
MQ Security: New V8 Features Deep Dive

[z/OS & Distributed]

Morag Hughson - hughson@uk.ibm.com

Session # 17034
@MoragHughson

@MoragHughson

Agenda

� IBM® WebSphere® MQ V8
� Announced 22nd April 2014
� Availability dates

� eGA: 23rd May 2014
� pGA: 13th June 2014

� New Security Features
� Changes for Channels using SSL/TLS Certificates
� User ID & Password Connection Authentication
� Hostnames in CHLAUTH

Changes for Channels using

SSL/TLS Certificates

@MoragHughson

Agenda

� Requests for Enhancement

� Changes for Channels using SSL/TLS Certificates
� Recap
� Single Queue Manager Certificate
� Per Channel Certificate
� Certificate Matching

@MoragHughson

Request for Enhancement (26672)

@MoragHughson

QM's Digital
Certificate

CA Sig

SSLKEYR

Key Repository

� Contains Entity's own Digital Certificate
� z/OS Queue Manager

� ibmWebSphereMQ<QMgr Name> (mixed case) label
� Distributed Queue Manager

� ibmwebspheremq<qmgr name> (lower case) label
� Client

� ibmwebspheremq<logon userid> (lower case) label
� Digital Certificates from various Certification Authorities

� On z/OS Queue Managers
� Keyring name

� On Unix®, Windows®, iSeries®
QMgrs
� Key database path

� Clients: mqclient.ini file
� SSL Stanza – SSLKeyRepository

� MQCONNX (MQSCO structure)
� SSLKeyRepository

� Environment variable
� export MQSSLKEYR=var/mqm/ssl/key

ALTER QMGR SSLKEYR(CSQ1RING)

ALTER QMGR
SSLKEYR('var/mqm/qmgrs/QM1/ssl/key')

mqclient.ini
SSL:

SSLKeyRepository=C:\key

N

O

T

E

S

Key Repository – Notes

� Queue Manager
– A digital certificate contains the identity of the owner of that certificate. Each WebSphere MQ queue manager

has its own certificate. On all platforms this certificate is stored in a key repository using your digital certificate
management tool, e.g. in RACF® (z/OS) or iKeyMan (UNIX and Windows).

– On z/OS, the required certificate in the key repository is specified with the mixed-case label
ibmWebSphereMQ<QMgr Name>. On UNIX, Windows and iSeries, the required certificate in the key repository
is specified with the lower-case label ibmwebspheremq<qmgr name> . Note that the certificate label is also
sometimes referred to as its "friendly name".

– The key repository is specified on the WebSphere MQ QMGR object using the ALTER QMGR command. On
z/OS this is the name of the keyring object in the External Security Manager (ESM), and on the distributed
platforms this is the path and the stem of the filename for the key database file.

� Client
– Generally each user of the WebSphere MQ client has a separate key repository file, with access restricted to

that user.

– This key repository file is accessed using the environment variable MQSSLKEYR, or the MQCONNX
SSLKeyRepository parameter.

– A particular personal certificate within that file is selected for use on the client's SSL channels. Clients use the
certificate labeled with ibmwebspheremq followed by the logon userid, wrapped to lower case.

� The key repository generally also contains a number of signed digital certificates from
various Certification Authorities which allows it to be used to verify certificates it receives
from its partner at the remote end of the connection.

@MoragHughson

ALTER QMGR
SSLKEYR(CSQ1RING)
CERTLABL(‘CSQ1Certificate’)
CERTQSGL(‘SharedCert’)

ALTER QMGR
SSLKEYR('var/mqm/qmgrs/QM1/ssl/key')
CERTLABL(‘QM1Certificate’)

Single Queue Manager Certificate

� Name Queue Manager Certificate
� Using CERTLABL attribute

� Name Client Certificate
� mqclient.ini file SSL Stanza

� CertificateLabel
� MQCONNX (MQSCO structure)

� CertificateLabel

� Environment variable
� export MQCERTLABL=MyCert

SSLKEYR

mqclient.ini
SSL:

SSLKeyRepository=C:\key
CertificateLabel=MyCert

MQCNO cno = {MQCNO_DEFAULT};
MQSCO sco = {MQSCO_DEFAULT};

cno.Version = MQCNO_VERSION_4;
sco.Version = MQSCO_VERSION_5;
memcpy(sco.KeyRepository, ...);
memcpy(sco.CertificateLabel,..);
cno.SSLConfigPtr = &sco;
MQCONNX(QMName,

&cno ,
&hConn,
&CompCode,
&Reason);

QM's Digital
Certificate

CA Sig

N

O

T

E

S

Single Queue Manager Certificate –
Notes

� Before WebSphere MQ V8, the label name for a digital certificate to be used by the
queue manager (or an MQ Client) was fixed by MQ. You had to label your certificate
exactly as WebSphere MQ required it, in order for the certificate to be found. This
doesn’t always meet customer standards of certificate labelling.

� In WebSphere MQ V8 you can provide your own label name for the queue manager
(or an MQ Client) to use.

� For the queue manager you have a new attribute on ALTER QMGR called
CERTLABL (and additionally CERTQSGL on z/OS for a QSG level certificate –
previously located with the label ibmWebSphereMQ<QSG-name>).

� For clients, you can provide the Certificate label in the MQSCO structure (along
with the SSLKeyRepository location); or in the SSL stanza in the mqclient.ini file
(along with the SSLKeyRepository location), or using the environment variable
MQCERTLABL.

@MoragHughson

Use Cases

� Following company policy on certificate labelling

� Using the same certificate for more than one queue manager
� Not that we would condone this!

� Migrating over to a new certificate when main certi ficate is ready to expire
� Used to have to issue GSKit/RACF commands to rename certificate

� ibmwebspheremqqm1 -> ibmwebspheremqqm1old
� ibmwebspheremqqm1new -> ibmwebspheremqqm1
� REFRESH SECURITY TYPE(SSL)

� Now just MQ commands when the time comes
� Current label is ‘QM1 Cert 2013’
� ALTER QMGR CERTLABL(‘QM1 Cert 2014’)
� REFRESH SECURITY TYPE(SSL)

N

O

T

E

S

Use Cases – Notes

� Here we list some of the uses we can imagine for being able to label your own
certificate instead of following the pattern mandated in the past by WebSphere MQ.

� It is worth highlighting here that the change over from using one certificate to
another is now a task that can be accomplished by the MQ administrator alone,
when he is ready. The job of installing the new certificate can be done at any prior
point and labelled however you wish. That label does not now have to change in
order to get the queue manager to use it, so it is just a task for the MQ administrator
to tell the queue manager which label to use now, and then refresh.

@MoragHughson

QMgr4B

Business Partners with different CA

requirements

BP A BP B

QMgr4A QMgr

QM's Digital
Certificate from

Entrust
CA Sig

QM's Digital
Certificate from

VeriSign
CA Sig ?

Only one certificate
to identify the queue
manager

N

O

T

E

S

Business Partners with different CA
requirements – Notes

� Imagine the situation where your company has need to communicate securely with
two difference business partners. These business partners each have a different
requirement about the Certificate Authority (CA) who signs the certificates that they
are happy to accept. In our example, Business Partner A will only accept certificates
signed by VeriSign, whereas Business Partner B will only accept certificates signed
by Entrust.

� In order for your company to be able to communicate with both of these Business
Partners, you need a certificate that is signed by VeriSign (to communicate with
Business Partner A) and a certificate that is signed by Entrust (to communicate with
Business Partner B). However, since a queue manager can only have one
certificate, with releases prior to V8 of WebSphere MQ, you were forced into having
two queue managers, one using each certificate. This is less than ideal.

