)
i

Session 17090 i
SLIP Trap Bootcamp &=~

z/OS Systems Programming & zNextGen — March 34, 2015

Patty Little plittle@us.ibm.com
IBM Poughkeepsie

©2015 IBM Corporation SHARE Seattle, March 2015

Trademarks

The following are trademarks of the International Business Machines Corperation in the United
States and/or other countries.

‘MVS

*0S/390®
*zIArchitecture®
*Z/OS®

* Registered trademarks of IBM Corporation

Table of Contents

Why do we need a trapping tool?
What is SLIP/PER?

Non-PER SLIP traps

PER SLIP traps

Filters for SLIP traps

SLIP Actions

Using indirection in SLIPs
Controlling SLIP traps

12
21
24
28
32

].‘ Why do we need to trap problems?

m z/0S Debugging Utopia — First Failure Data Capture
(FFDC) gathers “the doc, the whole doc, and nothing but
the doc” needed to resolve a problem

s FFDC receives a high focus from z/OS support and development

= z/0S Debugging Reality — Sometimes we need to
position ourselves to catch better documentation (“trap”)
on a problem recurrence
= Need to be able to recognize the error environment

m Need to be able to generate documentation to use in analyzing the
error

m Would be nice to be able to do this without having to modify code

In an ideal debugging world, we wouldn’t need SLIP because the system would
always generate exactly the documentation needed for problem diagnosis. Reality
is that sometimes a problem cannot be resolved from the documentation generated
by the first occurrence. In this case, it is sometimes necessary to wait for a problem
recurrence for an opportunity to gather better documentation. When this is
necessary, SLIP/PER (SLIP for short) can often help. SLIP allows the debugger to
very precisely define the error environment for which more documentation is
needed. It also allows the debugger to specify various types of documentation to
gather when this environment is detected, and allows for tailoring of this
documentation to ensure that the most relevant data is included in what is
produced. On top of all this, we will see that SLIP processing offers the ability to
monitor for a chain of conditions, or even to repair corrupted storage.

].‘ What is SLIP/PER? Debugging Power!

m SLIP — Serviceability Level Indication Processing
s Used to trap abends and messages
s Primarily software-driven

= PER — Program Event Recording

» Used to trap hardware events
Instruction Fetch
Storage Alteration

Successful Branch
s Hardware detects event and invokes SLIP software

» SLIP software applies filters and takes action(s)

m SLIP/PER is often generically referred to as SLIP

SLIP/PER is the premiere tool for trapping programming events in z/OS. It can trap
software events such as abends or messages, or it can trap hardware events such
as the execution (fetching) of an instruction or the alteration of an area of storage.
Its power is in its flexibility both in filtering on event environments and in generating
documentation.

The monitoring of hardware events is accomplished by the PER part of SLIP/PER
processing. When a monitored hardware event occurs, hardware detects this and
signals SLIP software. SLIP software handles the additional filtering and taking of
action as appropriate.

SLIP software also provides filtering for the software-generated events, and will take
action as appropriate.

Disclaimers

m We can’t tell you everything about SLIP/PER in an hour!

m We will discuss the most useful keywords but will not be

Comprehensive.

= You may not choose to use some of these features on your own, but
you should be aware of SLIP’s wide range of capabilities when
working problems with IBM support.
= SLIP L2 welcomes questions from software service representatives.
= We love questions! We will try to answer your question right
away. But SLIP is complex and sometimes subtle. If we don’t know
the answer off the top of our heads, we will get back to you!

= For all things SLIP, see the (very large) section on SLIP in the MVS
System Commands manual.

Due to bullet #1, we will not be covering the REMOTE parameter.

+

Non-PER SLIP traps

Non-PER SLIP traps

= Non-PER SLIP traps use only software to monitor for

error events

= Can monitor for abend codes (aka ‘completion codes’) and

messages

= Can have multiple non-PER SLIP traps active at the same
time, allowing one to trap for many different software

events simultaneously

Typically there are many completion code SLIPs active on a system at any given
time. Some are in place to collect dumps. Others are actually in place to suppress
unwanted dumps. There is no performance overhead associated with SLIP traps
that monitor for abend codes and messages.

