
Insert

Custom

Session

QR if

Desired.

Permission is granted to SHARE Inc. to publish this presentation paper in the SHARE Inc. proceedings; IBM retains the right to distribute copies of this presentation to whomever it chooses. © Copyright IBM Corp. 2015

Using PDSEs in your SYSPLEX:

Best Practices

Speaker: Thomas Reed /IBM Corporation

SHARE Seattle 2015

Session: 16955

Agenda

• PDSE Sharing

• PDSE Recoverability

• PDS to PDSE Conversion Considerations

• PDSE and 2.1

2

What is a PDSE?

• PDSE: Partitioned Data Set Extended

• A PDSE is a homogenous collection of directory and data

pages

• PDSE server consists of one or two address spaces

(SMSPDSE and SMSPDSE1)

• The SMSPDSE(1) address spaces serve client access

requests for PDSE data sets

• Under the hood SMSPDSE(1) also manages PDSE

serialization and buffering

3

What Does a PDSE Look Like?

4

PDSE Sharing

5

PDSE Sharing Basics

Important Terminology:

• Two sharing modes, NORMAL and EXTENDED

– NORMAL is the default and fallback mode

– EXTENDED is preferred in the SYSPLEX environment

• GRSPLEX Scope: A set of systems connected by only

GRS

• SYSPLEX Scope: A set of systems connected by both XCF

and GRS

*See the Appendix for NEW sharing cheat sheets

6

EXTENDED Sharing Mode: Basics

• The newest and preferred sharing mode

• Provides the ability to share at the member level between

systems

• Can be implemented with one or both address spaces

active

7

EXTENDED Sharing Mode: Startup

• PDSESHARING(EXTENDED) specified in IGDSMSxx

member

• The SYSPLEX sharing mode is determined by the first

PDSE address space to start within the GRSPLEX

• Mixed sharing modes are not supported

• IPL is recommended to start EXTENDED sharing

– Starting with the ACTIVATE command is possible

– ACTIVATE command start may cause PDSE problems

– See Appendix for ACTIVATE command

8

EXTENDED Sharing Mode: Sharing Requirements

• EXTENDED sharing is strictly limited to systems within the

same SYSPLEX

• Participating systems must belong to the same GRSPLEX

AND XCFPLEX

9

SYSPLEX

XCF

LPAR A

LPAR C

LPAR B

GRS

(SYSZIGW0)

Improper PDSE sharing: What is it?

• Sharing a PDSE data set outside of a single XCFPLEX
while running PDSE sharing EXTENDED

• Also known as sharing outside of the SYSPLEX

• Key point: PDSE sharing EXTENDED requires both GRS
and XCF to mediate serialization of data sets

10

XCF

LPAR A

LPAR C

LPAR B

GRS

(SYSZIGW0)

SYSPLEX

MONOPLEX

PDSE

Improper PDSE sharing: Why is it bad?

• Improper sharing can allow for unserialized access to

PDSE data sets

– There is no warning that a data set has been accessed in an

unserialized manner

– The results are unpredictable but may include:

• Invalid index data in-core

• Corrupt index data on DASD

• Corrupt member data

• Mismatched extent information

• Nothing at all

11

Improper PDSE sharing: Common Symptoms

• Corruption can cause 0F4 ABENDs

– Corruption of the PDSE data set causes logical errors

– Also may indicate an extent mismatch if the PDSE was

moved

• Varied symptoms make improper sharing hard to diagnose

• Many symptoms can be caused by other issues

12

Improper PDSE Sharing:

Admins Beware!