� N.B. Some people also solve this issue by using an MQIPT in front of the queue
manager.

@MoragHughson
BP A BP B

Certificate per Channel

QMgr

QM's Digital
Certificate from

Entrust
CA Sig

QM's Digital
Certificate from

VeriSign
CA Sig

QM's Digital
Certificate

CA Sig

ALTER CHANNEL(BPB.TO.ME)
CHLTYPE(RCVR)
CERTLABL(‘EntrustCert’)

ALTER CHANNEL(TO.BPB)
CHLTYPE(SDR)
CERTLABL(‘EntrustCert’)

ALTER CHANNEL(BPA.TO.ME)
CHLTYPE(RCVR)
CERTLABL(‘VeriSignCert’)

ALTER CHANNEL(TO.BPA)
CHLTYPE(SDR)
CERTLABL(‘VeriSignCert’)

N

O

T

E

S

Certificate per Channel – Notes

� What is required is the ability to indicate that this particular channel should use a
different certificate than other channels.

� This is achieved in WebSphere MQ V8 with an attribute on a channel, CERTLABL,
which can either be blank – which means use whatever the queue manager overall
is configured to use, or if provided, means that this channel should use the
specifically named certificate.

� For reasons explained a little later on, we only allow you to specify a non blank
CERTLABL at definition time if you are using a TLS cipherspec.

@MoragHughson

Why haven’t we always done this?

QM1 (Local) QM2 (Remote)
MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

QM2's Digital
Certificate

CA Sig

QM1's Digital
Certificate

CA Sig

N

O

T

E

S

Why haven’t we always done this? –
Notes

� The SSL/TLS handshake is done as the first thing on a channel, before any of the
internal channel FAP flows. If you have ever pointed a web-browser with a https://
address at your MQ listener port, you’ll know this. This means that the certificate is
authenticated long before the channel name at the receiver end is known. This
made it impossible to choose a certificate to be used for a receiver based on the
channel name. The best that could have been done would have been to provide a
different certificate per port number and have several different listeners running,
each presenting a different certificate.

� Over time however, as SSL/TLS is used by more and more consolidated servers,
think HTTP server farms and large application servers, it has become necessary to
be able to separate the traffic that is going to a single server into differently
authenticated groups.

� Enhancements to the TLS protocol allow the provision of information as part of the
TLS handshake which can then be used to determine which certificate should be
used for this particular connection.

� This enhancement is known as Server Name Indication (SNI).

@MoragHughson

Server Name Indication

Website A’s
Digital Certificate

CA Sig

Website B's
Digital Certificate

CA Sig

Website C's
Digital Certificate

CA Sig

website-a.com

website-b.com

website-c.com

N

O

T

E

S

Server Name Indication – Notes

� Wikipedia provides a succinct summary of what Server Name Indication (SNI) is.
� The example on this page shows a use case where SNI would be used. We have

three websites which each have their own certificate. When they were hosted on
individual servers, then this was no problem, each web server has one certificate.

� Now let’s think about what happens if we decide to consolidate those web sites
onto a single server. How can we maintain the certificate correlation with the
website. SNI allows this to be able to happen by providing a place in the TLS
handshake for additional data to be flowed. This additional data is the hostname the
browser was trying to connect to, thus allowing the certificate to be chosen based
off that hostname.

@MoragHughson

Using Server Name Indication (SNI) with a channel

name

� Both ends of the channel must be at the new
release

� Only TLS can be used, no SSL
� Only certain cipherspecs will be able to supply

this behaviour

� JSSE doesn’t yet support SNI
� So Java client can’t make use of it

� If old sender / client / cipherspec used
� we only detect that we needed to supply a

different certificate after completion of the
handshake and so will fail the connection at
that point (if it hasn’t already failed due to
using the wrong certificate!)

QM1 (Local) QM2 (Remote)
MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

TLS Handshake Flows (inc. Chl Name)

TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

Chl: TO.QM2's
Digital Certificate

CA Sig

QM1’s Digital
Certificate

CA Sig

N

O

T

E

S

Using Server Name Indication (SNI) with
a channel name

� WebSphere MQ V8 uses SNI to provide a channel name instead of a hostname.
The sender (or client) end of the channel has been enhanced to put the channel
name into the Server Name Indication (SNI) hint for the TLS Handshake.

� The receiver (or server-conn) end of the channel has been enhanced to retrieve the
channel name from the SNI hint and select the appropriate certificate based on that
information. It is worth nothing that the channel name is now flowing in the clear,
although in a tamper-proof manner.

� There are some restrictions to using this feature as listed.
� A back-level queue manager upon receiving a TLS handshake containing SNI, will

just ignore what is in the SNI (as it is defined as an optional extension) and use the
normal certificate.

� If there are no channels defined on the queue manager with anything in the
CERTLABL field, then SNI will not be used by the receiving end. This will leave the
behaviour the same as prior releases for certificate selection.

@MoragHughsonBP A Internal QMgr

Our Business Partner Scenario again

QMgr

QM's Digital
Certificate from

VeriSign
CA Sig

SET CHLAUTH(BPA.TO.ME)
TYPE(SSLPEERMAP)
SSLPEER(‘CN=BP A’)
MCAUSER(BPAUSR)

CA Certificate

BP A's Digital
Certificate from

VeriSign
CA Sig

QM2's Digital
Certificate from

Internal CA
CA Sig

Internal CA

CA Certificate
Internal

N

O

T

E

S

Our Business Partner Scenario again –
Notes

� Let’s look again at the business partner scenario again, but this time a little
different, with one external CA and one internal CA.

� We’ve got the system set up so that we’re using a Verisign certificate when talking
to Business Partner A, and for the rest of our connections we have certificates
created by our Internal CA. We’ve even got CHLAUTH rules in place to ensure that
they are only allowed to connect to the queue manager over their appropriate
channel.

@MoragHughson

Ensuring the Correct Certificate

QMgr
SET CHLAUTH(BPA.TO.ME)

TYPE(SSLPEERMAP)
SSLPEER(‘CN=BP A’)
MCAUSER(BPAUSR)

CA Certificate

CA Certificate
Internal

Rogue connection

SSLCERTI(‘CN=VeriSign’)

S
S

L/
T

LS
 N

et
w

or
k

C
om

m
un

ic
at

io
ns

BP A's Digital
Certificate

CA Sig
from Internal CA

SSLPEER(‘CN=BP A’)

Internal CA

Secy
Exit

Security Exit
is passed…
MQCD.SSLPeerNamePtr
MQCXP.SSLRemCertIssNamePtr

N

O

T

E

S

Ensuring the Correct Certificate – Notes

� However, since we now accept certificates which come from two different Certificate
Authorities (CAs) we can run foul of another issue.

� One of the benefits of CAs is that they guarantee not to issue the certificates with
the same DN as another certificate that they have already issued. So a rogue
connection could not obtain a certificate with the same DN as Business Partner A
from VeriSign, because VeriSign has already issued one with that DN. Also, one
would expect external CA’s to do a few more checks than that and not issue
certificates with other people’s company names in them to people not from that
company. However, an internal CA may not be so diligent. Some internal CAs may
simply accept what the user requests as their DN, so our rogue could obtain a
certificate with Business Partner A’s DN from such a CA.

� The only way to solve this issue in the past was to use a security exit, since security
exits are presented with both the issuer’s and subject’s Distinguished Name.
However, we are trying to get away from people having to write exits for common
security issues, and this very much falls into that category.

� In WebSphere MQ V8, we can solve this issue by using a new attribute on
CHLAUTH rules which matches the issuer’s DN – SSLCERTI. Our CHLAUTH rules
can now be fully qualfied to use both SSLPEER (the subject’s DN) and SSLCERTI
(the issuer’s DN).