Non-PER SLIP trap filters

s COMP=
Monitor for a particular complction code
Wildcarding is allowed: COMP=0CX will monitor for any ABENDOCx

If a recovery routine converts an abend, SLIP on the original abend code

s REASON=
Used with COMP=, monitors for a particular reason code
Wildcarding is allowed: REASON=000100xx
Only works if ABEND macro specified REASON=

If code puts a value into Reg15 instead of using the REASON= parameter on
the ABEND macro, SLIP will not trigger

= MSGID=

Monitor for a particular message 1D up to 10 characters in lcngth

Works as you'd expect, but see manual for bells, whistles, and restrictions

COMP can be shortened to “C=". REASON can be shortened to “RE=". The specified
REASON code can be anywhere from 1 to 8 digits.

MSGID SLIPs don’t work on certain types of messages, most notably branch entry WTOs
with the NLCKS, LOADWAIT, or SYNCH=YES

parameter specified. MSGID only is applicable for WTO messages to SYSLOG, not
messages to other logs. MSGID does accept message IDs that include blanks or special
characters if you put single quotes around the message ID,

e.g. MSGID="%TEST MSG’.

Using quotes also provides a loose form of wildcarding. See the SLIP section in the
System Commands manual for more information.

!.‘ Examples of non-PER SLIP traps

= SLIP SET,COMP=0C4,JOBNAME=TEST,
A=TRACE, TRDATA=(STD,REGS),END

= Write a GTF trace record when an ABENDOC4 occurs in job
TEST

s SLIP SET,C=X37,RE=000000x8,A=RECORD,END

m Write a record to logrec for any ABENDx37 with a reason code
of 08 or 18 or 28, etc

m SLIP SET,MSGID=IEA4211,A=SVCD,END
s Take an SVC dump when message IEA4211 is issued

10

We'll talk about the various SLIP filters and action keywords later.

10

Internal processing of non-PER SLIPs

m For abends:

s RTM receives control and calls SLIP processing (to see if the
particular abend is being monitored) prior to driving recovery
routines

s SLIP checks the abend error information against its defined
COMP= traps and takes action if it finds a match

m For messages:

s WTO processing invokes SLIP to see if the particular message is
being monitored

s SLIP checks the message ID against its defined MSGID= traps
and issues a transparent (retried) ABENDOGF if it finds a match

11

The fact that RTM drives SLIP before it drives recovery is important in the case of
converted abends.

A converted abend is when a recovery routine takes the original abend code and converts
it to one that is more meaningful to the component that suffered the error. For example,
EXCP recovery will sometimes convert an ABENDOC4 into an ABENDAOO. RTM saves
the original abend completion code in a field in the SDWA: SDWASABC at +X’90’ into the

SDWARCH1 (first recordable extension) which can be found in a logrec record of the abend.

This means that if you are SLIP-ing on an abend code that gets converted, you must SLIP
on the original abend code, since SLIP does not know about the converted one.

When SLIP finds a match for a message that it is monitoring, SLIP module IEAVTSMG will
actually issue an ABENDOG6F “under the covers”. This abend is transparent in that it gets
retried without every being recorded or taking a dump. Its purpose is to force abend entry
into RTM so that RTM’s existing logic to handle completion code SLIPs can be used to

11

handle the MSGID case as well. Once SLIP processing completes, RTM will get control
back and then drive a recovery routine that will retry the ABENDOG6F back into WTO
processing who will return control to the caller.

11

+

PER SLIP traps

12

Events Monitored by PER

n Capability to monitor certain hardware events

s Instruction Fetch (IF) — Fetching of instructions within a
specified instruction range

m Storage Alteration (SA) — Alteration of storage within a
specified range

s Successful Branch (SBT) — Branches made into or within a

specified instruction range

13

There is actually a 4t event that is monitored by PER as well: SAS catches stores
done by the STURA instruction as well as other alterations.