• There is no 100% safe way to circumvent EXTENDED

mode’s serialization requirements

• PDSE data sets cannot be serialized by third party

products

– Specifies RNL=NO

– MIM does not serialize PDSEs

• Asking users not to update PDSEs from outside the

SYSPLEX

– Inevitably someone forgets

– New users may not know the rules

• Reserves can cause serialization deadlocks

13

NORMAL Sharing Mode: Basics

• Legacy PDSE sharing mode

• Provides the ability to share at the data set level between

systems

• Shares at the member level on a single system

• Can only be implemented with the non-restartable address

space (SMSPDSE)

14

NORMAL Sharing Mode: Startup

• PDSESHARING(NORMAL) specified in IGDSMSxx member

• NORMAL is the default sharing mode

• Mixed sharing modes are not supported

• To change from EXTENDED sharing to NORMAL sharing

requires an IPL

15

NORMAL Sharing Mode: Sharing Requirements

• NORMAL sharing is not limited to systems within the same

SYSPLEX

• Participating systems must belong to the same GRSPLEX

16

LPAR A

LPAR C

LPAR B

GRS

(SYSZIGW0)

NORMAL Sharing Mode: Sharing outside the

SYSPLEX correctly

• Why it works:

– NORMAL mode sharing only utilizes GRS for serialization

– Multiple SYSPLEXs or stand alone LPARs may share DASD

within the same GRSPLEX

• Limitations:

– Restricts inter-system sharing to the data set level

– When a system opens the PDSE for OUTPUT it is the only

system that can access the PDSE

– Can decrease performance by blocking opens of the data set

17

PDSE Recoverability

18

PDSE Recoverability: SMSPDSE1

• SMSPDSE1 is the restartable PDSE address space

– SMSPDSE1 handles local data set connections

– SMSPDSE handles global data set connections

• SMSPDSE1 is only available to systems running PDSE

sharing EXTENDED

• It is highly recommended that all customers running

EXTENDED sharing take advantage of the restartable

address space

• Enabled by IGDSMSxx Parameter
– PDSE_RESTARTABLE_AS(NO | YES)

19

PDSE Recoverability: The SMSPDSE1 Restart

Process

• Why perform a SMSPDSE1 restart?

– To recover from a situation that would otherwise require an

IPL

– Recover from a PDSE latch hang situation

– Recover from in-core corruption of a PDSE at 1.12 and

below

• 1.13 and above can use the REFRESH command

– Recover from excessive PDSE storage usage

• What are the side effects?

– A small amount of CSA is lost in the restart

20

PDSE Recoverability: The SMSPDSE1 Restart

Process

• Restart Warnings:

– Do not route the restart command around the SYSPLEX

• Each LPAR must complete it’s restart before restarting the

next

– Depending on the number of connections that need to be

quiesced and reconnected it may take a few minutes

– Some user jobs may not be able to correctly handle the

quiesce and reconnect processing and may fail

21

PDSE Recoverability: How to Restart SMSPDSE1

• Step 1:

– Gather doc! At a minimum a console dump of SMSPDSE

and SMSPDSE1 should be taken

• Step 2:

– Issue the restart command

– V SMS,PDSE1,RESTART
[,QUIESCE(duration | 15)[,COMMONPOOLS(NEW|REUSE)]

