z13 Vector Extension Facllity (SIMD)

Session 16897 Jonathan Bradbury
March 3, 2015 Peter Relson
IBM Corporation

Permission is granted to SHARE Inc. to publish this presentation in the SHARE Inc. proceedings; IBM retains the right to distribute copies of this presentation to whomever it chooses
© 2015 IBM Corporation

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM*
IBM Logo*

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any

user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the 1/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject
to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

© 2015 IBM Corporation

*VVector/SIMD Overview

"VVector Register File

*z/OS Infrastructure and Application Considerations
=Software exploitation

*New Instructions

*String operations

3 © 2015 IBM Corporation

Vector/SIMD Overview

VA I I I N I O O O O O O O O O O B

+ + 4+ + + + 4+ + + + + o+ o+ o+ o+ o+

VE [I O D D N (NN DN D N DO DN ON N e

V2 S S O Y

*SIMD - Single Instruction Multiple Data, also sometimes
referred to as vector.

4 © 2015 IBM Corporation

*Each register contains multiple data elements of a fixed size.
(Byte, Halfword, Word, Doubleword, Quadword)

*The collection of elements in a register is also called a vector.

*A single instruction will operate on all of the elements in the
register.

*Most instructions have a non-destructive operand encoding
(T=A+B vs. A=A+B)

*For most operations the CC is not set. For a few instructions
a summary condition code is used.

5 © 2015 IBM Corporation

="Parallel
*Pipelined

*No Branching
—CC captured within data result
—Select instruction to use data result

6 © 2015 IBM Corporation

*Efficient Loads/Stores
—Can handle any byte alignment
—Most efficient loads on 8 byte boundaries
—String operations supported to basic block boundaries or to
specific lengths
—Gather and Scatter

*Floating-Point
—Clean trap result to be suppressed
—Scalar or Vector
—Expandable to other data types (radix and lengths)

7 © 2015 IBM Corporation

Overlaid Vector/FPR register files

*Overlay the FPRs over the
vector register file

*Bits 0:63 of SIMD registers 0O-
15 will correspond to FPRs O-
15

*"When using an FPR, bits
64:127 of the corresponding
vector register will become
unpredictable

191s169y

Vector regfile

=
ol

31
0 63 127

Bits

© 2015 IBM Corporation

*CRO0.45 still works in the same way for AFP

*New CRO0.46 bit for enabling use of vector instructions
—CRO0.45 also needs to be setto 1

*New DXC (OxFE) if any access outside of traditional
FPRs
—System uses same process as for AFP registers

© 2015 IBM Corporation

Customer Control
" OADxx parmlib member MACHMIG statement supports

VEF option
— Indicates that customer does not want applications

to use VEF (usually in a migration scenario, trying to
validate new hardware without necessarily getting
exploitation of new hardware functionality)

© 2015 IBM Corporation

10

Application Control
*Bit CVTVEF indicates if an application may use VEF

*Application use automatically enabled upon first use for
enabled, unlocked task

"[EAFP START: enable for subsequent use (such as by
SRB)

*"[EAFP STOPVECTOR: stop status saving of vector
registers (when work unit no longer needs)

*"|[EAFP STOP (existing): stops status saving both of
vector registers and AFPRs

1 1 © 2015 IBM Corporation

Application Considerations

"Be very aware that any use of a FPR will change all 16 bytes
of the corresponding VR (this includes even LD)

" inkage Convention (caller may assume across a call)
— VRs 0 to 7 are volatile
— For VRs 8 to 15: Bytes 0-7 are non-volatile, Bytes 8-15
are volatile
— VRs 16 to 23 are non-volatile
— VRs 24 to 31 are volatile
*As with FPRs, the first recovery routine gets control with time
of error VRs, and any changes made prior to retry are
reflected upon retry

"|If VRs are in use by “Fork parent” they will be propagated to
“Fork child”

*Disabled Interrupt Exits (DIES) must not use VEF instructions

12 © 2015 IBM Corporation

System structure

*"New control block Extended Status Save Area (ESSA,
mapped by IHAESSA) to hold vector register contents
across status save (undispatch) and status restore
(redispatch)

*Pointed to by task's STCB
*Used only when the work unit is known to be using VEF

13 © 2015 IBM Corporation

14

MASS and ATLAS libraries updated to exploit SIMD
(Mathematical Accelerator Subsystem, Automatically
Tuned Linear Algebra Software)

z/OS Unix:
* DBX supports reading and writing vector registers
* Support added in PTRACE (BPX1PTR, BPX4PTR) to
enable debuggers to read and write vector registers in
debugged processes

XL C/C++ and Cobol 5.2 use SIMD for string operations
— C/C++ provides vector data type and vector facility
built-ins

XMLSS uses SIMD for character and string manipulation
Java SDK 8 exploits SIMD

© 2015 IBM Corporation

15

LE — printf, scanf support for vector types
PL/l — uses SIMD for SEARCH and VERIFY built-ins