13

The Power of PER

m What PER SLIP traps can do:

Monitor for IF, SA, or SBT over a
range that can be hardcoded,
coded through indirection, or
identified as a module + offset
Filter events to a great level of
specificity

Generate tailored documentation
Trap on a sequence of PER
events (“dynamic PER”)

Update storage and register

content

Pseudo-IF/ THEN/ELSE logic

m What PER SLIP traps can’t do

Have more than one PER range

being monitored at a time

Hit a moving target

Detect “DAT off” events

Issue a command or drive an exit
Arithmetic

Handle circular dynamic PER

chains

NOTE: Some modules run with PER
processing disabled to preventrecursion.

14

SLIP/PER’s robust filtering capabilities allow for the trapping of very specific
problem scenarios.

SLIP/PER provides a wide variety of actions that can be taken. SLIP provides
parameters for tailoring of the documentation that it is asked to produce.

Dynamic PER is supported through the A=TARGETID parameter.

Updating of register and storage content is supported through the
A=REFBEFOR/REFAFTER parameter.

Pseudo-IF/THEN/ELSE logic is supported through the A=SUBTRAP parameter.

14

PER Processing

Pgm performs
action within PC FLIH SLIP/PER

PER Range \ Software

Apply filters

__________ Match?
{ \ é Take action R
___________ —
Return
m Hardware detects a monitored event m SLIP/PER software checks filters of
occurring and issues a program active PER trap to see if environment
interrupt (PIC 80) at the time of interrupt meets all
criteria
m The operating system’s Program = YES —Takes requested action(s)
Check First Level Interrupt Handler Usually operating system returns
(PC FLIH) receives control and control to point of PER interrupt
routes control to SLIP/PER software = NO — Operating system returns

control to point of PER interrupt

15

After most SLIP actions, control will be returned to the program that experienced
the PER interrupt. An exception is A=RECOVERY which instead targets the
interrupted unit of work with an ABENDOGF.

15

PER Implementation

= When a PER trap is activated:
s Control Reg9 on all CPs is set to indicate event being monitored

s Control Regs 10 and 11 on all CPs are set to reflect the range
being monitored

= PSWbit 1 is turned on, indicating to hardware that it should
monitor for the PER event defined via Ctrl Regs 9 thru 11

Whenever feasible based on the requested SLIP, the operating system will

limit the setting of this bit to units of work in designated address spaces
m Can only monitor one PER range at a time on a system

= PER monitoring by hardware is very efficient

- Poorly performing PER traps are the result of poor trap design

16

PER processing can be enabled and disabled under a running unit of work simply
by turning on and off the PER bit in the PSW. Some operating system code turns
off this bit while it is running in order to prevent recursion scenarios. However, most
operating system code runs enabled for PER.

16

Performance Considerations in

Designing PER Traps

= A PER trap does not have to match to affect performance
m Every instruction executed in an IF range triggers PER processing

= Every alteration of storage within a SA range triggers PER
processing

= Every branch to/within a SB range triggers PER processing

m Avoid setting a PER trap over a large range
m Be careful when setting a PER trap in a

frequently executed or frequently altered range

m Be careful of settinga PER trap in a performance path

= When in doubt, use PRCNTLIM parameter! (default=10%)

= Acts as a safety valve, disabling PER SLIP if trap using too much CP
i

The PRCNTLIM (Percent Limit) parameter limits how much CPU a PER trap is
allowed to consume on the system. If SLIP/PER CPU usage exceeds the indicated
percentage, the offending PER trap is disabled.

17

PER Performance and
the JOBNAME Parameter

= SLIP/PER providesa JOBNAME parameter which allows

for filtering of an event to only those units of work
running under a particularjob

s SLIP/PER will only turn on the PSW PER bit for units of work
belonging to the specified job(s)

PER interrupts will not be experienced by work running under other jobs

= Use JOBNAME whenever feasible

18

When using PVTMOD, it is advisable to use JOBNAME=, and also MODE=HOME
whenever feasible. If you are trying to catch an event that is occurring under a job
in a cross memory environment, MODE=HOME may not be feasible. However, be

sensitive to possible system performance issues that could result. Code a low
PRCNTLIM (1-2%) to be on the safe side.