@MoragHughson

Summary

� Changes for Channels using SSL/TLS Certificates
� Single Queue Manager Certificate

� ALTER QMGR CERTLABL('My certificate name')

� Per Channel Certificate
� ALTER CHANNEL … CERTLABL('This channel certificate')

� Certificate Matching
� SET CHLAUTH('*')

TYPE(SSLPEERMAP)
SSLPEER('CN=Morag Hughson')
SSLCERTI('CN=IBM CA')
MCAUSER('hughson')

User ID & Password

Connection Authentication

@MoragHughson

Agenda

� Requests for Enhancement

� Connection Authentication
� Configuration
� Application Changes (or not)
� Protecting your password across a network
� User Repositories

@MoragHughson

Request for Enhancement (22568)

@MoragHughson

Request for Enhancement (30709)

@MoragHughson

Connection Authentication – What is it?

� The ability for an application to provide a user ID and
password
� Client
� Local Bindings

� Some configuration in the queue manager to act
upon said user ID and password

� A user repository that knows whether the user ID an d
password are a valid combination

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Inter process
Communications

User
Repository

Authority
Checks

Q1

N

O

T

E

S

Connection Authentication – What is it? –
Notes

� This picture shows the landscape we’re going to use to discuss various patterns
and then the changes in WebSphere MQ V8 in order to support these patterns. Just
to ensure everyone is familiar with the parts on the diagram we’ll briefly look at
them first from left to right.

� On the left of this picture we see applications making connections, one as a client
and one using local bindings. These applications could be using a variety of
different APIs to connect to the queue manager, but all have the ability to provide a
user ID and a password. The user ID that the application is running under (the
classic user ID presented to WebSphere MQ) may be different from the user ID
provided by the application along with its password, so we illustrate both on the
diagram.

� In the middle we have a queue manager with configuration commands and
managing the opening of resources and the checking of authority to those
resources. There are lots of different resources in WebSphere MQ that an
application may require authority to, in this diagram we are just going to use the
example of opening a queue for output, but the same applies to all others.

� On the right we have a representation of a user repository – i.e. containing user IDs
and passwords, more on this later.

@MoragHughson

CHCK…

NONE

OPTIONAL

REQUIRED

REQDADM

Connection Authentication – Configuration

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Inter process
Communications

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)
FAILDLAY(1) CHCKLOCL(OPTIONAL)
CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)
MQRC_NOT_AUTHORIZED (2035)

MQRC_NONE (0)

N

O

T

E

S

Connection Authentication –
Configuration – Notes

� We’ll start with the basic configuration side of things. How do I turn on this connection authentication
feature on the queue manager.

� On the queue manager object there is a new attribute called CONNAUTH (short for connection
authentication) which points to an object name. The object name it refers to is an authentication
information object – one of two new types. There are two existing types of authentication information
objects from earlier releases of WebSphere MQ, these original two types cannot be used in the
CONNAUTH field.

� The two new types are similar in quite a few of the basic attributes so we will look at those first. We’ll
come back to more of the attributes later. We show here a new authentication information object
which has two fields to turn on user ID and password checking, CHCKLOCL (Check Local
connections) and CHCKCLNT (Check Client connections). Changes to the configuration of this must
be refreshed for the queue manager to pick them up.

� Both of these fields have the same set of attributes, allowing for a strictness of checking. You can
switch it off entirely with NONE; set it to OPTIONAL to ensure that if a user ID and password are
provided by an application then they must be a valid pair, but that it is not mandatory to provide them
– a useful migration setting perhaps; set it to REQUIRED to mandate that all applications provide a
user ID and password; and, only on Distributed, REQDADM which says that privileged users must
supply a valid user ID and password, but non-privileged users are treated as per the OPTIONAL
setting.

� Any application that does not supply a user ID and password when required to, or supplies an
incorrect combination even when it is optional will be told 2035 (MQRC_NOT_AUTHORIZED). N.B.
When password checking is turned off using NONE – then invalid passwords will not be detected.

@MoragHughson

Connection Failure Delay

MQCONNX
User1 + pwd1

Application (User2) QMgr

Connection

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)
FAILDLAY(1) CHCKLOCL(OPTIONAL)
CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)

MQRC_NOT_AUTHORIZED (2035)

seconds

N

O

T

E

S

Connection Failure Delay - Notes

� Any failed authentications will be held for the number of seconds in the FAILDLAY
attribute before the error is returned to the application – just some protection
against a busy loop from an application repeatedly connecting.

@MoragHughson

Connection Authentication – Error notification

� Application
� MQRC_NOT_AUTHORIZED (2035)

� Administrator
� Error message

� Monitoring Tool
� Not Authorized Event message

(Type 1 – Connect)
� MQRQ_CONN_NOT_AUTHORIZED (existing)

� Connection not authorized.
� MQRQ_CSP_NOT_AUTHORIZED (new)

� User ID and password not authorized.
� Additional field to existing connect event

� MQCACF_CSP_USER_IDENTIFIER

MQCONNX
User3 + pwd3

Application (User4)

MQRC_NOT_AUTHORIZED (2035)

SYSTEM.ADMIN.QMGR.EVENT

ALTER QMGR AUTHOREV(ENABLED)

N

O

T

E

S

Connection Authentication –
Error notification – Notes

� When an application provides a user ID and password which fail the password
check, the application is returned the standard MQ security error, 2035 –
MQRC_NOT_AUTHORIZED.

� The MQ administrator will see this reported in the error log and can therefore see
that the application was rejected due to the user ID and password failing the check,
rather than, for example, a lack of connection authority (+connect).

� A monitoring tool can also be notified of this failure if authority events are on -
ALTER QMGR AUTHOREV(ENABLED) – via an event message to the
SYSTEM.ADMIN.QMGR.EVENT queue. This Not Authorized event is a Type 1 –
Connect – event and provides all the same fields as the existing Type 1 event,
along with one, additional field, the MQCSP user ID provided. The password is not
provided in the event message. This means that there are two user IDs in the event
message, the one the application is running as and the one the application
presented for user ID and password checking.

@MoragHughson

User's Digital
Certificate

CA Sig

Connection Authentication – Configuration

Granularity

MQCONNX
User3 + pwd3

Application (User4)

QMgr

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx)
CHCKCLNT(OPTIONAL)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘*’)
USERSRC(CHANNEL) CHCKCLNT(REQUIRED)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)
SSLPEER(‘CN=*’) USERSRC(CHANNEL)
CHCKCLNT(ASQMGR)MQRC_NOT_AUTHORIZED (2035)

MQCONNX
User1 + pwd1

Application (User2)

MQRC_NONE (0)

SSL/TLS Network
Communications

CHCKCLNT

ASQMGR

REQUIRED

REQDADM

N

O

T

E

S

Connection Authentication –
Configuration Granularity – Notes

� In addition to the two fields that turn this on overall for client and locally bound
applications, there are enhancements to the CHLAUTH rules so that more specific
configuration can be made using CHCKCLNT. You can set the overall CHCKCLNT
value to OPTIONAL, and then upgrade it to be more stringent for certain channels
by setting CHCKCLNT to REQUIRED or REQDADM on the CHLAUTH rule. By
default, CHLAUTH rules will run with CHCKCLNT(ASQMGR) so this granularity
does not have to be used.

