

Paging Dr. MQ - Health Check Your Queue Managers to Ensure They Won't Be Calling in Sick! [z/OS] – Session 17046

Lyn Elkins <u>elkinsc@us.ibm.com</u>

Copyright (c) 2014 by SHARE Inc. C (i) (S) (i) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Code!

SHARE in Seattle 2015

Is MQ sick? What can we do about it!

"Some patients like the magic wand prop."

www.shutterstock.com - 100107755

What is a MQ for z/OS Health Check?

- A health check is a point in time evaluation of the queue manager and channel initiator.
 - It is to provide singular focus and evaluation
- It does not replace:
 - Real time monitoring
 - Regular reviews of statistics
 - Regular reviews of accounting data

Objectives

- This session is to delve a bit deeper into how the team formerly known as ATS (now something less easy to remember) perform a health check and how you can perform your own.
- It is almost exciting as watching moss grow.

What data needs to be collected?

- The data typically requested for an MQ for z/OS health check typically includes:
 - One week of MQ Statistics data SMF 115
 - For customers on MQ V8 this should include classes 1 and 4
 - For customers prior to V8, if gathering data about channels using the MQCMD program (or similar) if using is also helpful
 - One high volume day's JES logs for the queue manager and channel initiator

What data needs to be collected? More

- Class 3 accounting for one or more busy, but not peak SMF intervals
 - If there are multiple peaks during a day, this data should be gathered during either the typical 'ramp up' or 'ramp down'
 - A good cross section of tasks using MQ resources is necessary to evaluate the application's use of MQ
- If on V8, Class 4 accounting for one or more busy but not peak SMF intervals.

What is a 'busy but not peak period'?

 A sample week of MQPUT and MQPUT1 may illustrate patterns of use

Another example of workload patterns

MQPUT Comparisons

How do I find a 'busy but not peak period'?

- Keep in mind (aka do as I say not as I do)
 - There may be multiple well defined peaks during a day
 - Batch and online workloads are typical
 - Multiple samples may be required to demonstrate all use
 - Some queue managers may have less well defined peaks the message rates are more constant then the illustrated queue managers
 - Others may have well defined and predictable peaks

Finding the Symptoms

- To find out how healthy an individual queue manager is, there are a number of important steps:
 - Review the JES logs
 - Look for specific messages that indicate issues, some examples:

 - CSQJ111A OUT OF SPACE IN ACTIVE LOG DATA SETS
 - CSQJ112E INSUFFICIENT ACTIVE LOG DATA SETS DEFINED IN BSDS
 - Calculate the number of log switches during a peak interval using the CSQJ033I message

Finding the Symptoms - continued

- JES log evaluation continued:
 - Track the storage use by capturing the CSQY220I messages
 - Example: CSQY220I QML1 CSQSCTL Queue manager storage usage: 110 local storage: used 597MB, free 1141MB: above bar: used 1GB, free >10GB
 - Look for long running applications:
 - Long running UOWs reported via CSQJ160I
 - Log shunting reported via CSQR026I
 - Look for messages that you have never seen before!
 - Your real time alerting system may not be looking at all the important messages.

Finding symptoms - Review of SMF115

- The SMF 115 data is the statistical information produced by a WMQ for z/OS queue manager.
 - Primarily used to track major trends and resolve performance problems with the queue manager
 - Very lightweight
 - Broken down into the major 'managers' within WMQ
 - SupportPac MP1B, no matter which version, provides at least 2 views into the MQ statistics
 - Report form
 - Column or CSV form
 - This is used to import into spreadsheets for analysis
 - Both are necessary because the CSV form may be missing fields you need to review when looking for a problem.

Finding the symptoms - Review of SMF116 – Class 3 data

- The SMF 116 data is the accounting information produced by a WMQ for z/OS queue manager.
 - Primarily used to determine what is going on within WMQ workload
 - Heavyweight
 - Broken down into the transactions within WMQ
 - The "old" MP1B provides several views into the data:
 - MQ1160 prints the SMF116 class 1 report
 - MQ116S prints the detailed SMF116 class 3 report, including the queue information
 - MQCSMF extracts specific information from SMF115 and 116 in a column format
 - Particularly useful for building spreadsheets
 - The new MP1B provides:
 - The 'TASK' output
 - Somewhat like the MQ116S report
 - Differences between new and old for a CICS transaction are documented in

https://www-

03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106135

• Other files, much like the 'old' MQCSMF output

SHARE in Seattle 2015

Determining the health

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

Are you now, or have you ever been an MQ administrator????