18

Deﬁning PER Range to Be Monitored

m [F SA,and SBT

s RANGE RANGE=(beginningaddr,endingaddr)
Loaded into Control Registers 10 & 11 at time the SLIP is SET
RANGE is required on SA SLIPs

= IF and SBT only, instead of RANGE
m NUCMOD or NUCEP
s LPAMOD or LPAEP =(modname,startoffset,endoffset)
s PVIMOD or PVTEP

s SA only — identifies space where monitored storage resides
m ASIDSA ASIDSA= ‘JESZ’ or ASIDSA=3F or ASIDSA=SA
m DSSA DSSA:(‘MYJOB’.MYDSPACI) [for data space]

19

RANGE can be used to define the range to be monitored for SB, IF, or SA. SLIP permits indirection
to be specified in the RANGE parameter. This is resolved at the time the SLIP is set, and the
resulting address is placed into the control registers used by SLIP. Note that the ending address can
be omitted, in which case only the single byte indicated by the beginning address will be monitored.

NUCMOD & NUCEP, LPAMOD & LPAEP, PVTMOD & PVTEP can be used in a SBT or IF PER trap
instead of RANGE. For example, one can specify:

NUCMOD=(IEAVEPST,40,4F)

on an IF PER trap to monitor the fetching of instructions in the POST code between offset +40 and
offset +4F. This is much more flexible than having to hardcode the addresses in the RANGE
parameter. Note that specification of a starting offset and ending offset are optional. If neither is
specified, then the entire module is monitored. If ending offset is omitted, then only the instruction at
the starting offset is monitored.

Use ASIDSA or DSSA on every SA PER trap. If monitoring a private storage range in an address
space for alteration, specify the jobname or ASID owning that storage on ASIDSA. If monitoring
global storage, specifiy ASIDSA=SA. If monitoring data space storage, use DSSA.

19

Examples of PER trap ranges

= SLIP SET,IFFLPAMOD=(IEFBR14),A=SVCD,END

= Ifany instruction in LPA-resident load module IEFBR 14 is executed, take an
SVC dump
Default for A=SVCD is a MATCHLIM of 1 (trap disables after 1 match)

= SLIP SET,SBT,NUCMOD=(IEAVEPST, 200, 2FF),
A=TRACE, TRDATA=(STD,REGS),END

= Whenever an instruction is branched to within the range of 200 thru 2FF in
nucleus module IEAVEPST, write a GTF trace record
Default for A=TRACE is unlimited matches

= SLIP SET,SA,RA=(6000,600F),ASIDSA=‘MY]JOB’,
JOBNAME=PATTY,A=SVCD,END

s Ifcode running in job PATTY alters any private storage at

6000 thru 600F in MYJOB’s address space, take an SVC dump

20

Whenever possible, use NUCMOD/NUCEP, LPAMOD/LPAEP, or PVTMOD/PVTEP to define the
range for an IF or SBT PER trap. This makes the trap easier and more versatile. Sometimes

modules will change locations in storage, especially across an IPL, and a hardcoded RANGE value

may become incorrect.

The RANGE parameter must be used for SA SLIPs to define the range of storage to be monitored for
alteration. If NUCMOD/NUCEP, LPAMOD/LPAEP, or PVTMOD/PVTEP is used on a SA SLIP trap,
this does not define the range to be altered, but rather it acts as a filter to define who SLIP is wanting

to catch altering the specified range.

Note that the ASIDSA parameter defines the space where that range of storage lives, and JOBNAME

acts as a filter for who SLIP wants to catch altering the storage.

20

+

Filters for SLIP traps

21

Filters for SLIP/PER

m Filtering to an address space level
= JOBNAME home addr sp must have specified JOBNAME
= ASID primary addr space must have spccificd ASID

= Consider the case of a unit of work belonging to JOB ABC (ASID 100)
PC’ing to ASID 200 and abending with an ABENDOC6
SLIP C=0C6,JOBNAME=ABC will trap this (Home ASID=100=jobname ABC)
SLIP C=0C6,ASID=200 will trap this (Primary ASID=200)
SLIP C=0C6,ASID=100 will NOT trap this (Primary ASID=200, not 100)

n Filtering on what code triggered the event (non-PER or SA PER only)

= ADDRESS
= NUCMOD or NUCEP abend, message, or storage alteration done by
= LPAMOD or LPAEP code in specified address range

= PVIMOD or PVTEP

22

Filtering is done primarily by software, although some JOBNAME filtering occurs at
the hardware level. Software gets control as a result of the PER interrupt and
examines the defined traps in LIFO order to determine what filters to apply.