© 2015 IBM Corporation

#include <builtins.h>
int main() {
vector signed int a = {-1, 2, -3, 4},
vector signed int b = {-5, 6, -7, 8};
vector signed int c, d;
c=a+hb;
d = vec_abs(c); //Generates VLP (VLPF)

printf("d[0] = %d\n",d[0]);
printf("d[1] = %d\n",d[1]);
printf("d[2] = %d\n",d[2]);
printf("d[3] = %d\n",d[3]);
Return O;

}

>xlc -qVECTOR -gARCH=11 a.c

© 2015 IBM Corporation

"Integer

—8b to 128b add, sub

—128b add with carry, subtract with carry

—8b to 64b min, max, avg, abs, compare

—8b to 32b multiply, multiply/add 4- 32x32
multiply/adds

—Logical ops, shifts,

—Carryless Multiply (8b to 64b), Checksum (32b),

—Memory accesses efficient with 8B alignment; minor
penalties for other alignments if they cross a cache line

—Gather by Step

17 © 2015 IBM Corporation

=String

—Find 8b, 16b, 32b, equal or not equal with zero character
end

—Range compare

—Find any equal

—Isolate String

—Load to block boundary, load/store with length to avoid
access exceptions

*Floating-point - BFP Double Precision only 32 x2x64b
registers
—2 BFUs with an increase in architected registers
—EXxceptions suppress

18 © 2015 IBM Corporation

19

"VECTOR LOAD
—-VL Vl’Dz(Xz’Bz)
—Load 16 bytes from storage into V,. No alignment
requirement
*"VECTOR LOAD AND REPLICATE
—-VLRP(B|H|F|G) V,,D,(X,,B,),M,
—Load 1-8 bytes and replicate across all elements of V,
*"VECTOR LOAD ELEMENT
~VLE(B|H|W|D) V,,D,(X,,B,),M,
—The element sized second operand is placed into V, at index
M3
*"VECTOR LOAD ELEMENT IMMEDIATE
—VLEI(B[H|F|G) V,,1,,M,
—Places |, in V, at index M,, leaves rest of vector unchanged
"VECTOR LOAD MULTIPLE
-VLM V,V,,D,(B,),M,
—Up to 16 VRs loaded from storage

© 2015 IBM Corporation

*VECTOR LOAD TO BLOCK BOUNDARY
-VLBB V,,D2(X,,B,),M,
—Loads up to 16 bytes into V, without crossing block boundary
specified by M,
"L OAD COUNT TO BLOCK BOUNDARY
—-LCBB R,,D,(X,,B,),M,
—Loads R; with number of bytes that can be loaded with specified
block size
*VECTOR LOAD WITH LENGTH
-VLL V,,D,(B,),R,
—Loads the number of bytes specified in R, from storage into V,
*VECTOR LOAD LOGICAL ELEMENT AND ZERO
—VLLEZ (B|H|F|G) V,,D,(X,,B,),M,
—Load element sized data from second operand address and place
right justified in leftmost doubleword

"VECTOR GATHER ELEMENT
-VGE (FlG) Vl’Dz(Vz’Bz)’Ms
—Loads element from memory addressed by B,+V,(M,)+D,

© 2015 IBM Corporation

"VECTOR STORE

-VST V,,D,(X,,B,)

—Stores 16 bytes on byte boundary, no alignment required
"VVECTOR STORE ELEMENT

—-VSTE(B|H|F|G) V,,D,(X,,B,),M,

—Stores element of VR, indexed by M, to second operand
*"VECTOR STORE MULTIPLE

-VSTM V,,V,,D,(B,),M,

—Stores range of up to 16 VRs to second operand location

21

© 2015 IBM Corporation

"VECTOR STORE WITH LENGTH
-VSTL V,,D,(B,),R,
—Stores the number of bytes specified by R, from V, into the second
operand location
*"VVECTOR SCATTER ELEMENT
—VSCE(F|G) V,,D,(V,,B,),M,
—Stores element of V, indexed by M, to memory addressed by
BZ+V2(M3)+D2

22 © 2015 IBM Corporation

Gather / Scatter by Step (nhew)

=\/ector Gather Element 32b, 64b,
=\/ector Scatter Element 32b, 64b

o

»
»

2 3 © 2015 IBM Corporation

*"VVECTOR LOAD REGISTER
-VLR V.V,
—Copies V, to V,
*"VVECTOR LOAD GR FROM VR ELEMENT
-VLGV(B|H|F|G) R,,V,,D,(B,)
—Copies element indexed by D,(B,) from V, into R,

"VECTOR LOAD VR ELEMENT FROM GR
~VLVG(BIH|FIG) V,,R,,D,(B,)
—Copies element sized portion of R, to V, at element index
specified by D,(B.,)
"VECTOR LOAD VR FROM GR PAIR DISJOINT
-VLVGP V_ ,R,,R,
_V1 <- Rz ” R3

