event Address Register. This is the address of
the last instruction on this CP to cause a branch or a change in linear flow of
execution (e.g. PC or LPSW) prior to the PER interrupt.

18

Case 8

Key points:

Trapping a Private storage overlay that could originate from

outside the address space
Ramifications of omitting JOBNAME= ,MODE=HOME
Qualifying a direct address with a jobname

19

190

Case 8

You have an application named BADLUCK which runs in its own address space of
the same name. The eyecatcher of the application’s “ABCD” control block is being
overlaid. This application interfaces with a number of other address spaces,
any qf which could have done the overlay. The overlaid control block always
lives at’ Dl‘l\ atL qtoragc addru% 6000, and the eyecatcher of “~\BCD” is at offset +0.

""""""

DATA (BADLUCK’ 6000,NE C]C2C3C4),
HR= SYNCSVCD,END

NOTES

= Since we don’t know what address space or cross memory environment the overlayer is
running in, we have removed JOBNAME=BADLUCK and MODE=HOME.

ﬂlnm) we dnn f](nn“ w hl(‘l‘\ }\{‘l(erQQ snhace \-‘\l" I’)P (‘nrrpnt w th fhP gA nm*nrc we mnct

qualify the address of the DATA compare to indicate that address 6000 is w lthm job
BADLUCK.

20

20

Case 9

Key points:

Using an Instruction Fetch PER trap
Using LPAMOD to define the RANGE of a PER trap

Using registers as part of indirection in DATA parameter

21

21

Case 9

m CSECT MYMOD lives at offset X’A00’ thru X’ AFF’ in LPA load
module MYLOAD. To debug a logic problem, you want to trace the
instruction flow through the entire CSECT, w riting a GTF record for
each instruction. You want to trace the X’20’ byte work area pointed
to by Registef 11, as well as basm env 1r0nmcntal information.

v

a SLIP SET,IE,L=(MYLOAD A00 AfF)A TRACE
TRDATA=(STD,REGS, 1 IR?+0. +1F),END

m NOTES

= For A=TRACE, the default is to have no limit on how many times the SLIP can
match. Use the ML parameter in you want a match limit on the SLIP.

. Always specify STD and REGS to get fundamental diagnostic information.

= Note that the X’ 100’ byte range that we are trapping is not huge but if the code
executes very qulu&mﬁy ar Iﬁﬁpﬁ this could canse mmpm:*‘t

©2015 IBM Corporation SHARE Seattle, March 2015 22

29

Case 10

Key points:

Common scenario where SLIP is used to trace data on entry

to and exit from a routine

Using A=IGNORE to disregard inter vening instructions

Specifying multiple data pairs in TRDATA

Using 64-bit register notation

Using Wildcarding to enable a set of SLIPs

23

22

Case 10

m The results from the Case 9 SLIP suggest the problem is related to bad
parameter list content. Trace the parameter list ONLY on entry to and

exit from MYMOD. (Assume the last instruction of MYMOD is offset
X’FE’ into the CSECT.) The parameter list is pointed to by Register 1,
is X’ 10’ bytes long and ives above the bar. Also trace the last X’ 20’
bvtes of the X’ 30 l)\ te u)ntl ol l)]()(f 1)()111‘[« d to l)\ the second word of

the parameter list. This l)lm k live s 1)« low the bar.

= SLIP SET,IE,D,L= (MYLOAD AQO AFF),ID=SLP1,A=TRACE,
TRDATA= (STD REGS, 1GI40, +F, |G1+47+10,+2F),END

SLIP SET,IE,D, L (MYLOAD, AOl AFD) ID=SLP2,
A=IGNORE,,END

SLIP MOD,ENABLE,ID=SLP*

© 2015 IBM Corporation SHARE Seattle, Mar

24

24

Case 10: Notes

m This is not a violation of the rule that you can only monitor one PER
range ata time.
= Software parsing of SLIP syntax detects:
The SLP2 range is a subset of the SLP1 range
SLP2 has A=IGNORE
= PER CR10 and CR11 will hold the range from SLP1

= Software fllterlng will determine whether a PER event has occurred within the
subset range defined b\ SLP2 and take action accordmgl\

PER EVENT lgnored for all but the first and last instruction

First and last instruction produce trace data

m The order of SLIP entry is important! SLIP software processes traps in
a LIFO order, and we want it to encounter the A=IGNORE trap first.