By definition, the HOME address space is the space where a unit of work lives,
where it starts off life. PRIMARY address space is the space where a unit of work
is presently executing, fetching instructions. When a program does a space-
switching PC, this causes the unit of work’s primary address space to change.
However, its home address space never changes.

Note that for non-PER traps and for SA PER traps, the NUCMOD/NUCEP,
LPAMOD/LPAEP, and PVTMOD/PVTEP parameters act as filters whereas for IF
and SBT PER traps, these parameters define the range to be monitored by
hardware.

22

Filters for SLIP/PER

[Filtering on environment

= MODE event occurred with work in specified mode
e.g. locked, disabled, problem state, SRB mode,
system key, home mode (P=H), etc.

= PSWASC event occurred with work in specified mode of

execution (home, primary, secondary, AR)

O Filtering on storage and/or register content

= DATA test register and/or stg content at time of event

23

After JOBNAME/ASID, the DATA parameter is probably the most commonly used
FILTER. It provides a large degree of filtering capability, including the ability to
perform bit checks and/or byte checks in registers or in storage. Multiple checks
can be made as part of the DATA filtering process.

The MODE and PSWASC are not heavily used (with the exception of
MODE=HOME on PVTMOD/PVTEP SLIPs). However, they offer a variety of
options for filtering the event being trapped to certain environmental conditions.

23

+

SLIP Actions

24

Actions for Non-PER traps

m For SVC dumps:

= SVCD take an SVC dump
= TRDUMP take SVC dump after “n” GTF trace records
= NOSVCD prevent recovery from taking an SVC dump
m For GTF trace:
= TRACE write a GTF trace record
= TRDUMP take SVC dump after “n” GTF trace records
= STOPGTEF stop collection of GTF trace records
= For logrec:
= RECORD record error information to LOGREC
m Other
= IGNORE to ignore the event
= WAIT to enter restartable wait state

Note: some actions can be combined.

25

SVCD takes an asynchronous (scheduled) SVC dump.

For a SLIP defined to disable after N matches (via the MATCHLIM parameter), TRDUMP
writes a GTF trace record for all N matches, and also takes an SVC dump on the Nth
match. STOPGTF will stop GTF trace.

Using A=RECORD is way to force an error to be recorded to LOGREC. (By default, errors
handled by FRRs are recorded and errors handled by ESTAE-type recovery are not.
These defaults can be overridden by the recovery routine.) However, the logrec will only
be written if there is some recovery routine established at the time the error occurs.

A=IGNORE says “do no further SLIP processing.” It does NOT mean “don’t take an SVC
dump.” If you want to suppress a nuisance SVC dump, use A=NOSVCD. There are also
SLIP ACTION keywords to suppress SYSABEND, SYSUDUMP, and SYSMDUMPs.
NODUMP may be used to suppress all dumps being generated for a particular error
condition.)

25

Actions for PER traps

m For SVC dumps:
= SVCD take an SVC dump

= SYNCSVCD take a synchronous SVC dump
(unit of work requesting dump does not
resume until dump is complete)

= TRDUMP take SVC dump after “n” GTF trace records

= STDUMP take SVC dump after “n” system trace records
m For GTF trace:

= TRACE write a GTF trace record

= TRDUMP take SVC dump after “n” GTF trace records

s STOPGTEF stop collection of GTF trace records

m For system trace:

= STRACE write a system trace record
= STDUMP (PER traps only) take SVC dump after “n” system trace records

Note: some actions can be combined.