24 © 2015 IBM Corporation

=Vector Permute VPERM V,,V,,V,,V,
=V 1] = (V, || V,)I[VR,(1)] fori=0..16

*Vector Permute Doubleword Immediate (DW)
VPDI V., V,, V,, M,

=\VVector Select (QW) -VSEL V,V,, V.V,
V,= V,xifV,.x=1, else V,.x for x=0..127

*Vector Pack (modulo) (DW->W,W->HW,HW->B)
VPKV, V,, V,, M,

*Vector Pack Saturate (DW->W,W->HW,HW->B)
VPKS V., V,, V,, M,, M.cc

*Vector Pack Logical Saturate (DW->W,W->HW ,HW->B)
VPKLS V., V,, V,, M,, M.cc

—For Saturating Packs CCO0-no saturation CC1- Saturation

25 © 2015 IBM Corporation

*Vector Unpack (Signed|Unsigned) High (W->DW, HW->W, B->HW)
VUPHV, V,,M,;; VUPLH V,, V,, M3

*Vector Unpack (Signed|Unsigned) Low (W->DW, HW->W, B->HW)
VUPL V,, V,, M3; VUPLL V,, V,, M3

*Vector Replicate (DW, W, HW, B)
VREP V, V,, I, M,
V, <= replicate V(1)

*Vector Replicate Immediate (DW,W,HW,B)
VREPI V, I,, M,

*Vector Merge High (DW,W,HW,B)
VMRH V,, V,, V., M,

*Vector Merge Low (DW,W,HW,B)
VMRL V., V,, V,, M,

26 © 2015 IBM Corporation

*Vector Add (modulo) (QW,DW,W,HW,B)
VAV, V,, V,, M,
V.=V, +V,
*Vector Add Compute Carries (QW,DW,W,HW,B)
VACCV, V,, V,, M,
V, =carry out of V, + V,
*Vector Subtract (modulo) (QW,DW,W,HW,B)
VS V,V,, V,, M,
V,=V,-V,
*Vector Subtract Compute Borrows (QW,DW,W,HW,B)
VSCBIV,, V,, V., M,
V,=carryoutofV, +~V,+1
*Vector Add with Carry (QW)
VAC V,V,, V,, V,, M,
V,<=V,+V,+000V,127

27 © 2015 IBM Corporation

*Vector Add with Carry Compute Carry (QW)
VACCCV, V,, V,, V,, M,

V1 <= carry out of V2 + V3 + 0000.vV4.127

*Vector Subtract with Borrow Indication (QW)
VSBI V,, V,, V,, V,, M,

*\Vector Subtract with Borrow Compute Borrow Indication (QW)
VSBCBI V1, V2, B3, V4, M5

*\Vector Sum Across Doubleword (4HW,2W)
VSUMG V,, V,, V,;, M,

*Vector Sum Across Quadword (4W, 2D)
VSUMQ V,, V,, V,;, M,

*Vector Sum Across Word (4B, 2HW) V
SUMV,V,, V,, M,

28 © 2015 IBM Corporation

*Vector Average (DW,W,HW,B)
VAVG V., V,, V,, M,

*Vector Average Logical (DW,W,HW,B)
VAVGL V,, V,, V,, M,

*Vector Load Positive (DW, W, HW, B) absolute value
VLP V., V,, M,

*Vector Load Complement (DW, W, HW, B) 2’s complement
VLC V., V,, M,

29 © 2015 IBM Corporation

=Vector Multiply Low (W,HW,B) VMLV, V,, V., M,

=\VVector Multiply High (W,HW,B) VMH V_, V,, V,, M,

=\Vector Multiply High Logical (W,HW,B) VMLH V_, V,, V,, M
=\VVector Multiply Even (W,HW,B) VME YV, V,, V,, M,

4

=\Vector Multiply Even Logical (W,HW,B) VMLE V,, V,, V,, M,

=VVector Multiply Odd (W,HW,B) VMO V,, V,, V,, M,
»\Vector Multiply Odd Logical (W,HW,B) VMLO V,, V,, V,, M,

30

© 2015 IBM Corporation

= All Multiply and Add instructions have non-destructive encodings

*Vector Multiply and Add Low (W,HW,B)
VMAL V,, V,, V,, V,, M,

*Vector Multiply and Add High (W,HW,B)
VMAH V,, V,, V,, V,, M,

*Vector Multiply and Add High Logical (W,HW,B)
VMALH V., V,, V,, V,, M,

*Vector Multiply and Add Even (W,HW,B)
VMAE V,, V,, V,, V,, M,

*Vector Multiply and Add Even Logical (W,HW,B)
VMALE V,, V,, V,, V,, M,

*Vector Multiply and Add Odd (W,HW,B)
VMAO V,, V,, V., V,, M,

*Vector Multiply and Add Odd Logical (W,HW,B)
VMALO V, V,, V,, V,, M,

3 1 © 2015 IBM Corporation

=\Vector AND (QW) VN V., V., V,

V.=V, &V,
=VVector AND with compliment (QW) vl=v2 & ~v3 VNC
*Vector OR (QW) VO

*"Vector NOR (QW)
—VNO v1,v2,v3

"Vector XOR (QW) VX
*Vector Element Rotate Left (DW,W,HW,B) VERLL, VERLLV
*Vector Element Shift Left (QW,DW,W,HW,B) VESL, VESLV