SMF 115 – using the data

- The CSV file or the column format can be downloaded from z/OS and then imported into a spreadsheet for evaluation.
- For example, the log data loaded into a spreadsheet looks as follows:

Date	Time	QMGR	wr wait	<u>wr_nwait</u>	Aug08 Force	Aug08 Log Buffer Waits	read buf	read act	read arc	r delav		Aug08	Aug08 Control Intervals Written	paging
2011220	00:02:01.06		0	69242		0	0	0	0	0	0	6726		
2011220	00:03:01.05	QML1	0	74069	403	0	0	0	0	0	0	6866	22446	0
2011220	00:04:01.04	QML1	0	72830	453	0	0	0	0	0	0	6726	22550	0
2011220	00:05:01.08	QML1	0	70513	478	0	0	0	0	0	0	6672	20870	0
2011220	00:06:01.07	QML1	0	77959	489	0	0	0	0	0	0	7166	23458	0
2011220	00:07:01.06	QML1	0	60920	483	0	0	0	0	0	0	6342	17732	0
2011220	00:08:01.06	QML1	0	65818	444	0	0	0	0	0	0	6662	18960	0
2011220	00:09:01.03	QML1	0	68325			0	0	0	0	0	6740		
2011220	00:10:01.08	QML1	0	50712	478	0	0	0	0	0	0	6000	12088	0

SMF115 – Using the data

- By itself the SMF 115 data for many of the internal component managers are useful, but some manipulation of the raw data can make it much more consumable and useful.
- Examples include:
 - The message manager summaries as shown earlier
 - Calculating the log data written per second
 - Charting, making it easier to spot patterns and trends
- Some of the calculated data is done for you in the 'new' MP1B, but beware – it uses hard coded values for intervals, etc. which can skew results.

SMF115 – Using the data – continued

• Example of using a spreadsheet to calculate the log writes:

					Log writes in
Num	Num_CI			Interval	MB per
I/O	_W	paging	Seconds	Duration	second
142446	142460	0	980		
13352	13352	0	1877	897	0.06
12420	12420	0	2775	898	0.05
10956	10956	0	3670	895	0.05
10484	10484	0	4567	897	0.05
9274	9274	0	5463	896	0.04
8946	8946	0	6359	896	0.04
8864	8864	0	7256	897	0.04
1476	1476	0	8154	898	0.01

- The formulas used to calculate seconds and duration:
 - Seconds =SUM(HOUR(B2)*3600,(MINUTE(B2)*60),SECOND(B2))
 - Interval duration =(Q3-Q2)
 - Interval crossing a date =SUM((86399-Q96),Q97)
- The formula for log writes in MB/Second
 - =ROUND(((N3*4096)/(1024*1024))/(R3),2)
 - Where N3 = the number of CI Writes column and R3 is the Interval duration

Logging Rates - Charted

Logging Rates

SMF points

 Aug08 Logging Rate (MB per second) -Aug09 Logging Rate (MB per second) Sept30 Logging Rate (MB per second) -Nov05 Logging Rate (MB per second)

••••

Complete your_

Reviewing the SMF 115 data – Are there problems?

- While not always the culprit, tuning the buffer pools has been a never ending cycle of opportunities
 - Lazy queue definitions
 - I copy what works, might not be what is best for the queue manager
 - Workload pattern changes
 - What flows today, might become a log jam without any warning
 - Well except the business knew they were opening 2600 new branches on Tuesday

SMF 115 data – Urgent symptoms – Call 911

- Unless there has been an unexpected spike in volume, this should never been seen!
 - SOS
 - Freepages at 5% or less

SMF 115 data – Urgent symptoms

- Red Flags for Bufferpools Continued
 - DMC synchronous write process is requested
 - Note that it did not run this often, but this is the number of times that conditions were right!