= Enter both SLIPs disabled with similar IDs, use wildcarding to enable
simultaneously.

m InTRDATA we must use “xG!” instead of “xR?” to perform 64-bit

interpretation of the register.

25

A=IGNORE defaults to no match limit.

Note that an interrupt will occur on every instruction in this PER range, even
though we are IGNORE-ing all but the first and last instructions!

25

Case 11

Key points:

Using SLIP A=SUBTRAP to take different actions in

different subsets of the range being monitored

26

26

© 2015 IBM Corporation SHARE Seattle, March

Case 11

What if we want to combine our actions from cases 9 and 10?7 Let’s trace the
parameter list on our Iqut and last entries, let’s trace thg X’20’ b\ te work area
DOlntLd to b\ Register I3 1 for all the in between cntrles and let’s take a dump and

stop the GTF Lrau, if, on t.let from MYMOD, we ha\L_a non-zero value in Reg15!

SLIP SET,IE,D, L (MYLOAD,/\OO AFF),ID=SLP1,A= TRACE
TRDATA= (STD REGS,1G!+0,+F),END Vo

A= (SUBTRAP SYNCQVCD QT()PGTF) DATA (1 SR NE,0),END

SLIP MOD,ENABLE, ID=SLP*

27

27

Case 11: Notes

m This is not a violation of the rule that you can only monitor
one PER range at a time.

m Software parsing of SLIP syntax detects:
The SLP2 and SLP3 RANGEs are subsets of the SLP1 RANGE
SLP2 and SLP3 have A=SUURTRAP

s PER CR10 and CR11 will hold the RANGE from SLP1.

s Software filtering will determine whether a PER event has
occurred within the subset RANGEs defined by SLP2 or SLP3 and

take action accordingly.

= Once again the order of SLIP entry is important!

= Once again we enter the SLIP set disabled, then use
wildcarding to enable all simultaneously.

28

A=IGNORE defaults to no match limit.

Note that an interrupt will occur on every instruction in this PER range, even
though we are IGNORE-ing all but the first and last instructions!

289

Case 12

Key points:
Using a Successtul Branch PER trap
Using NUCMOD (N) to define RANGE on a PER trap
Using NUCMOD with no offsets specified
Using A=STRACE,STDATA=
Using MATCHLIM

29

20

Case 12 (a breather!)

® You are Sufferlng an abend in your nucleus module SVC201. An SVC dump is
belng produced by your recovery. How rever, in order to better understand the Code

= SLIP SET SBT,N= (SVCZOl), v
A=STRACE,STDATA=(6R?,+F),ML=10000,END

s NOTES
m A=STRACE causes an SPER system trace entry to be written.
= A maximum of X' 14’ bytes of data may be written in an SPER entry.

s Default MatchLim for A=STRACE varies depending on SLIP parameters specified.
For this example the default is 50, so we code our own to be much larger

AL ho sta no e Lk 2 0] NTTTOORANTY /T DAMANAT
vv nen Sta g/ (‘_‘Il(llllg oriset is S[JCLllle(l on iNuuc.ivivugp \U[‘ LIrAviuL or

PVTMOD) e entire module is monitored.

2015 IBM Corporation SHARE Se e, M

30

20

Case 13

Key points:

Using ASRECOVERY
Using BEAR symbolic

31

31

2015

Case 13

= A rogue program keeps branching into vour code at offset +B0 in

LPA module MYLOAD. The rogue program moves around in
storage, but it has the eyecatcher ‘BADGUY at offset +0 and makes
the branch to vour code at offset +X’3C’. You want to abend this

prooram whenever it branches to your code. s
3 - ; -

= SLIP SET, SBT L5 (MYLOAD,BO), A= RECOVERY ML=1000,
DATA= (BEAR?-3C,EQ,C2C1C4_C7E4ES),END

= NOTES

= A=RECOVERY results in the interrupted unit of work being targeted with an
ABENDOG6F.

IBM Corporation SHARE Se

32

292

=1

= >

st
ot =
(S

33

IBM Corporation

2015

33