26

SVCD takes an asynchronous (scheduled) SVC dump. The unit of work requesting the
dump gets control back and is allowed to run after the dump is kicked off (although dump
processing will later set all the TCBs in the address space non-dispatchable). In
comparison, SYNCSVCD takes a synchronous SVC dump, which means that the unit of
work requesting the dump does not continue running until the dump capture completes. A
synchronous SVC dump can only be taken if the PER event occurs in an Enabled Unlocked
Task (EUT) environment. There are other restrictions as well. Note that if A=SYNCSVCD
is requested on a PER trap and the environment at the time the trap matches is invalid for a
synchronous SVC dump, then a regular (scheduled) SVC dump will be taken instead.

For a SLIP defined to disable after N matches (via the MATCHLIM parameter), TRDUMP
writes a GTF trace record for all N matches, and also takes an SVC dump on the Nth
match.

For a SLIP defined to disable after N matches (via the MATCHLIM parameter), STDUMP
writes a system trace record for all N matches, and also takes an SVC dump on the Nth
match.

26

Actions for PER traps (Cont)

m Other
= REFBEFOR, REFAFTER update storage/registers
= TARGETID activate a new PER trap
= RECOVERY force an abend
= SUBTRAP simulate “IF-THEN-ELSE” logic
= IGNORE ignore the event
= WAIT enter restartable wait state

Note: some actions can be combined.

27

A=REFBEFOR,REFBEFOR=(target,operator,source) and
A=REFAFTER,REFAFTER=(target,operator,source) are very powerful SLIP options that
will update register content and storage locations when a SLIP matches. Use these with
great care! The only difference between REFBEFOR and REFAFTER is whether the
REFRESH action is done BEFORE or AFTER the other actions, such as taking a dump. If
the damage to be repaired by the refresh option will not impact the gathering of
documentation, then use REFAFTER so that the damage is viewable in the dump. If the
damage will impair the ability to gather documentation, then use REFBEFOR to repair it
first; however, you might want to use REFAFTER to save the corrupted data somewhere
before using it to correct the corruption. Multiple actions can be taken on the
REFBEFOR/REFAFTER specification.

Dynamic PER is a capability that lets you trigger a new PER trap when an active PER trap
matches. The most common use for dynamic PER is to trigger a SA SLIP on a particular
area of storage after an IF SLIP detects the GETMAIN of that area of storage.

A=RECOVERY injects an ABENDO6F (same as SLIP processing uses behind the scenes

27

for MSGID processing) to force active recovery to get control. A practical use of this could be
if code is looping, or if code is known to be running with bad data that could lead to
corruption.

SUBTRAP is a powerful but complex SLIP feature that is relatively new. It provides a sort of
IF-THEN-ELSE capability with SLIP traps.

Both dynamic PERs and SUBTRAP PERs will be explored in SLIP Bootcamp Part 2.

27

Tailorability

= SVC dumps

s JOBLIST, ASIDLST, DSPNAME dump address/data spaces

= SDATA dump particular types of storage areas

= SUMLIST, LIST dump specified storage ranges

= STRLIST dump coupling facility structures

= REMOTE take dumps on other systems in sysplex
m GTF trace

= TRDATA trace specified storage ranges

C System trace

s STDATA trace specified storage ranges

28

Multiple jobs, ASIDs, and data spaces may be requested. Note that JOBLIST and
ASIDLST are not mutually exclusive.

SUMLIST gathers the specified data ranges during summary dump processing
(very early in dump processing, and therefore very timely data). LIST gathers the
specified data ranges during later dump processing.

Indirection may be specified in the LIST, SUMLIST, TRDATA, and STDATA
parameters.

Wildcarding may be used in JOBLIST and DSPNAME.

28

+

Hsing Indirection in SLIPs

29

Range Pairs

® Syntax for range pairs: =(beginaddr,endaddr)

= Beginaddr, endaddr may be address or indirect address

m Parameters that support range pairs:
= RANGE, ADDRESS
= TRDATA, STDATA . .
Support multlple range pairs
= LIST, SUMLIST
m Whatis an indirect address?

= Combination of address or register notation, indirection symbols (%, ?, !),
and/or displacements, symbolics (BEAR, BPER)
LIST=(1R?+4?-1C,1R?+47+F,13R?+0,13R?+3F)

Root LIST=(1R?+4?-1C,+F,13R?,+3F) shorthand for previous example

Note:These are displacements, NOT LENGTHs!!