						\frown				
QMGR	BP	NumBuff	%now	%low	dwt	dmc	st		stla	505
QML3	3	70000	16	0	58	210092	8	53991	1	0
QML3	3	70000	22	3	132	36526	12	32774	2	0

SMF 115 data – Clairvoyance – Ask Doctor

- May be approaching a problem
 - Consistently Approaching/Achieving 20 % Free pages

QMGR	BP	NumBuff	%now		%low	d	vt	dmc		st	stla	SOS
QML4		2 70000		53	19		0		0	46571	0	0
QML4		3 70000	1	98	20		0		0	46028	0	0
QML4		3 70000		75	20		0		0	0) 0	0

SMF 115 data – Reviewing the Message Manager information for gross use numbers

- Message Manager Information
 - Good indication of queue manager usage
 - This is only a count of API calls, not one of successful calls
 - Volume trends can be approximated from the MQPUT and MQPUT1 calls, as these are generally successful
 - MQGETs may or may not have data returned

QMGR	Open	Close	Get	Put	Put1	10	noi	Set	Total API calls	Total Puts
2ML1	160	151	2,925,084	3,417,313	0	1	0	0	6,342,709	3,417,313
2ML1	248	228	2,256,084	3,150,666	0	5	0	0	5,407,231	3,150,666
2ML1	897	895	3,468,114	3,093,355	0	50	0	0	6,563,311	3,093,355

Message Manager - Trend Chart

Looking for more symptoms? Try the SMF116 Class 3 data

- Reviewing this copious data can feel like searching for the spell to turn lead into gold. Better to think of it as panning for gold
- As an MQ admin, you have more information at your fingertips about your environment than we at IBM reviewing this data will have. There are a number of things that we do to look for patterns or particular problems that are discussed.

SMF116 – Looking for things that make us less healthy

- The SMF 116 class 3 data may provide information about the health of the queue manager and the applications using MQ
 - For example, this data can be used:
 - Identify heavily used queues that can benefit from splitting across resource pools
 - Identify shared queues that should be on the same structure
 - Identify queues that should be indexed
 - Identify overly long response times, typically from I/O
 - Identify applications that are consuming excessive CPU due to bad verbs

What queues are being used and how?

- SMF116 class 3 data shows the use of queues
- Helpful because even as an MQ admin, it may be a challenge to find out where the queues are.
 - For example, if an application opens an alias, that points to another...this data provides the base name of the object
- Some specific opportunities for prevention:
 - Non-indexed queues
 - High volume request/reply queues in same resource pool
 - Overuse of Temporary dynamic queues

Queue Indexing – an opportunity to reduce the CPU fever

- Queue Indexing
 - Messages that are retrieved using an index-able field benefit from being indexed even when the depth is not high.
 - Message ID
 - Correlation ID
 - Token
 - Group ID
 - The greater the depth of the queue the greater the benefit.
 - The SMF116 queue records show when messages are retrieved using a 'known' field

Non-Indexed Queue retrieval

in Seattle 2015

Indexed Queue Retrieval

in Seattle 2015

Indexed vs Non - comparison

- Comparing the CPU time, both queues with the same max message depth:
 - Indexed 27 messages at 99 CPU microseconds
 - Non-indexed 28 messages at 369 CPU microseconds
 - An average of 270 microseconds less expensive per get
 - What's a microsecond or two between friends?
- Comparing the number of pages that had to be skipped
 - Indexed = 0
 - Non-indexed = 3585

Another infection – concentration of resources

- High volume request and reply queue in the same resource pool
 - This is a case of 'define like' run amok
 - The request queue and reply queue for a high volume application were defined in the same storage class (same bufferpool and pageset)
 - By moving the reply queue to a different storage class, the resource usage was better distributed

GET queue use from SMF 116 class 3 data

								Total Valid		Average Message	Buffer pool/	
Queue	Get	ValidGet	Bytes	MaxGet	MinGet	MaxTOQ	Total Gets	Gets	Total Bytes	Size	Structure	Page Set
TESTQ1,QL	1	1	15000	15000	15000	1.1E+04	5	5	75000	15000	3	3
TESTQ2,QL	2	1	161	161	161	2.1E+03	330	165	120777	731.98	3	3
TESTQ3.QL	55	54	5886	109	109	3.2E+04	55	54	5886	109	3	3
TESTQ4.QL	1	1	128	128	128	3.5E+05	50	50	6400	128	3	3
TESTQ5.QL	1	1	128	128	128	3.2E+05	50	50	6400	128	3	3
TESTQ6.QL	1	1	128	128	128	2.4E+05	50	50	6400	128	3	3
TEST.INITQ1	48	24	16416	684	684	4.4E+02	352	176	120384	684	1	1
TEST.INITQ2	64	32	21888	684	684	2.5E+02	3826	1913	1308492	684	1	1
TEST.INITQ3	170	85	58140	684	684	3.0E+02	1650	825	564300	684	1	1
TEST.INITQ3	20484	10252	7012368	684	684	6.3E+04	106138	53142	36349128	684	1	1
TEST.INITIQ4	172	86	58824	684	684	1.4E+04	1466	733	501372	684	1	1
SYSTEM.CHANNEL.INITQ	77	34	26656	784	784	4.7E+02	2216	989	775596	784.22	1	1
SYSTEM.CHANNEL.SYNCO	2	2	856	428	428	2.1E+08	189	176	75328	428	1	1