32 © 2015 IBM Corporation

*Vector Shift Left by Byte (QW) VSLB
=Vector Shift Left by bit VSL

*Vector Element Shift Right Arithmetic (QW,DW,W,HW,B)
VESRA, VESRAV

*Vector Element Shift Right Logical (QW,DW,W,HW,B)
VESRL, VESRLV

*Vector Count Leading Zeros (DW,W,HW,B) VCLZ
*Vector Count Trailing Zeros (DW,W,HW,B) VCTZ
*Vector Population Count (B) VPOPCT

33

© 2015 IBM Corporation

*\Vector Population Count (B)
VPOPCT

*\Vector Rotate and Insert Under Mask (DW,W,HW,B)
VERIM
—Rotate amt in I-text. Mask VR passed in to select the bits to

Insert
*Vector Generate Byte Mask Immediate
VGBM V., |,

—Sets bytes of V, to all ones or zeros depending on each bit of I,
field

*Vector Generate Mask (DW, W, HW,B)
VGM V,, L, 1, M,

—Generates a mask giving a start and stop bit position

34 © 2015 IBM Corporation

*Vector Compare Equal (DW,W,HW,B)
*Vector Compare Greater (DW,W,HW,B)

*Vector Compare Greater Logical (DW,W,HW,B)
—Above 3 Compare Ops set the CC in the following way
* CCO — All compares have true result
* CC1 — Mixed results
* CC3 — All compares have false result
—Allows for shortcut code

35

© 2015 IBM Corporation

* Vector Compare Element (DW,W,HW,B)

*Vector Compare Element Logical (DW,W,HW,B)

—Above 2 Compare ops compare a single element right justified in
leftmost doubleword

—CC is set as it would be for a GPR compare
*Vector Minimum (DW,W,HW,B)
*Vector Minimum Logical (DW,W,HW,B)
*Vector Maximum (DW,W,HW,B)
*Vector Maximum Logical (DW,W,HW,B)

36 © 2015 IBM Corporation

*Vector Checksum (W)
*Vector Galois Field Multiply Sum (D,W,HW,B)

*Vector Galois Field Multiply Sum and Accumulate (D,W,HW,B)
—Used for CRC

37 © 2015 IBM Corporation

*Double precision binary floating point only for zNew
"Both single element and vector modes

*Single opcode for single element and vector instruction. Mask bit
to determine which to use. Precision is also in the mask field but
only double precision is allowed at this time.

38 © 2015 IBM Corporation

*For vector operations all IEEE trapping exceptions will suppress.
(How POWER and Intel work)
—New PIC and VXC code to specify which exception and the
lowest indexed element to take the exception.
—VXC is just an overlay of the DXC in fixed storage and FPC
register

*All non-trapping exceptions will work as defined in chapter 19 with
the exceptions from each element being ORed into the flags.

39 © 2015 IBM Corporation

40

"VECTOR FP ADD

"VECTOR FP COMPARE EQUAL

"VECTOR FP COMPARE GREATER

"VECTOR FP COMPARE GREATER EQUAL
"VECTOR FP CONVERT FROM FIXED 64-BIT
"VECTOR FP CONVERT FROM LOGICAL 64-BIT
"VECTOR FB CONVERT TO FIXED 64-BIT
"VECTOR FP CONVERT TO LOGICAL 64-BIT
"VECTOR FP DIVIDE

© 2015 IBM Corporation

41

*VECTOR LOAD FP INTEGER
*VECTOR LOAD LENGTHENED (Short->Long)
*VECTOR LOAD ROUNDED (Long->Short)
*VECTOR FP MULTIPLY

*VECTOR FP MULTIPLY AND ADD

*VECTOR FP MULTIPLY AND SUBTRACT

*"VECTOR FP PERFORM SIGN OPERATION
—Single instruction to compliment, force positive, or force
negative

"VECTOR FP SQUARE ROOT
"VECTOR FP SUBTRACT
"VECTOR FP TEST DATA CLASS IMMEDIATE

© 2015 IBM Corporation

*New Data Exception for use of Vector registers when the facility is
not enabled
—DXC OxFE

*New program interrupt for Vector Data Exception
—PIC 0x001B
—Will always suppress
—Will store a VXC in the FPC and prefix in the same location as
the DXC
—VXC will contain an interruption reason as well as the index of
the leftmost element that took the exception

42 © 2015 IBM Corporation

= Strings can start on any byte/halfword/word boundary

"C-Style strings may end near a page crossing
—Not known until comparison is done
—If more bytes are read unwarranted exceptions might occur

= Java strings may also end near the end of a page (although you
know when this will happen)

*Substring search is a difficult problem

43 © 2015 IBM Corporation

VLBB - Loads a VR with as many bytes as it can without crossing a

block boundary.

Immediate field to specify block size (64B,128B,256B,2K,4K,etc)

Location not accessible

No exception taken

\0

?

?

?

44

© 2015 IBM Corporation

LCBB — Determines the number of bytes loaded from a D(X,B)

address.
Stores result in a GPR

Sets condition code indicating full or partial vector load.

Location not accessible

\0

?

?