– QUIESCE option determines how long in-flight operations have to

quiesce

– COMMONPOOLS option determines whether ECSA cell pools are

reused

• Only select NEW if there was a cell pool problem

22

PDSE Recoverability: Phases of the SMSPDSE1

Restart

• Quiesce Phase

– New PDSE requests are corralled

– By default all in-flight activity has 15 seconds to complete

– If requests do not complete within the quiesce interval the

user has the choice to either wait or continue with the restart

– Once the quiesce interval completes SMSPDSE1 stops and a

new instance is started

23

PDSE Recoverability: Phases of the SMSPDSE1

Restart

• Reconnect Phase

– All user connections are restored

– There is a 15 second time limit on reconnect processing

– If reconnect cannot be completed within 15 seconds the user

can choose to retry for another 15 seconds or continue

– Users must decide whether they can afford to lose any tasks

which don’t reconnect in a timely manner

24

PDSE Recoverability: SMSPDSE1 Restart Failure

• If necessary tasks in SMSPDSE1 have been lost the restart

may hang

– Can result from ABEND S0C1 in the wrong task

• SMSPDSE1 then must be forced down

• The user can then attempt to use the ACTIVATE command

to bring SMSPDSE1 back up
• V SMS,PDSE1,ACTIVATE

• This is a last resort and should only be used to attempt to

avert an IPL

25

PDSE Recoverability: z/OS 1.13 and Above PDSE

Commands

• The REFRESH command provides a more granular way to

recover from in-core corruption at 1.13 and above

• Avoids a PDSE1 restart for corruption issues

• Discards all in-core pages for the specified PDSE

• Next access will re-read all data from DASD

• V SMS,PDSE|PDSE1,REFRESH,DSN(dsname)[,VOL(volser)]

• WILL NOT resolve PDSE latch/lock issues

26

PDSE Recoverability: z/OS 1.13 and Above PDSE

Commands

• The CONNECTIONS command allows the user to discover

where the PDSE is in use at 1.13 and above

• Useful for PDSE in use errors

• A dump no longer has to be taken to determine what tasks

are connected to a PDSE

• D SMS,PDSE|PDSE1,CONNECTIONS,DSN(dsname),<VOLSER(volser)>

27

PDSE Recoverability: The IEBPDSE Validation Tool

• IEBPDSE

– Validates the integrity of PDSE datasets on DASD

• Checks the indexes (AD, ND and GD)

• Checks extent information

– Disregards in-core index pages

– Linklisted PDSE’s are automatically validated during NIP

28

PDSE Recoverability: The IEBPDSE Validation Tool

• Recent Enhancements:

– OA40492

• Adds AD/ND index utilization statistics

• Tells us how sparse the indexes are overall

– OA45786

• Adds AD/ND/GD root page utilization statistics

• Tells us how close we are to going into the next index

level

– OA46438

• For corrupt PDSEs, counts mid-level empty index pages

in all the indexes

29

PDSE Recoverability: The IEBPDSE Validation Tool

30

IGW700I PDSE Directory Validation Successful
DSN:XXXXXXX.TESTPDSE.WITHGENS
ADPages:1 IXRecords:41
ADPagesInCore:1 ADPagesRead:0
ADTreeLevels:1
NDPages:1 IXRecords:6
NDPagesInCore:1 NDPagesRead:0
NDTreeLevels:1
AD ND Tree Nodes:6
ADPercentFree:48 NDPercentFree:94
ADRootPercentFree:48 NDRootPercentFree:89
GDPages:1 IXRecords:4
GDPagesInCore:1 GDPagesRead:0
GDTreeLevels:1
GDRootPercentFree:90
Version:2

OA40492

OA45786

Converting from PDS to PDSE

31

Considerations When Converting:

PDS to PDSE

• PDS:

– Alphabetically organized linear directory consisting of

member names and pointers to those members

– Sequential areas of the data set are used for member data

and not reused

• PDSE:

– Collection of 4K pages. Both directory pages and member

data

– Multiple tree style directories pointing to linear data spaces

for member data

32

Considerations When Converting:

Load Modules and Program Objects

• Load modules can always be converted to Program

Objects

• Program Objects may not always be able to be converted

to Load Modules

– Due to Program Object features that are unsupported by

Load Modules

• Conversions are automatically done by IEBCOPY

• The conversion process will take additional processing due

to Program Objects requiring a pass through the binder

• Cannot compare Load Module size to Program Object Size

33

Considerations When Converting:

PDS to PDSE IEBCOPY

• COBOL V5’s binder output is a Program Object

• This means that it must reside in a PDSE

• Recent APAR to ease the transition:

– OA46499: Prevents FAMS from failing an IEBCOPY on a

corrupted PDS member

34

Considerations When Converting:

PDSE’s, COBOL v5, HIPERSPACE, and you!