@MoragHughson

Connection Authentication – Relationship to

Authorization

MQCONNX
User3 + pwd3

MQOPEN

Application (User4)

MQCONNX
User1 + pwd1

MQOPEN

Application (User2) QMgr

Inter process
Communications

Authority
Checks

ALTER QMGR CONNAUTH(USE.PWD)

DEFINE AUTHINFO(USE.PWD) AUTHTYPE(xxxxxx)
CHCKLOCL(OPTIONAL) CHCKCLNT(REQUIRED)
ADOPTCTX(YES)

Authority Records

Q1: User1 +put

Q1: User2 +none

Q1: User3 +get

Q1: User4 +none
Q1

N

O

T

E

S

Connection Authentication –
Relationship to Authorization – Notes

� So we have seen that we can configure our queue manager to mandate user IDs and
passwords are provided by certain applications. We know that the user ID that the
application is running under may not be the same user ID that was presented by the
application along with a password. So what is the relationship of these user IDs to the
ones used for the authorization checks when the application, for example, opens a
queue for output.

� There are two choices, in fact, controlled by an attribute on the authentication
information object – ADOPTCTX.

� You can choose to have applications provide a user ID and password for the purposes
of authenticating them at connection time, but then have them continue to use the user
ID that they are running under for authorization checks. This may be a useful stepping
stone when migrating, or even a desirable mode to run in, perhaps with client
connections, because authorization checks are being done using an assigned
MCAUSER based on IP address or SSL/TLS certificate information.

� Alternatively, you can choose the applications to have all subsequent authorization
checks made under the user ID that you authenticated by password by selecting to
adopt the context as the applications context for the rest of the life of the connection.

� If the user ID presented for authentication by password is the same user ID that the
application is also running under, then of course this setting has no effect.

@MoragHughson

Connection Authentication – Application

changes

� Code changes
� Procedural – MQCSP on MQCONNX
� OO classes – MQEnvironment
� JMS/XMS – createConnection
� XAOpen string

� Alternatively Exits can provide MQCSP
� Client side security exit

� Provided
� Client side Pre-conn exit

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Inter process
Communications

N

O

T

E

S

Connection Authentication –
Application changes – Notes

� Since WebSphere MQ V6.0, an application has been able to provide a user ID and password (in the
Connection Security Parameters (MQCSP) structure in the MQCNO) at MQCONNX time. These
were passed to a user written plug-point in the OAM on distributed to be checked. If the application
was running client bound, this user ID and password were also passed to the client side and server
side security exits for processing and can be used for setting the MCAUser attribute of a channel
instance. The security exit is called with ExitReason MQXR_SEC_PARMS for this processing.

� This pre-existing feature of the MQI is being used to provide the user ID and password to the queue
manager for checking. Previously a custom Authorization Service was required to check this (or a
security exit if the applications were connecting as clients), now the Object Authority Manager
(OAM) supplied with the queue manager and the z/OS Security component within the queue
manager will deal with these user IDs and passwords. Whether z/OS or distributed, the component
that deals with the user IDs and passwords will call out to a facility outside of MQ to do the check –
more on that later.

� In WebSphere MQ V8 this will be available in all our interfaces listed, even where some of those
were not made available in the WebSphere MQ V6 timeframe when the programming interface was
originally provided.

� In prior releases the MQCSP had no architected limits on the user ID and password strings that
were provided by the application. When using them with these MQ provided features there are limits
which apply to the use of these features, but if you are only passing them to your own exits, those
limits do not apply.

� The XAOpen string has also been updated to allow the provision of a user ID and password.
� Sometimes of course, it can be hard to get changes into applications, so the user ID and password

can be provided using an exit instead of changing the code. Client side security exits or the pre-
connect exit, can make changes to the MQCONN before it is sent to the queue manager, and the
security exit in fact is designed to allow the setting of the MQCSP since V6 (so clients do not need to
be updated to the new version in order to use this).

@MoragHughson

Procedural MQI changes

� MQCSP structure
� Connection Security Parameters
� User ID and password

� MQCNO structure
� Connection Options

� WebSphere MQ V6
� Passed to OAM (Dist only)
� Also passed to Security Exit

� Both z/OS and Distributed
� MQXR_SEC_PARMS

� WebSphere MQ V8
� Acted upon by the queue manager (all

platforms)

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,
&cno ,
&hConn,
&CompCode,
&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD ;
csp.CSPUserIdPtr = "hughson";
csp.CSPUserIdLength = 7; /* Max: MQ_CLIE NT_USER_ID_LENGTH */
csp.CSPPasswordPtr = "passw0rd";
csp.CSPPasswordLength = 8; /* Max: MQ_CSP_ PASSWORD_LENGTH */

@MoragHughson

Object Oriented MQ classes changes

cf = getCF();

System.out.println("Creating the Connection with UI D and Password");
Connection conn = cf.createConnection("hughson", "p assw0rd");

JMS/XMS classes changes

MQEnvironment.properties = new Hashtable();
MQEnvironment.userID = "hughson";
MQEnvironment.password ="passw0rd";

System.out.println("Connecting to queue manager");
MQQueueManager qMgr = new MQQueueManager(QMName);

@MoragHughson

Using it from the MQ Explorer GUI

N

O

T

E

S

Using it from the MQ Explorer GUI –
Notes

� The WebSphere MQ Explorer GUI is an MQ Java™ application, so since there is a programming
interface for MQ Java to supply a user ID and password, the Explorer GUI can use this.

� To configure the Explorer to use a user ID and password on a connection to a queue manager
(whether local or client connection), select Connection Details->Properties… from the right-mouse
context menu on the queue manager. In the dialog that appears, choose UserId. This panel is the
same for both local or client connections in WebSphere MQ V8, although the Properties dialog will
have less selections for other things in the local case.

� Explorer has a password cache which will need to be enabled in order to use passwords. If you
have never used it before there will be a link on this panel to take you through it.

� The other interesting item here is the “User identification compatibility mode” check box. This is for
those of you who have been using Security exits with the Explorer in the past. The Java client
previously did not use the MQCSP structure to supply its user ID and password in previous
releases, and there are many exits written that have discovered where the user ID and password
were provided instead. In order to retain compatibility for this, the Java client has two modes. It can
run in compatibility mode and maintain what you had before, or it can run with the V8 mode and use
the MQCSP. The check box shown is how you set that property in the Explorer GUI. For other Java
applications, you need to set property to indicate you are happy to use the MQCSP method.

� At the queue manager, if no MQCSP is sent by a client, but the user ID and password are provided
in this alternate method that was utilised by Java Clients, the V8 queue manager will accept this and
drive the same password check as is used for the MQCSP provided passwords.

@MoragHughson

Using MQCSP from Java Client

� Java client (not local bindings) has two ways to se nd password
� FAP Flow
� MQCSP structure

� FAP Flow
� Mechanism used by many customer security exits
� Retained as default
� Restricted to 8 characters user IDs and passwords
� Not protection by password protection algorithm
� Used by Connection Authentication if seen and no

MQCSP found

� MQCSP structure
� Used by Java Client when property

set
� Non-default
� Allows longer user IDs and passwords
� Can be protection by password

protection algorithm

MQ Classes for Java
set the property MQConstants.USE_MQCSP_AUTHENTICATION_PROPERTY to true in the properties
hashtable passed to the com.ibm.mq.MQQueueManager constructor.

MQ Classes for JMS
set the property JMSConstants.USER_AUTHENTICATION_MQCSP to true on the appropriate
connection factory prior to creating the connection

Globally
set the System Property "com.ibm.mq.cfg.jmqi.useMQCSPauthen tication" to a value indicating true,
for example by adding "-Dcom.ibm.mq.cfg.jmqi.useMQCSPauthentication=Y" to the command line

N

O

T

E

S

Using MQCSP from Java - Notes

� We saw on a previous page the example code you might use to provide the user ID
and password from a Java classes application or a JMS application. This is actually
nothing new. Java clients have been able to send a user ID and password across
the channel FAP before. This part of the FAP was very restrictive though, it only
allowed or 8 character user IDs and 8 character passwords. And, of course, it was
only for clients. The MQCSP interface was designed not to have such limitations.