30

% - interpret address as 24-bit
? — interpret address as 31-bit
| — interpret address as 64 bit

Use R to represent a 31-bit general purpose register and G to represent a 64-bit
general purpose register.

The symbolic BEAR refers to the address where the last flow-altering instruction
occurred. This includes branches, PC, PR, LPSW, etc.

The symbolic BPER refers to the beginning address in a PER range. It is helpful for
DATA comparisons.

Triplets (data comparison, storage refresh)

Syntax for triplets: =(target,operator,source)
= Target may be address, indirect address, or register
= Source may be address, indirect address, register, or constant (max 8 bytes)
= Operator options: EQ, NE, LT, NL, GT, NG
If*A’ appended (e.g. EQA) — operator acts on the address of the source
If*C’ appended (e.g. EQC) — operator acts on the content of the source

If used without ‘A’ or ‘C” appended, the source must be a constant

B “(l))” f()ll()wing target address indicates a bit position within the targeted
byte or register; indicates operation is on binary data

= “(n)” following operator indicates how many bits or bytes to operate on for
Address and Contents operations

m Parameters: REFBEFOR, REFAFTER, DATA
= All support multiple triplets, separated by AND or OR (default is “AND”)
= DATA=(1R?+8(0),EQ,1,0OR,15R,EQC(4),13R?+10,0R,0R,GT,0)
= REFBEFOR=(FEBCCO0,EQ,C1C2C3C4,15R,EQ,0)

31

In addition to the operators listed above, there is also NE, NL, NG, etc.

A SLIP is operating on binary data if and only if there is a “(b)” value specified after the target. Based from 0, this indicates
the beginning bit position that is to be altered or compared within the target register or address. If, in addition, a “(n)” is
specified after the operator, this indicates how many bits are to be moved or compared. If no “(n)” is specified when
performance a “C” (Contents) or “A” (Address) type of operation, the default is 1 bit.

If there is no “(b)” after the target, and the operator is followed by “(n)”, this indicates how many bytes are to be altered or
compared. This syntax should be used when performing a “C” (Contents) or “A” (Address) type of operation. The default is
4 bytes.

When SLIP does a contents or an address refresh (alter), it refreshes the first n bytes of storage and the last n bytes of a
register.

If doing an EQ, GT, or LT, the number of bytes to be altered or compared is determined by the number of bytes in the
constant supplied as the source.

The first example above (DATA=) will match if bit 0 at the storage location pointed to by Reg1+8 (perhaps the start of the 31
word in a parameter list?) is on, or if the content of Reg15 is the same as the data found at address 13R?+10, or if Reg0 is
greater than 0.

The second example above (REFBEFOR=) will update the storage at FEBCCO to contain eyecatcher ‘ABCD’, and will set
Reg15 to contain 0. This is done BEFORE any other requested actions, most likely because the damage that we are
repairing would otherwise prevent successful completion of other actions.

31

+

Controlling SLIP traps

32

Other SLIP/PER trap controls

m Parameters
= ENABLE, DISABLE to define trap enabled/disabled on SET

= MATCHLIM to disable trap after N matches
s PRCNTLIM (PER only) to disable trap if it uses >N pct of CP
= [D to name SLIP trap (up to 4 characters)
m Commands
= SLIP SET, set a SLIP trap
= SLIP MOD,ENABLE,ID= enable a SLIP trap
s SLIP MOD,DISABLE,ID= disable a SLIP trap
= SLIP DEL,ID= delete a SLIP trap
= D SLIP display names/status of all SLIPs
s D SLIP= display details of specific SLIP

33

A SLIP trap can be set as disabled, then enabled at some later point. When
entering multiple SLIP traps with interdependencies, it is advisable to enter them all
disabled with a similar SLIP ID, then to enable them simultaneously through the
SLIP MOD,ENABLE,ID= command, using wildcarding in the ID to target the multiple
SLIPs.

A SLIP must be disabled before it can be deleted.

D SLIP will show the names of all SLIP traps defined to the system, along with an
indication of whether the SLIP is enabled or disabled. To see the parameters of a
specific SLIP, use: D SLIP=xxxx .

33

+

Any Questions?

34

34