• Normally we’d expect our LLA managed program objects to

be eligible to be cached via VLF

• COBOL V5 Program Objects use deferred segments

– This makes them ineligible for caching in VLF even if

otherwise cache-worthy*

– In these cases LLA tells PDSE to cache the Program Object

– For PDSE to cache the Program Object HIPERSPACE

caching must be enabled

– Without HIPERSPACE caching enabled COBOL V5 Program

Objects WILL NOT BE CACHED*

35

* Until OA45127

Considerations When Converting:

PDSE’s, COBOL v5, HIPERSPACE, and you!

– Hiperspace Caching Overview:

• Technote

– HIPERSPACE users at 2.1 should pick up OA46328

• Corrects a space utilization issue

36

http://www.ibm.com/support/docview.wss?uid=isg3T1022058

Considerations When Converting:

Linklist Considerations

• Replacing a PDS in linklist versus a PDSE

– For PDS’s the following will work:

SETPROG LINKLIST,UNALLOCATE
P LLA
RENAME YOUR.LINKLIST.DATASET to
YOUR.LINKLIST.DATASET.OLD
RENAME YOUR.LINKLIST.DATASET.NEW to
YOUR.LINKLIST.DATASET
SETPROG LINKLIST,ALLOCATE

S LLA,SUB=MSTR

• This will cause 0F4 ABENDs if attempted with a
PDSE

37

Considerations When Converting:

Linklist Considerations

• The correct way to update/replace a PDSE in linklist:

– Cannot be updated while in an active LNKLST set

• To remove a data set from an active LNKLST set:
LNKLST DEFINE NAME(NEWLLSET) COPYFROM(OLDLLSET)

LNKLST DELETE NAME(NEWLLSET) DSNAME(data set.to.be.removed)

LNKLST ACTIVATE NAME(NEWLLSET)

LNKLST UPDATE JOB(*)

• Then re-add the updated data set

• This needs to be done on all LPARs sharing the linklisted

PDSE

38

PDSE and z/OS 2.1

39

PDSE and z/OS 2.1

• Enhancements, big and small

– IMF/BMF restructure

– PDSE member size limitation easing

• New Features

– The PDSE V2 Format

– PDSE V2 partial release enhancement

– PDSE Member Generations

40

IMF/BMF Code Restructure: Rationale

• Current Issues/Compromises/Reasons for the restructure:

– The PDSE index manager facility (IMF) is a heavy user of

CPU time

– Inefficient use of storage during PDSE update processing

– Performing an IEBCOPY may result in excessive unused

space in the Attribute Directory (AD)

41

IMF/BMF Code Restructure:

IMF Code Changes

• Majority of index processing now done inline

– Greatly reduced code base size

– Shortened path length for index operations

– Most remaining IMF processing has been moved into CDM

• IMF LRU (Least Recently Used) task

– Largely supplants BMF LRU

– NEW index page LRU algorithm

– Much more efficient tracking of directory page lifespans

• Reduced CPU usage as well

42

IMF/BMF Code Restructure:

IMF Code Changes cont.

• Combined previously separate PDSE update and Directory

page cache components

– Created entirely new Directory Store component

• Handles caching of directory pages as well as update

processing

• Accesses directory pages more efficiently

– Allows for more efficient re-use of pages during index

updates

– Reduced index page splits control index growth

43

IMF/BMF Code Restructure:

Results

• Reduced CPU utilization for the most common PDSE directory
processing

– Large PDSE datasets (>1000 Members) benefit most

– Improved index update process

• Improved efficiency of storage utilization during PDSE update
processing

• Tighter indexes resulting in fewer overall index pages for both V1
and V2 PDSEs

• IEBPDSE is enhanced

– Recommend running IEBPDSE from the the highest level system
available

– Due to the IMF rewrite, do not expect IEBPDSE at 2.1 to return
identical results to 1.13

44

Easing PDSE Member Size Limitation :

Rationale

• Current Limitations:

– PDSE members can have a maximum of 15,728,639 records

– PDS datasets are not bound by this limit

• Why it Matters:

– Current member limit can make it unfeasible to use PDSE

datasets in some situations

– Customers can’t take advantage of PDSE’s buffering and

indexing benefits

• SHARE Requirement: SSMVSS11010

45

Easing PDSE Member Size Limitation :

Solution

• New Enhancement:

– Increase the PDSE member size limit

– New limit is over 125 times larger at approximately
2,146,435,071 records

– New limit is substantially larger than the maximum supported
size of a PDS member

– Anything that will fit in a PDS member will now fit in a PDSE
member

– Applies to BOTH PDSE formats, V1 & V2

– See BLOCKTOKENSIZE LARGE documentation for usage
details

46

z/OS 2.1: PDSE Version 2

• At V2R1 there are 2 data set formats V1 and V2 PDSEs

• The version 1 format is the historic PDSE format

• The version 2 format is a revision of the PDSE format

– Brings better performance and efficiency

• Removed unneeded structures

• Reworked variable record member indexing

– Reduces CPU and Storage utilization

47

PDSE Version 2 :

Features

• Version 2 data sets use the same serialization and

buffering subsystems as version 1

• The IMF/BMF performance enhancements at V2R1 apply

to BOTH V1 and V2 datasets

• Version 2 datasets increase the chance that partial release

will be able to release space

• Supports PDSE Member Generations

48

PDSE Version 2 :

Performance Benefits

• Real world improvements:

– First OPEN of large PDSEs

– Creation of large members using variable records

– Variable records use storage much more efficiently

– Variable records are much faster in the vast majority of use

cases

• However:

– For PDSE’s with variable records, an OPEN followed by a

‘blind’ Point to the end of a member will be slower

• If this is your primary use for a PDSE then consider using

a V1 data set

49

Questions? Comments?

Please Fill Out the Survey!

51

Appendix

• Cheat Sheets, Parameters, Commands and JCL

• Normal Sharing is the Legacy PDSE Sharing mode

 It provides the ability to share at the dataset

level between systems.

 It can share at a member level only

within a single system.

 It can only be implemented with the Non-

Restartable Address Space (SMSPDSE).

 If you wish to use the restartable

Address Space you must use Extended

Sharing.

 Getting started with Normal Sharing

 PDSESHARING(NORMAL) must be

specified in the IGDSMSxx member.

 In order to change from a Extended

Sharing Mode to Normal Sharing Mode,

you must IPL.

 Normal Sharing Mode is not limited to

systems in the same SYSPLEX.

 However, all participating systems must

belong to the same GRSPLEX

NORMAL and EXTENDED Sharing Mode: Cheat Sheet

• Extended Sharing is the preferred method of sharing

 It provides the ability to share at the member

level between systems.

 It works with either and/or both of the

SMSPDSE Address Spaces active.

 Getting started with Extended Sharing

 PDSESHARING(EXTENDED) must be

specified in the IGDSMSxx member.

 The SYSPLEX sharing type is

determined by the first PDSE Address

Space to start.

 IPL is recommended to start Extended

Sharing.

 ACTIVATE Command can be

used, but may cause PDSE

problems.

 Extended Sharing is strictly limited to systems

within the same SYSPLEX.

 All participating systems must belong to

the same GRSPLEX AND XCFPLEX

53

• Sharing a PDSE outside of the XCFPLEX

 By sharing a PDSE outside of the XCFPLEX in Extended Sharing, you are introducing unpredictable

problems.

 Corruption can cause 0F4 ABENDs

 Varied symptoms make improper sharing harder to diagnose

 Improper sharing can result in unserialized access to datasets.

 There is no warning that a dataset has been accessed in this manner.

 Potential issues:

 Invalid index data in-core, Corrupt dataset on DASD, corrupt member data, mismatched extent

data, or even nothing at all.

 There is no sure fire way to circumvent Extended Sharing Mode's serialization requirements.

 PDSE datasets cannot be serialized by 3rd party products.

 Asking users not to update PDSEs from outside SYSPLEX

 Too hard to enforce, inevitably someone forgets, new users may no know all the rules

 Reserves can cause serialization deadlocks.