Queue	Number valid PUTs	Number of Bytes Put	Average Message Size	Buffer pool/ Structure	Page Set	
TESTQ3.QL	7	1282	183.14	3		3
TESTQ4.QL	54	5886	109	3		3
ECHO.QL	48	6144	128	3		3
SYSTEM.CHANNEL.INITQ	4	3456	864	1		1
SYSTEM.CHANNEL.SYNCQ	174	74472	428	1		1
SYSTEM.CLUSTER.COMMAND.QUEUE	2	1000	500	1		1
SYSTEM.COMMAND.INPUT	919	1257221	1368.03	1		1

Possibly mild, possibly virulent symptom

- Use (or overuse) of Temporary dynamic queues
 - Often used for responses on both RYO and traditional monitoring tools
 - All queues created will be in the same resource pool
 - Quite expensive in CPU
- Temp dynamic queues are identifiable by their name
 - For example for the MQExplorer uses temporary dynamic queues. The name looks like this

AMQ.MQEXPLORER.C1363497285

Temporary Dynamic Queues

Open name TEAMXX. Base name AMQ.C94		4386075				-	type:Local Queue ype :Queue)
Queue indexed by							5F	
First opened 12-0		21:24:16.3	34					
Last closed 23-0	9-2019	17:52:14.2	24					
Page set ID		0, Buffer	· poo	ıl	0			
Current opens		0, Total	requ	lests	10			
Generated message	s:	0						
Persistent messag	es: GE	Ts	0,	PUTs	0,	PUT1s	0	
Put to waiting ge	tter:	PUT	0,	PUT1	0			
PUTs: Valid	З,	Max size	(Min size	9,	Total bytes	27
-MQ call-	Ν	ET		СТ	Susp	LOGW	PSET Epages	s skip expire
Open :	1	850		125	727			
Close :	1	113		111	0			
Put :	3	106		104	0	0		
Inquire:	5	17		17				
Maximum depth enc	ounter	ed	3		J			

Permanent Queues

== Task token : 12-03-2012 21:24:23.42, 55FE03F0, 55FD0000

Open name TEAMXX.NOT.TEMP Object type:Local Queue Base name TEAMXX.NOT.TEMP Base type :Queue Queue indexed by NUNE First opened 12-03-2012 21:25:09.23 Last closed 18-10-2019 00:31:46.22 Page set ID 0, Buffer pool 0 0, Total requests Current opens 10 Generated messages : 0 0, PUTs Persistent messages: GETs 0, PUT1s 0 Put to waiting getter: PUT 0, PUT1 A 3, Max size PUTs: Valid 9, Min size 9, Total bytes 27 -MQ call- 🏲 ΕT СТ Susp LOGW PSET Epages skip expire Ν 38 Open : 1 39 0 26 1 26 0 Close : 3 115 113 Ø Put 0 Inquire: 5 18 18 Maximum depth encountered

Complete your session evaluations online at www.snake.org/seattle-eval

Temp vs. Permanent

- The CPU cost comparison
 - Verb TDQ Permanent
 - Open 125 38
 - Close 111 26
 - Put 104 113
 - Inquire 17 18
- The Elapsed Time comparison
 - Verb TDQ Permanent
 - Open 850 39
 - Close 113 26
 - Put 106 115
 - Inquire 17 18

Looking for a specific microbe – or one CICS transaction in the SMF116 data

- Many times you want to look at the information from a CICS transaction or batch job
 - No way to turn SMF116 class 3 on for just one queue, transaction, or job
 - Use SORT
 - Remember you will have to omit the short records that the SMF dump program always includes – use the VLSHRT