GPR

45

00

00

00

00

00

00

00

0D

© 2015 IBM Corporation

Provide a means to load or store a partial vector with a specified

number of consecutive bytes

Will not take an exception on bytes not loaded or stored

Length and base address in GPRs

VR1

\0

\0

\0 \0

VSTL VR1,RL,RB | #RL=12

VLL VR1, RL,RB #RL=12

Location not accessible

? ?

46

© 2015 IBM Corporation

*"FIND ELEMENT NOT EQUAL OR ZERO
-VFENEZ VR1,VR2,VR3
—Compares VR2 to VR3 from left to right for byte/halfword/word
Inequality or O
—Stores index of leftmost miscompare in VR1 or 16 if equal
—Optionally sets condition code to O if zero is found, 1 if
VR2<VR3, 2 if VR2 > VR3, and 3 if equal

*Find ELEMENT Not Equal
—Same as VFENEZ except no zero compare only CC1-3 are set.

47 © 2015 IBM Corporation

V2 Hle |I I 0 Wilo |r |]I d|! [\O|\O]|\0|\O
= = = = = = = = = = = = [/
V3 Hle |I I 0 Wilo |r |]I d|! [\O|]\O]|\0|\O
V1 \ Ol O[O |\W|[\W]|\WV|[\WO|[22|\0|\WW]|\O|[\WO|[W]|\W]|\O]|\ Set CC=0
V2 Hle |I I 0 W ro|l d|! [\O|\O]|\ |\O
= = = = = = #
V3 Hle |I I 0 n |! [\O|\O][\O|[\O]|\O]|\O
V1 \O |[\O|\O|\O|\O|[\O|\NO \O |\O|[\O |\ |\]|\ |[\O]|\O Set CC=2
V2 Hile || | |o Wilo |r |]I d |! Hlo |w
V3 Hle |I I 0 Wilo |r |]I d |! H|lo |w
Vi ||\ |0 /|\0]|\W|[\W]|\0]|®[\0][\W0W|[\W][\W]|\W]|[\W]|\0]|\ Set CC=3

48

© 2015 IBM Corporation

*"VECTOR FIND ELEMENT EQUAL OR ZERO
-VFEEZ VR1,VR2,VR3
—Compares VR2 to VR3 from left to right for byte/halfword/word
equality or O
—Stores index of leftmost equality in VR1 or 16 if none equal
—Optionally sets CC-0 if zero found, CC-1 if bytes are equal, CC-3
If no bytes are equal

*Find Byte/Halfword Equal
—Same as VFEEZ except no zero compare, only CC1,3 are set

49 © 2015 IBM Corporation

50

R2 |H|e |l |I |o Wlo [r |1 [d]! |\0|\]|\]|\O
£ £ # # # # # # £ # # # Z
R3 |A|A|A|A|A|A|A|A|A|A|A|A|A|A A |A
R1 [wW/|\W|[W|wW/|W|[W]|\W/|[2|\W]|\W]|\O|[\W]|\]/[\][\W]\ Set CC=0
R2 Hle |[I |l |o W r (I [(d ! [\O|\O|\0]|\O
£ % # # # # =
R3 |w W | W W | W W W|W|W|[W|wW|w|WwW
R1 [\ |\ [\ [\]|\[\]|\ \0 [\0 [\0|\0|[\0]|\|\O|\O Set CC=1
R2 Hle |l |I |o Wlo [r |I |d |! Hlo |w
£ ¢ # # # # #F £ # # # # #£ £ £ #
R3 A A A|lA|A|A|A|A]A A |A
R1 |wW/|[wW|[W|[W|[Ww|[Ww|\W]|®|w|\W]|\W]|\W]|\]|\]|\]|\ Set CC=3

© 2015 IBM Corporation

Equal Any: Set Condition code if any byte/halfword/word in V,
equals any byte/halfword/word in V,

V2 Hle |I I o |M [W|o |[r [|I d|{! |\r |\n|[\O|\O
F £ F £ #F = F £ F #£ = = # #
V3 \t [\n|\r |, <[> [\O|A A |A|A|A A A

V1 \O [\O (\O [\O[\O|FF[\O|\O|\O|\O|\O|\O|FF|FF|FFINO

Range Compare: V, — String to search
V, — 1-8 pairs of characters to search for
V, — control vector to specify >,<,= for each character

51 © 2015 IBM Corporation

27

2?2 |22

\0

T

DUVIVITIE

T

AAVIAVE

T

FF |FF |FF |FF |FF |00 |FF |FF |FF |FF |FF |00 |00 |22 |22 | ??