� There are quite a number of customers pre-V8 who have security exits written to
pull the user ID and password sent by Java clients in this way. Because of this, we
could not change the default of the Java clients over to use the MQCSP or all these
security exits would have to be changed. So by default, Java clients continue to
send the user ID and password as this restrictive FAP flow.

� On the queue manager end, if we receive a user ID and password in this FAP flow,
and no MQCSP structure, we will use the user ID and password in the FAP flow for
Connection Authentication, so you don’t have to make any changes in order to
remove a security exit that is checking the user ID and password in this way.

� However, there are benefits to using the MQCSP structure, including password
protection and the increased length of the fields, so when you are ready to change
over to use MQCSP instead of the FAP flow in a Java client, you need to set the
system property.

@MoragHughson

Exit: mqccred

Client side Security Exit

MQCONN

Application

Q
M

gr
 Q

M
1

Network
Communications

AllQueueManagers:
User=abc
OPW=%^&aervrgtsr

QueueManager:
Name=QM1
User=user1
OPW=H&^dbgfh

AllQueueManagers:
User=abc
password=newpw

QueueManager:
Name=QMA
User=user1
password=passw0rd

Tool: runmqccred

mqccred.ini

mqccred.ini

File
permissions

Exit can be used by
clients from V7.0.1 and
later (by copying from a
V8 installation)

N

O

T

E

S

Client side Security Exit – Notes

� To make changes to applications, especially the very prevalent client attached
applications where we see the strongest use case for using user ID and password,
is difficult for customers. To aid with this issue, WebSphere MQ V8 provides a client
side security exit which can set the user ID and password instead of making
changes in the application to do this.

� The exit runs at the CLNTCONN end of the channel and pulls the user ID and the
password from a file. This file is controlled by means of OS file permissions. If the
exit discovers that the file permissions are too open, it will cause a failure thus
ensuring that this important part of protecting the passwords does not go unnoticed.

� The file is additionally obfuscated from casual browsers. The algorithm for this
obfuscation is not published, and neither is the source of the exit.

� The exit will be built in such a way that it can be picked up from a V8 installation
and copied to a V7.0.1 client installation (or later). Note that using a client
installation of < V8 will mean you have the password flowed in the clear. Only V8
and later at both ends will provide the ability to protect the flowed password without
the need to use SSL/TLS.

� Along with the exit, we also supply a tool which is used to obfuscate the file
containing the passwords.

@MoragHughson

Protecting your password across a network

� Use SSL/TLS
� Perhaps with anonymous clients

� If no SSL/TLS
� If both ends are V8
� MQ Code will protect the password – so

not sent in the clear

� If client is < V8
� No MQ password protection
� Consider SSL/TLS

MQCONN

Application

Q
M

gr
 Q

M
1

Network
Communications

N

O

T

E

S

Protecting your password
across a network – Notes

� When an application connects to a WebSphere MQ V8 queue manager across the
network, i.e. making a client connection, the password it sends for connection
authentication purposes travels across the network from the client application to the
queue manager for checking. This password should be protected as it does so, so
that network sniffers cannot obtain your password.

� For best possible protection, you can of course use SSL/TLS. You might imagine
using anonymous SSL/TLS, i.e. the client does not have a certificate, since you are
using user ID and password as the means by which to verify the identity of the
client application.

� If you do not use SSL/TLS, and your client is at V8.0 or later, the WebSphere MQ
product code will protect your password so that it is not sent in the clear. A good
reason to get your clients upgraded to V8!

� If your WebSphere MQ Client is at a version earlier than V8.0, it can still send user
ID and passwords (since the MQCSP structure has been around since V6) but the
password will not be protected, so you should consider using SSL/TLS.

@MoragHughson

Connection Authentication – User Repositories

QMgr

O/S User
Repository
(z/OS + Dist)

LDAP Server (Dist only)

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS)

DEFINE AUTHINFO(USE.LDAP) AUTHTYPE(IDPWLDAP)
CONNAME(‘ldap1(389),ldap2(389)’)
LDAPUSER(‘CN=QMGR1’)
LDAPPWD(‘passw0rd’) SECCOMM(YES)

MQCONNX
User1 + pwd1

Application (User2)

On z/OS passphrases
can be used

N

O

T

E

S

Connection Authentication –
User Repositories – Notes

� So far we have spoken about user ID and password authentication without mentioning
what is actually doing the authentication. We’ve also shown that there is a new type of
authentication information object without showing you the object type. Here we
introduce two new object types of authentication information objects.

� The first type is used to indicate that the queue manager is going to use the local O/S to
authentication the user ID and password. This type is IDPWOS.

� The second type is used to indicate that the queue manager is going to use an LDAP
server to authenticate the user ID and password. This type is IDPWLDAP and is not
applicable on z/OS.

� Only one type can be chosen for the queue manager to use by naming the appropriate
authentication information object in the queue manager’s CONNAUTH attribute.

� We have already covered everything there is to say about the configuration of the O/S
as the user repository as the common attributes are all there is for the O/S. There is
more to say about the LDAP server as an option though.

� Some of the LDAP server configuration attributes are probably fairly obvious. The
CONNAME is how the queue manager knows where the LDAP server is, and
SECCOMM controls whether connectivity to the LDAP server will be done using
SSL/TLS or not. The LDAPUSER and LDAPPWD attributes are how the queue manager
binds to the LDAP server so that it can look-up information about user records. It is likely
this may be a public area of an LDAP server, so these attributes may not be needed.

� It is worth highlighting that the CONNAME field can be used to provide additional
addresses to connect to for the LDAP server in a comma-separated list. This can aid
with redundancy if the LDAP server does not provide such itself.

@MoragHughson

Secure connection to an LDAP Server

QM's Digital
Certificate

CA Sig

SSLKEYR

LDAP Server

ALTER QMGR CONNAUTH(USE.LDAP)
SSLFIPS(NO) SUITEB(NONE)
CERTLABL(‘ibmwebspheremqqm1’)
SSLKEYR('var/mqm/qmgrs/QM1/ssl/key')

DEFINE AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
SECCOMM(YES)
CONNAME(‘ldapserver(389)’)

DISPLAY QMSTATUS
LDAPCONN

N

O

T

E

S

Secure connection to an LDAP Server –
Notes

� Unlike on channels, there is no SSLCIPH parameter to turn on the use of SSL/TLS
for the communication with the LDAP server. In this case MQ is acting as a client to
the LDAP server so much of the configuration will be done at the LDAP server.
Some existing parameters in MQ will be used to configure how that connection will
work as shown on this slide.

� The overall switch to choose SSL/TLS communication or not, we already saw on
the previous page – SECCOMM.

� In addition to this attribute, we will also pay attention to the queue manager
attributes SSLFIPS and SUITEB to restrict the set of cipher specs that will be
chosen. The certificate that will be used to identify the queue manager to the LDAP
server will be the queue manager certificate, either ‘ibmwebspheremq<qmgr-
name>’ or the newly added CERTLABL attribute which we’ll talked about in an
earlier section of this presentation.

� Certificate revocation will be checked by using the OCSP servers that are named in
the AuthorityInfoAccess (AIA) certificate extensions. This can be turned off by using
the qm.ini SSL stanza attribute OCSPCheckExtensions.