Finding a transaction

//S1	EXEC PGM=SORT				
//SYSOUT	DD SYSOUT=*				
//SORTIN	DD DISP=SHR, DSN=*.SEL.OUTDD1				
//SORTOUT	<pre>DD DISP=(,CATLG),DCB=(RECFM=VBS,BLKSIZE=4096,LRECL=32760),</pre>				
11	DSN=ELKINSC.SMFCSQ5.AUG01A.OUT,				
11	SPACE=(CYL, (10, 10))				
//SYSIN	DD *				
OPTION VLSHRT					
INCLUDE COND=(109,4,CH,EQ,C'ABCD')					
SORT FIELDS=(109,4,BI,A)					
/*					

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

Finding a Batch job

//SYSOUT DI	D SYSO	UT=*	
//SYSUDUMP D	D SYSO	UT=*	
//SYSIN DD	ж		
OPTION VLS	HRT		
INCLUDE CO	ND=(73,8	, CH, EQ, C'MOVE	ER '
SORT FIELD	S=(19,4,	CH, A)	
/*			

SMF116 and Long running tasks

- IF the long running task is started after the Class 3 trace
 - SMF 116 records will be cut at each SMF interval and at task end
- If the task is started before the trace is
 - No records are cut
 - APAR PM58798 has been taken on this

Summary

• Performing your own periodic MQ health checks can help you focus on existing issues, or sharpen your foretelling.

• Thank you

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

This was Session # 17046. The rest of the week

					Educate · Network · Influence	
	Monday	Tuesday	Wednesday	Thursday	Friday	
			17060: Understanding MQ Deployment Choices and Use Cases	17051: Application Programming with MQ Verbs [z/OS & Distributed]	16544: Why Shouldn't I Be Able To Open This Queue? MQ and CICS Security Topics	
10:00	17036: Introduction to MQ - Can MQ Really Make My Life Easier? [z/OS & Distributed]		17052: MQ Beyond the Basics - Advanced API and Internals Overview [z/OS & Distributed]	17054: Nobody Uses Files Any More do They? New Technologies for Old Technology, File Processing in MQ MFT and	17057: Not Just Migrating, but Picking up New Enhancements as You Go - We've Given You the Shotgun, You Know Where Your Feet Are [z/OS & Distributed]	
			17035: MQ for z/OS, Using and Abusing New Hardware and the New V8 Features [z/OS]	IIB [z/OS & Distributed]		
11:15	17041: First Steps with IBM Integration Bus: Application Integration		16732: MQ V8 Hands- on Labs! MQ V8 with CICS and COBC	17046: Paging Dr. MQ - Health Check Your Queue Managers to Ensure They Won't Be Calling in	17053: MQ & DB2 – MQ Verbs in DB2 & InfoSphere Data Replication (Q Replication) Performance [z/OS]	
			YOU ARE HERE	Sick! [z/OS]		
01:40	17037: All About the New MQ V8 [z/OS & Distributed]	17034: MQ Security: New V8 Features Deep Dive [z/OS & Distributed]	17040: Using IBM WebSphere Application Server and IBM MQ Together [z/OS & Distributed]	17062: End to End Security of My Queue Manager on z/OS [z/OS]	All sessions in Seneca unless otherwise noted.	
03:10		17065: Under the hood of IBM Integration Bus on z/OS - WLM, SMF, AT- TLS, and more [z/OS]	17043: The Do's and Don'ts of IBM Integration Bus Performance [z/OS & Distributed]	17039: Clustering Queue Managers - Making Life Easier by Automating Administration and Scaling for Performance [z/OS & Distributed]		
04:30	17059: IBM MQ: Are z/OS & Distributed Platforms like Oil & Water? [z/OS & Distributed]	17055: What's the Cloud Going to Do to My MQ Network?	17044: But Wait, There's More MQ SMF Data Now?!?!- Monitoring your Channels Using V8's New Chinit SMF Data [z/OS]	17068: Monitoring and Auditing MQ [z/OS & Distributed]	SHARE in Seattle 2015	

Further information in real books

And ... already available (draft)

httosn/plete/yod/sessione/coloration/sness/RennvisikAREtorg/seszile2Evalitml

Because we just have not seen this enough!!! Session # **17046**

SHARE in Seattle 2015

Complete your session evaluations online at www.SHARE.org/Seattle-Eval