00 |00 (OO (OO [OO | OO |05 |00 |00 |00 (OO |00 [OO | OO |00 |d6:skwm corporation

le

0
1

z

RT

RT

strien()

5 3 © 2015 IBM Corporation

"R2 - @ of string, R1 will contain length

XGRKR1,R1,R1 Zero out running index
LOOP: VLBB V16,0(R1,R2),6 Load up to 16 bytes
LCBB R3,0(R1,R2),6 Find how many bytes were loaded (GLEN)
ALGRK R1,R1,R3 Increment length by bytes loaded
VFENEBZ V17,V16,V16 Look for O byte
VLVGB R4,V17,7(R0) Extract index to gpr (16-no match) (GPOS)
CLGRR3, R4 If GLEN <= GPOS have more to search
BRNH LOOP
SLGRK R1,R1,R3 Subtract off amount loaded
ALGRK R1,R1,R4 Add amount to the zero that was found

© 2015 IBM Corporation

54

Memory at Ox6FF3 = STR@

H |e |I W ilo |r [l ! \0 |? (? |7
VLBB V16,0(R1,STR@),6

V16[H |e 0 wWlo [r [I 1 | 0| |0
LCBB R3,0(R1,STR@),6 R3 =13
ALGRK R1,R1,R3 R1=13
VFENEBZ V17,V16,V16 V17=0x0000000000000C....
VLVGB R4,V17,7(0) R4=12

CGR R3,R4

BRNH LOOP

SLGRK R1,R1,R3

ALGRK R1,R1,R4

55

Location not accessible

© 2015 IBM Corporation

Memory at OX6FF6 = STR@

Page accessible

H |e | I 0 W | o r | d I \O | ? ? ?
VLBB V16,0(R1,STR@),6

V16|H [e |I |1 |o Wlo |r \0 [\0 |\ [0 |\ |\0
LCBB R3,0(R1,STR@),6 R3 =10

ALGRK R1,R1,R3 R1 =10
VFENEBZ V17,V16,V16 V2=0x000000000000000A....
VLVGB R4,v17,7(0) R4 =10

CGR R3,R4 10 <= 107
BRNH LOOP Taken

\VLBB V16,0(R1,STR@),6

V16{d [' |0 |[w [\ [0 |0]|\ [0 |[\W0]|w0]|[\0][W0]|W0]|W0]W0
LCBB R3,0(R1,STR@),6 R3=16

ALGRK R1,R1,R3 R1=26
VFENEBZ V17,V16,V16

VLGBRI R4,V17,7(0) R4=2

CGR R3,R4 16 <= 27
BRNH LOOP Not Taken
SLGRK R1,R1,R3 R1=10
ALGRK R1,R1,R4 R1=12

56

© 2015 IBM Corporation

strcmp()

57 © 2015 IBM Corporation

* R1-STR1@, R2 - STR2@, R3 — Return value
XGR R4,R4

LOOP: VLBB V16,0(R4,R1),6 Load s1
VLBB V17,0(R4,R2),6 Load s2

VFENEBZ V18,V16,V17 Compare strings

VLVGB R3,v18,7(0) Extract index to gpr (16-no match)
LCBB R5,0(R4,R1),6 Get load byte count

LCBB R6,0(R4,R2),6

CLGR R5,R6

LOCGRH R5,R6 Compute minimum of bytes loaded
ALGRK R4,R4,R5 Inc smallest load amt

CLGR R5,R3 See if miscompare in portion loaded
BRNH LOOP

*

SLGRK R4,R4,R5
ALGRK R4,R4,R3
LB R3,0(R4,R1)
LB R5,0(R4,R2)
58 SRK R3,R3,R5 © 2015 IBM Corporation

Hle || | 0] Wlo |[r |I d|! [\0O|? |? |?
LBB V1,0(RX,STR1),4k Hle |l [l |o Wl o [r [\0[\0[\0[\O]|\0]|\O]|\O
LBB V2,0(RX,STR2),4k Hie [I |I |o Wilo |r |l [d]|! [\[\W]|\]\O

FENEBZ V3,V1,V2
VLVGB G3,V3,7(0) G3=9
LCBB G1,0(RX,STR1),4k G1=9
LCBB G2,0(RX,STR2),4k G2=16
CGR G1,G2

LOCGR G1,G2

AGR RX,RX,G1 RX=9

CGR G1,G3

BRLE LOOP ->TAKEN

LBB V1,0(RX,STR1),4k | |{d |! [V /[w]|w]|[w| W0 |Ww|[w]|w]|w]|W|[Wo][\W0]\W0
LBB V2,0(RX,STR2),4k | |d |! [\0[\0|\0[\0][\[\0[\][\0][\0]|\0/[\0][\0]\0
FENEBZ V3,V1,V2

VLVGB G3,Vv3,7(0) G3=3

LCBB G1,0(RX,STR1),4k G1=16

LCBB G2,0(RX,STR2),4k G2=16

BRLE LOOP -> Not Taken

59 © 2015 IBM Corporation

strcpy()

6 O © 2015 IBM Corporation

"RB1 - STR1@, RB2 - STR2@

XGR RX,RX,RX
LOOP: LBB VSTR,0(RX,RB1)
VFENEBZ VPOS,VSTR,VSTR
LCBB GLEN,0(RX,RB1)
VLVGB GPOS,VPOS,7(0) Extract index to gpr (16-no match)

BRZ EOS EOS if 0 found
CGHI GLEN,X'10’
BRNE EOP End of page, predicted NT

VST VSTR,0(RX,RB2)

LA RX,16(,RX)