� Connection to an LDAP Server is made as a network connection (which is why you
may wish to consider using a secure connection). The status of this connection
from the queue manager to the LDAP server is shown in DISPLAY QMSTATUS.

@MoragHughson

USRFIELD

useradm Adds cn= Adds ou=users,o=ibm,c=uk

BASEDNU

cn=useradm Adds ou=users,o=ibm,c=uk

objectClass=organizationUnit

objectClass=inetOrgPerson

objectClass=organization

objectClass=country

LDAP User Repository

LDAP Server

c=UK

DEFINE AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
CONNAME(‘ldapserver(389)’)

o=ibm

cn=useradm cn=jbloggs

MQCONNX
User + pwd

Application

Application provides

cn=useradm,ou=users,o=ibm,c=uk

BASEDNU(‘ou=users,o=ibm,c=uk’)
USRFIELD(‘cn’)

ou=users

CLASSUSR(‘inetOrgPerson’)

N

O

T

E

S

LDAP User Repository – Notes

� When using an LDAP user repository there is some more configuration to be done on
the queue manager other than just to tell the queue manager where the LDAP
repository resides.

� User IDs records defined in an LDAP server have a hierarchical structure in order to
uniquely identify them. So an application could connect to the queue manager and
present its user ID as being the fully qualified hierarchical user ID. This however is a lot
to provide and it would be simpler if we could configure the queue manager to say,
assume all user IDs that are presented are found in this area of the LDAP server and
add that qualification onto anything you see. This is what the BASEDNU attribute is for.
It identifies the area in the LDAP hierarchy that all the user IDs are to be found. Or to
look at it another way, the queue manager will add the BASEDNU value to the user ID
presented by an application to fully qualify it before looking it up in the LDAP server.

� Additionally, your application may only want to present the user ID without providing the
LDAP attribute name, e.g. CN=. This is what the USRFIELD is for. Any user ID
presented to a queue manager without an equals sign (=) will have the attribute and the
equals sign pre-pended to it, and the BASEDNU value post-pended to it before looking it
up in the LDAP server. This may be a useful migratory aid when moving from O/S user
IDs to LDAP user IDs as the application could very well be presenting the same string in
both cases, thus avoiding any change to the application.

@MoragHughson

Relationship to Authorization – LDAP

QMgr

Authority
Checks

Authority Records

Q1: mqmadm +put

Q1

MQCONNX
cn=useradm

MQOPEN

Application

LDAP Server

DEFINE AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
CONNAME(‘ldap(389)’)
ADOPTCTX(YES)
SHORTUSR(‘sn’)

N

O

T

E

S

Relationship to Authorization – LDAP -
Notes

� We spoke earlier about the ability to adopt the authenticated user ID as the context
for this connection. So how does this work if you are using LDAP as the user
repository but your authorization is being done using O/S user IDs?

� We need to get a user to represent the LDAP user that has been presented, as an
O/S user ID. We find this from the LDAP user record. This can be any field that is
defined in the user record, perhaps something like the short name field (sn=) that is
a mandatory part of the definition of the inetOrgPerson class, or perhaps something
defined more specifically for the purpose such as a user ID (uid=) field.

� The queue manager will use that information to determine what O/S user ID will be
used as the context for this connection. You configure it using SHORTUSR to say
what the field to locate in the user record is.

@MoragHughson

FixPac
8.0.0.2
FixPac
8.0.0.2

ALTER AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
AUTHORMD(OS)

Authorization using LDAP credentials

QMgr

Authority
Checks

Q1

MQCONNX
cn=useradm

MQOPEN

Application

ALTER AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
AUTHORMD(SEARCHGRP)
FINDGRP(‘member’)
CLASSGRP(‘groupOfNames’)
BASEDNG(‘ ou=groups,o=ibm,c=uk ’)
GRPFIELD(‘cn’)
NESTGRP(NO)

Users Groups

CLASSUSR CLASSGRP

BASEDNU BASEDNG

USRFIELD GRPFIELD

Equivalent attributes

LDAP Server

setmqaut -g admin
–t qmgr +connect

setmqaut -g cn=admin,ou=groups,o=ibm,c=uk
–t qmgr +connect

N

O

T

E

S

Authorization using LDAP credentials -
Notes

� In FixPac 8.0.0.2 and the MQ Appliance, there is now the option, on UNIX queue
managers, to choose to have the authorization checks done using the presented
LDAP credentials, instead of the behaviour on the previous page where they are
mapped to an OS user for authorization checks.

� In order to use this feature, you need to have your queue manager running with a
command level (CMDLEVEL) of 801 which is an explicit action to increase, due to
the function being delivered in a FixPac.

� Then we need to know a few more things about the shape of your LDAP user
repository; i.e. where the groups live in the hierarchy.

@MoragHughson

AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
AUTHTYPE(IDPWOS)
CHCKLOCL(OPTIONAL)
CHCKCLNT(REQDADM)
FAILDLAY(1)
DESCR()
ALTDATE(2013-12-25)
ALTTIME(12.00.00)

Migration / Defaults

� Defaults
� Migrated queue manager

� CONNAUTH(‘ ’)
� New queue manager

� CONNAUTH()

QMgr

Q1

N

O

T

E

S

Migration / Defaults – Notes

� By default, a migrated queue manager will find that CONNAUTH is blank – and
therefore connection authentication is switched off.

� A brand new queue manager created with the WebSphere MQ V8 binaries will find
that the CONNAUTH field points to the SYSTEM.DEFAULT.AUTHINFO.IDPWOS
authentication information object.

@MoragHughson

Summary

� Connection Authentication
� Application provides User ID and password in MQCSP

� Or uses mqccred exit supplied
� Queue Manager checks password against OS or LDAP

� ALTER QMGR CONNAUTH(‘CHECK.PWD’)

� DEFINE AUTHINFO(‘CHECK.PWD’)
AUTHTYPE(IDPWOS|IDPWLDAP)
CHCKLOCL(NONE|OPTIONAL|REQUIRED|REQDADM)
CHCKCLNT(NONE|OPTIONAL|REQUIRED|REQDADM)
ADOPTCTX(YES)

+ various LDAP attributes
� REFRESH SECURITY TYPE(CONNAUTH)

� Password protection is provided when SSL/TLS not in use
� Both ends of client channel are V8 or above

Hostnames in CHLAUTH

@MoragHughson

Agenda

� Requests for Enhancement

� Channel Authentication Records
� Recap
� Rules which use IP addresses
� Hostnames
� Precedence Order
� Reverse Look-up of IP address
� MATCH(RUNCHECK)

@MoragHughson

Request for Enhancement

� Second in the Most voted list!

@MoragHughson

Request for Enhancement (21892)

@MoragHughson

Channel Authentication Records – Recap

� Set rules to control how inbound connections are tr eated
� Inbound Clients
� Inbound QMgr to QMgr channels
� Other rogue connections causing FDCs

� Rules can be set to
� Allow a connection
� Allow a connection and assign an MCAUSER
� Block a connection
� Ban privileged access
� Provide multiple positive or negative SSL Peer Name matching

� Rules can use any of the following identifying
characteristics of the inbound connection
� IP Address
� SSL/TLS Subject’s Distinguished Name
� Client asserted user ID
� Remote queue manager name

N

O

T

E

S

Channel Authentication Records – Notes

� Channel Authentication records allow you to define rules about how inbound
connections into the queue manager should be treated. Inbound connections might
be client channels or queue manager to queue manager channels. These rules can
specify whether connections are allowed or blocked. If the connection in question is
allowed, the rules can provide a user ID that the channel should run with or indicate
that the user ID provided by the channel (flowed from the client or defined on the
channel definition) is to be used.