Common Pitfalls of Sharing: Cheat Sheet

54

Appendix:

Parameters, Commands and JCL

• PDSE Console Dump Parameters

COMM=(PDSE PROBLEM)
JOBNAME=(*MASTER*,SMSPDSE*),
SDATA=(PSA,CSA,SQA,GRSQ,LPA,LSQA,RGN,SUM,SWA,TRT,COUPLE

,XESDATA),END

• IGDSMSxx Parameters:

– SMSPDSE1 restartable address space:

PDSE_RESTARTABLE_AS(NO | YES)

– PDSE Sharing Modes:

PDSESHARING(EXTENDED|NORMAL)

– PDSE Member Generations Installation Limit

MAXGENS_LIMIT=n

55

Appendix:

Parameters, Commands and JCL

• PDSE Console Commands

– SMSPDSE1 Restart Command

V SMS,PDSE1,RESTART
[,QUIESCE(duration | 15)[,COMMONPOOLS(NEW|REUSE)]

– SMSPDSE1 Activate Command

V SMS,PDSE1,ACTIVATE

– PDSE Analysis Command

V SMS,PDSE(1),ANALYSIS

– PDSE Freelatch Command

V SMS,PDSE|PDSE1,FREELATCH(<latch address>,asid,tcb)]

56

Appendix:

Parameters, Commands and JCL

• IEBPDSE JCL (1.13 and above only)
//VALIDATE EXEC PGM=IEBPDSE

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSLIB DD DISP=SHR,DSN=INPUT.PDSE.BAD

57

Appendix:

Parameters, Commands and JCL

• DSS PHYSICAL dump JCL
//DUMP EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//OUT DD UNIT=3390,
// VOL=SER=xxxxxx,
// DISP=(NEW,KEEP),
// SPACE=(CYL,(100,100)),
// DSN=hilev.DSSDUMP,
// DCB=BLKSIZE=32760 /
/SYSIN DD *
DUMP PIDY(vvvvvv) -

OUTDD(OUT) -
DATASET(INCLUDE(pdse.dataset.name)) -
ALLDATA(*) /

*

58

Appendix:

SMSPDSE1 Restart Message Sequence
V SMS,PDSE1,RESTART
IGW036I VARY SMS,PDSE1,RESTART COMMAND ACCEPTED.

IGW057I WAITING FOR SMSPDSE1 SHUTDOWN.

IGW055I SMSPDSE1 SHUTDOWN IN PROGRESS.

IGW999I XQUIESCE Started

IGW062I SMSPDSE1 IS QUIESCING.

IGW064I SMSPDSE1 IGNORING IN-PROGRESS TASK 001B:MHLRES2B, TCB@=007DEC4 8.

*169 IGW074D SMSPDSE1 QUIESCE FAILED. RETRY? (Y/N)

R 169,N

IEE600I REPLY TO 169 IS;N

IGW065I SMSPDSE1 QUIESCE COMPLETE.

IGW058I SMSPDSE1 SHUTDOWN COMPLETE.
IGW059I SMSPDSE1 IS BEING ACTIVATED.

IGW040I PDSE IGWLGEDC Connected

IGW040I PDSE Connecting to XCF for Signaling

IGW040I PDSE Connected to XCF for Signaling

IGW040I PDSE Posting initialization

IGW043I PDSE MONITOR IS ACTIVE 040

++ INVOCATION INTERVAL:60 SECONDS

++ SAMPLE DURATION:15 SECONDS

IGW061I SMSPDSE1 INITIALIZATION COMPLETE.
IGW066I SMSPDSE1 IS RECONNECTING ALL USERS.

IGW066I SMSPDSE1 IS RECONNECTING ALL USERS.

IGW069I SMSPDSE1 RECONNECT PHASE COMPLETE.

IGW070I SMSPDSE1 WILL RESUME ALL USER TASKS.

IGW999I XQUIESCE Stopping

IGW999I Reconnect Completed Normally

59