BRU LOOP
EOP: AGR RCUR,RX,RB2

VSTL VSTR,0(GLEN,RCUR) Store GLEN bytes

AGR RX,GLEN,RX

BRU LOOP Start up on new page
EOS: CMP GLEN,GPOS

BRLE EOP

AGR RCUR,RX,RB2

VSTL VSTR,0(GPOS,RCUR) Store what's left

6 1 © 2015 IBM Corporation

" R1 - dest@, R2 — src@

XGRK R3,R3,R3
LOOP: VLBB V16,0(R3,R2),6 Load in string 1

LCBB R4,0(R3,R2),6 Find out how much was loade d
BRNZ EOB Did we hit a 4k boundary
VFENEBZSV17,V16,V16 Search for EOS
BRZ EOS Data Dependant
VST V16,0(R3,R1) Write out 16-bytes of data
AGHIK R3,R3,16 Increment address by 16
BRU LOOP
EOB: VFBNEZ V17,V16,V16 Search for EOS
VLVGB R5,V17,7(0) Extract index
CLGR R5,R4 GPOS<=GLEN -> EOS
BRNH EOS2
ALGRK R5,R1,R3 Compute current Base Address
VSTL V16,R4,0(R5) Store out number of bytes to end of block
ALGRK R3,R4,R3 Increment index by number of bytes copied
BRU LOOP Start up on new page
EOS: VLVGB R5,V17,7(0) Extract index to gpr (16-no match)

EOS2: ALGRK R4,R1,R3
VSTL V16,R5,0(R4)

62

© 2015 IBM Corporation

R1 = *str, R2 = *stopset, RO=return value

XGR R3,R3

VZERO V16 zero out V16 (Uses VGBM)
VLBB V17,0(R3,R2),6 Load stopsetto 4k boundary
LCBB R4,0(R3,R2),6

BRNZ SPECIAL Special case of page Xing. Predicted
VFENEBZS V18,V17,V17 Look for Null
BRNZ LONGSS No string terminator, special case lo

Predicted NT
VLVGB R4,v18,7(0) Extract index of first null
VREPB V18,V17,0(0) Replicate first character across a
VLL V17,R4,0(R2) Load only up to null and zero out ot
VCEQB V16,V16,V17 Create mask of null chars by compar
VSEL V17,V17,v18,V16 Fill in null characters with fi
XGR R3,R3 Reset string pointer to start
MORESTR:
VLBB V16,0(R3,R1),6 Load strinto V16 to 4k boundary
LCBB R5,0(R3,R1),6 Get count of bytes loaded
VFAEBZ V16,V16,V17,4 Search for stopset char or zero
CC=0
VLVGB R4,V16,7(0) Extract index

ALGR R3,R5 Increment Index

CLGR R5,R4 See if miscompare before last byte load
BRNH MORESTR

SLGR R3,R5 Subtract off bytes loaded

é\éGRK RO,R3,R4 add back in index to character foun

NT

ng stopset.

Il characters
her elements
ing with O
rst character

ZS=1, RT=1,

ed

d © 2015 IBM Corporation

R1 = *str, R2 = *startset RO = return value

XGR R3,R3

VZERO V16 zero out V16

VLBB V17,0(R3,R2),6 Load startset

LCBB R4,0(R3,R2),6

BRNZ SPECIAL Special case of page Xing. Predicted

VFENEBZS V18,v17,V17 Look for Null

BRNZ LONGSS No string terminator, special case lo
Predicted NT

VLVGB R4,V18,7(0) Extract index of first null

VREPB V18,v17,0(0) Replicate first character across a

VLL V17,R4,0(R2) Load only up to null and zero out ot

VCEQB V16,V16,V17 Create mask of null chars by compar
VSEL V17,v17,v18,V16 Fill in null characters with fir

XGR R3,R3 Reset string pointer to start
MORESTR:

vLBB V16,0(R3,R1),6 Load strinto V16

LCBB R4,0(R3,R1),6 Get count of bytes loaded

VFAEBZV16,V16,V17,X'C’ Search for first character n
IN=1,RT=1,Z5=1,CC=0

VLVGB R5,V16,7(0) Extract index

ALGR R3,R4 Add bytes loaded to index

CLGR R4,R5

BRNH MORESTR

SLGR R3,R4 Subtract off bytes loaded

ALGRK RO,R3,R5 Add in bytes to a char not in startset

64

NT

ng stopset.

[l characters
her elements
ing with 0
st character

ot in startset or zero

© 2015 IBM Corporation

"R2 - @ of string, R3 = *c, R1 will ptr to char
XGRK R1,R1,R1 Zero out running index
VLREP V17,0(R3)

LOOP: VLBB V16,0(R1,R2),6 Load up to 16 bytes
LCBB R3,0(R1,R2),6 Find how many bytes were loaded
ALGRK R1,R1,R3 Increment length by bytes loaded
VFEEEBZ V18,V16,V17 Look for O byte or character
VLVGB R4,v18,7(R0) Extract index to gpr (16-no match)
CLGRR3, R4 If GLEN <= GPOS have more to search
BRNH LOOP
SLGRK R1,R1,R3 Subtract off amount loaded
ALGRK R1,R1,R4 Add amount to the zero that was found
ALGRK R2,R2,R1 Add offset to char to pointer