� These rules can therefore be used to
– Set up appropriate identities for channels to use when they run against the queue manager

– Block unwanted connections

– Ban privileged users

� Which users are considered privileged users is slightly different depending on which
platform you are running your queue manager on. There is a special value
‘*MQADMIN’ which has been defined to mean “any user that would be privileged on
this platform”. This special value can be used in the rules that check against the
final user ID to be used by the channel – TYPE(USERLIST) rules – to ban any
connection that is about to run as a privileged user. This catches any blank user IDs
flowed from clients for example.

@MoragHughson

Channel Access Blocking Points

� Listener Blocking
� NOT A REPLACEMENT FOR

AN IP FIREWALL!!
� Blocked before any data read

from the socket
� Simplistic avoidance of DoS attack

� Really the place of the IP firewall
� Network Pingers if blocked don’t raise an

alert

� Channel Blocking/Mapping
� Rules to block channels
� Rules to map channels to MCAUSER
� Rules to allow channels as they are
� Runs before security exit
� Final check for user ID before allowing

through
� After Security Exit has run and final

MCAUSER is assigned
� Ban privileged users with ‘*MQADMIN’

ACLs

N

O

T

E

S

Channel Access Blocking Points – Notes

� In this picture we illustrate that there are a number of points that an inbound
connection must get through in order to actually make use of an MQ queue.

� First, we remind you that your IP firewall is included in this set of blocking points
and should not be forgotten, and is not superseded by this feature in MQ.

� One point of note, the inbound connections can be from any version of MQ. There
is no requirement that the clients or remote queue managers also be on
WebSphere MQ V7.1 to be blocked or mapped by these rules.

@MoragHughson

Channel Authentication Rules using IP

Addresses

� Initial Listener blocking list
� Should be used sparingly
� List of

IP addresses/range/pattern
� Not replacing IP firewall

� Channel based blocking of
IP addresses
� Single IP address/range/pattern

� Channel allowed in, based on
IP addresses
� Single IP address/range/pattern

� Further qualified rule including
IP address on another rule type
� Works with SSLPEER,

QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)
ADDRLIST(‘9.20.*’, ‘192.168.2.10’)

SET CHLAUTH(‘APPL1.*’) TYPE(ADDRESSMAP)
ADDRESS(‘9.20.*’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)
SSLPEER(‘CN=“Morag Hughson”’)
ADDRESS(‘9.20.*’) MCAUSER(HUGHSON)

SET CHLAUTH(‘*.SVRCONN’) TYPE(ADDRESSMAP)
ADDRESS(‘9.20-21.*’) MCAUSER(HUSER)

N

O

T

E

S

Channel Authentication Rules
using IP Addresses – Notes

� There are four different ways that IP addresses could be used in channel
authentication records.

� The initial check that the listener makes for banned IP addresses, which are based
on the rule created using a TYPE(BLOCKADDR) record. This rule is something that
should be used sparingly. It is intended as an MQ administrator control to
temporarily configure banned IP addresses until the IP firewall can be updated to
cope with the issue.

� Once the initial channel flows have been made the mapping rules kick in. You can
ban a particular IP address from a channel by using USERSRC(NOACCESS) on a
mapping rule.

� You can also map a channel to use a particular MCAUser or to flow through it’s
client side credentials if it comes from a particular IP address.

� Finally, IP address restrictors can be added to any of the other types of mapping
rules

@MoragHughson

Channel Authentication Rules using Hostnames

� Initial Listener blocking list
� Hostnames not allowed

� Channel based blocking of
Hostnames
� Single IP address/range/pattern

or hostname/pattern

� Channel allowed in, based on
Hostnames
� Single IP address/range/pattern

or hostname/pattern

� Further qualified rule including
hostname on another rule type
� Works with SSLPEER,

QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)
ADDRLIST()

SET CHLAUTH(‘APPL1.*’) TYPE(ADDRESSMAP)
ADDRESS(‘*.ibm.com’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)
SSLPEER(‘CN=“Morag Hughson”’)
ADDRESS(‘s*.ibm.*’) MCAUSER(HUGHSON)

SET CHLAUTH(‘*.SVRCONN’) TYPE(ADDRESSMAP)
ADDRESS(‘mach123.ibm.com’) MCAUSER(HUSER)

N

O

T

E

S

Channel Authentication Rules using
Hostnames – Notes

� Hostnames can be used in almost all places in channel authentication records that
IP address could be used. The one exception to this is the TYPE(BLOCKADDR)
record. This is only going to accept IP addresses.

� If you want to block IP addresses with CHLAUTH rules permanently in MQ, rather
than via your IP firewall, you should be doing it using the TYPE(ADDRESSMAP)
record and specifying USERSRC(NOACCESS). This type of rules will allow
hostnames as well.

� Additionally, positive mapping records allow hostnames, and address restrictors can
also use hostnames.

� Channel Authentication rules utilise pattern matching to allow the most flexible
control. IP Addresses have a special form of pattern matching that includes ranges
and wildcards within each ‘.’ (or ‘:’ for IPv6) section of an IP address. Other pattern
matching which is done on channel names, and queue manager names is simpler
with just wild-carded string matching (in other words dots are not considered
special).

� Hostnames also have pattern matching applied to them – as for channel names and
queue manager names. That is it is just a wild-carded string matching and
separators such as dots are not considered special.

@MoragHughson

Precedence Order

Order Identity mechanism Notes

0 Channel Name

1 SSL Distinguished Name

2= Client asserted User ID Clearly several different
user IDs can be running on
the same IP address.

2= Queue Manager Name Clearly several different
queue managers can be
running on the same IP
address

4 IP address

5 Hostname One IP address can have
multiple hostnames

DISPLAY CHLAUTH(APPL1.*)
returns ===>

CHLAUTH(APPL1.*)
TYPE(SSLPEERMAP)
SSLPEER(‘O=”IBM UK”’) MCAUSER(UKUSER)

CHLAUTH(APPL1.*)
TYPE(USERMAP)
CLNTUSER(‘mhughson’) MCAUSER(HUGHSON)

CHLAUTH(APPL1.*)
TYPE(ADDRESSMAP)
ADDRESS(‘9.180.165.163’) MCAUSER(MORAG)

CHLAUTH(APPL1.*)
TYPE(ADDRESSMAP)
ADDRESS(‘*.ibm.com’) MCAUSER(IBMUSER)

Chl: APPL1.SVRCONN
DN: CN=M Hughson.O=IBM UK
UID: mhughson
IP: 9.180.165.163

N

O

T

E

S

Precedence Order – Notes

� Rules created using Channel Authentication Records follow a precedence order so
that it is clear which rule will be used when an inbound connection could have
match multiple rules.

� Hostnames are added to the precedence order at the very bottom. They are
considered to be less specific than an IP address because a single IP address can
have multiple hostnames.

� If you have an IP address rule and a hostname rule that could both match an
inbound connection, then the IP address rule will be the one that is used, as it is
considered to be more specific.

@MoragHughson

� Hostname is not ‘sent’ from the other end of the ch annel

� IP address is obtained from TCP/IP socket

� We must ask the Domain Name System (DNS) Server wha t the hostname
is, a.k.a. Reverse Lookup

� If you want to use hostname rules
� Your queue manager must be able to contact your DNS
� Your DNS must be able to resolve the IP addresses

� Sender/Client address
� More than previously needed just to use

CONNAME(‘hostname(port)’)

� NO DNS – NO HOSTNAME

� NO HOSTNAME – NO MATCH QMgr

Obtaining a hostname

� IP address from TCP/IP

� Other attributes from
internal channel flows
� Channel Name
� Certificate DN
� Remote QMgr Name
� Client User ID

MQCONNX
User3 + pwd3

Application (User4)

Network
Communications

DNS
IP Address

Hostname

N

O

T

E

S

Obtaining a hostname – Notes

� In order to be able to process channel authentication records that contain rules
using hostnames we need to be able to obtain the hostname that represents the IP
address of the socket. The hostname is not ‘sent’ to us by the channel or by TCP/IP.
We get the IP address from the socket. We get the other attributes that channel
authentication records use from the various internal flows across the socket.

� To get the hostname we must ask the Domain Name System (DNS) Server what
hostname goes with the IP address we are currently looking at. In order for this to
be successful our queue manager must be able to use the DNS. This may already
be true if you are using hostnames in CONNAME fields for example – which is
certainly common-place. Also, the DNS must be able to reverse look-up the IP
address and find a hostname for us. This may not be true in your current set up. Are
all the sender channel or client application IP addresses currently available in your
DNS? In order for hostname rules to be used, this must be the case.

� If you cannot reverse look up the hostname then CHLAUTH hostname rules will not
be able to be matched.

@MoragHughson

Avoiding obtaining a hostname

� To stop the Queue Manager asking the
Domain Name System (DNS) Server
for hostnames that go with IP address,
a.k.a. Reverse Lookup

� No CHLAUTH rules containing a
hostname will be able to match

ALTER QMGR REVDNS(DISABLED)

QMgr

MQCONNX
User3 + pwd3

Application (User4)

Network
Communications

DNS

N

O

T

E

S

Avoiding obtaining a hostname – Notes

� It is possible that you wish this to always be the case. Some people are more
nervous about the potential security hazards of using hostnames than others. When
CHLAUTH only used IP addresses to match on, this was not something you had to
worry about. Now someone might start to get lazy and use hostname rules.

� We have added a control to turn off the reverse look up of hostnames. There were
previously undocumented parameters on both z/OS® and distributed to allow this,
but as part of this feature we have made an official version of these.

� When REVDNS is ENABLED, the reverse look-up of the IP Address to retrieve the
hostname will still only be done when it is required. If you do not use hostnames in
CHLAUTH rules, then the only time a reverse look-up will be done is when writing
an error message which contains that information. This is the same as the product
behaviour pre-V8.

@MoragHughson

Diagnosing hostname look-up failures

� WebSphere MQ V7.1

� WebSphere MQ V8

AMQ9777: Channel was blocked
EXPLANATION:
The inbound channel 'SYSTEM.DEF.SVRCONN' was blocke d from address ‘ 9.180.165.163’
because the active values of the channel matched a record configured with
USERSRC(NOACCESS). The active values of the channel were 'CLNTUSER(hughson)'.

AMQ9777: Channel was blocked
EXPLANATION:
The inbound channel 'SYSTEM.DEF.SVRCONN' was blocke d from address
‘mhughson.ibm.com(9.180.165.163) ’ because the active values of the channel matched a
record configured with USERSRC(NOACCESS). The activ e values of the channel were
'CLNTUSER(hughson) ADDRESS(mhughson.ibm.com, morag.hursley.ibm.com) '.

N

O

T

E

S

Diagnosing hostname look-up failures –
Notes

� In WebSphere MQ V7.1, this was the message you saw when a channel was blocked. It gave you
all the pieces of information you needed to work out why the channel was blocked. You can use the
information in this error message to create a DISPLAY CHLAUTH MATCH(RUNCHECK) command.

� In WebSphere MQ V8, this message will also now contain the hostname (possibly several) that go
with the IP address, assuming that we have been able to find one. The description of the message
will indicate that if a hostname is not shown this implies that either REVDNS is DISABLED or that
reverse DNS lookup was unable to obtain a hostname for this IP address.

MESSAGE:
Channel was blocked

EXPLANATION:
The inbound channel '<insert one>' was blocked from address '<insert two>‘ because

the active values of the channel matched a record configured with USERSRC(NOACCESS). The
active values of the channel were '<insert three>'.
ACTION:

Contact the systems administrator, who should examine the channel authentication
records to ensure that the correct settings have been configured. If no hostnames are shown this
means that either the queue manager is configured with REVDNS(DISABLED) or the queue manager
was unable to find a hostname for this IP address when making a reverse look up call to the Domain
Name Server. The ALTER QMGR CHLAUTH switch is used to control whether channel authentication
records are used. The command DISPLAY CHLAUTH can be used to query the channel
authentication records.

@MoragHughson

Using MATCH(RUNCHECK) with hostnames

� Just as before, MATCH(RUNCHECK)
mandates an IP address is provided

� Then the queue manager will employ
DNS to find the hostname

� MATCH(RUNCHECK) thus also tests
whether your DNS is correctly set up.

DISPLAY CHLAUTH(SYSTEM.ADMIN.SVRCONN) MATCH(RUNCHECK)
SSLPEER(‘CN=“Morag Hughson”, O=“IBM UK”’)
CLNTUSER(‘mhughson’) ADDRESS(‘9.180.165.163’)

returns ===>
CHLAUTH(SYSTEM.ADMIN.SVRCONN)
TYPE(ADDRESSMAP)
ADDRESS(‘*.ibm.com’) MCAUSER(HUGHSON)

Chl: SYSTEM.ADMIN.SVRCONN
DN: CN=Morag Hughson.O=IBM UK
UID: mhughson
IP: 9.180.165.163

N

O

T

E

S

Using MATCH(RUNCHECK) with
hostnames – Notes

� The DISPLAY CHLAUTH variant invoked using MATCH(RUNCHECK) allows you to
provide all the same pieces of information that an inbound client presents to the
queue manager. As we noted earlier, the hostname is not one of those pieces of
information, the queue manager has to go and find that information out from the
Domain Name Server (DNS).

� So when providing information into the MATCH(RUNCHECK) command, you do the
same as before, you provide the IP address. The queue manager will then make
the call to DNS as it would if the real inbound connection appeared and find out
what the hostname is, then run the matching against the rules. If it was able to find
out a hostname then it will match against a hostname rules, but if it was not, then it
won’t.

� If you have your queue manager configured to use REVDNS(DISABLED) and you
also have some CHLAUTH rules that use hostnames, then a message will appear
along with the output of the MATCH(RUNCHECK) display in rather the same way
that it warns you that CHLAUTH is DISABLED.

� Thus DISPLAY CHLAUTH MATCH(RUNCHECK) can help you to determine
whether your reverse look-up for particular IP addresses is likely to work.

@MoragHughson

Channel Authentication Records – Summary

� Set rules to control how inbound connections are tr eated
� Inbound Clients
� Inbound QMgr to QMgr channels
� Other rogue connections causing FDCs

� Rules can be set to
� Allow a connection
� Allow a connection and assign an MCAUSER
� Block a connection
� Ban privileged access
� Provide multiple positive or negative SSL Peer Name matching
� Mandate user ID & password checking

� Rules can use any of the following identifying
characteristics of the inbound connection
� IP Address
� Hostname
� SSL/TLS Subject’s Distinguished Name
� SSL/TLS Issuer’s Distinguished Name
� Client asserted user ID
� Remote queue manager name

N

O

T

E

S

Channel Authentication Records –
Summary – Notes

� Here is a repeat of our first slide with some small updates.

� We saw earlier in the presentation that CHLAUTH links into the Connection
Authentication feature, and we saw that we can now fully qualify SSL/TLS DN
matching in our CHLAUTH rules with Issuer’s DN as well as the Subject’s DN, and
now in this last section we’ve seen that we have Hostnames as well.

@MoragHughson

For Additional Information

http://ibm.co/1zZNpf8