© 2015 IBM Corporation

65

R1 = *str

XGR R2,R2

XGR RO,RO Return value = 0O (false)
VLV16,RANGECHAR Load range characters
VLV17,RANGECTL Load Range Controls
MORESTR:

VLBB V18,0(R2,R1),6 Load string

LCBB R2,0(R2,R1),6

VSTRCZB V19,v18,vV16,V17,X'4" Search ranges and for ze
(index), IN=0

VLVGB R3,V19,7(0)

ALGR R2,R3

CLGR R2,R3

BRNH MORESTR No string terminator, no non-matching ch

VFENEZBS V19,v18,vV18

LOCHIZ RO,1 Set Return Value to True

RANGECHAR:

DC X'81899199a2a9c¢1¢c9d1d9e2e900000000’
RANGECTL:

DC X’a0c0a0c0a0c0a0c0a0c0a0c000000000’ GE,LE

66

ro. RT=1

aracters

© 2015 IBM Corporation

"R1-STR1@, R2 - STR1_Leng R3 - STR2@, R4 — STR2_LENG RO - Return value

CGR R2,R4 Check to see if strings are same leng th
BNE MISCMP
XGR RO,RO
SLLG R2,R2,1(0) Convert Halfword unicode characters t 0
bytes
LOOP: VLL V16,R2,0(R1) Load strl
VLL V17,R2,0(R3) Load str2 (Same length for both)

VFENEHSV18,v16,V17 Compare strings

BRC 6,MISCMP

SLGFI R2,X'10’ Subtract 16 for next load length
BRNM LOOP

BRU DONE

MISCMP: LOCGHIL RO,-1

LOCGHIHRO,1

DONE:

67 © 2015 IBM Corporation

"R1-STR1@, R2 - STR1_Leng R3 - STR2@, R4 — STR2_LENG RO - Return value

XGR RO,RO
SLLG R2,R2,1(0) Convert Halfword unicode characters t 0
bytes
LOOP: VLLV16,R2,0(R1) Load strl
VLL V17,R2,0(R3) Load str2 (Same length for both)

VFENEHSV18,v16,Vv17 Compare strings

BRC 6,MISCMP

SLGFI R2,X'10 Subtract 16 for next load length
BRNM LOOP

BRU DONE

MISCMP: LOCGHIL RO,-1

LOCGHIHRO,1

DONE:

68 © 2015 IBM Corporation

"RO — dest@, R2 — src@, R1 — src_leng

SLLG R1,R1,1(0)
LGR R3,R1
MVCL RO,R1

69

© 2015 IBM Corporation

R1 = *str

XGR R2,R2

XGR RO,RO Return value = O (false)
VL V16,RANGECHAR Load range characters
VL V17,RANGECTL Load Range Controls

VREPIB V20,X'40° Create constant to add to make upper
MORESTR: VLBBV18,0(R2,R1),6 Load string
VSTRCZB V19,vV18,V16,V17,X'4’ Search for lower case an
vector), IN=0
VAB V21,v18,V20 Add in offset to make characters uppe
t\)/SEL V21,V21,V18,V19 Replace lowercase characters wit
above
VFENEZBS V22,V18,V18 Find an EOS (could be moved to
had different CC settings)
BRZ EOS
LCBB R3,0(R2,R1),6
BRNZ EOB
VST V21,0(R2,R1) Store out full 16 bytes of updated c
ALGHI R2,X’10’°
BRU MORESTR No string terminator or block crossin
EOB: VLVGB R4,v22,7(0) Extract index
CGR R4,R3
BRNH EOS2:
VSTL v22,R3,(R2,R1)
ALGR R2,R3
BRU MORESTR
EOS: VLVGB R4,v22,7(0) Extract length
EOS2: VSTLV22,R4,(R2,R1)
RANGECHAR:
DC X'81899199a2a900000000000000000000

RANGECTL:
DC X'a0c0a0c0a0cO000000000000000000000’ GE,LE

70

d for zero. RT=1 (bit-

rcase
h uppercase computed

special case if VSTRC

hars

© 2015 IBM Corporation

C string library

function -

strcspn

3ize t strcspn { conat char * strl, consat char * atr?);
Get span until character in string

Scans strl for the first occurrence of any of the characters that are part of str2, returning the number of characters
of stri read before this first occurrence,

<cstring>

The search includes the terminating null-characters, so the function will return the length of strl if none of the
characters of str2 are found In stri.

7 1 © 2015 IBM Corporation

R1 = *str, R2 = *stopset, RO=return value

XGR R3,R3

VZERO V16 zero out V16 (Uses VGBM)

VLBB V17,0(R3,R2),6 Load stopsetto 4k boundary
LCBB R4,0(R3,R2),6

BRNZ SPECIAL Special case of page Xing. Predicted NT
VFENEBZS V18,v17,v17 Look for Null
BRNZ LONGSS No string terminator, special case long s

Predicted NT
VLVGB RA4,V18,7(0) Extract index of first null
VREPB V18,v17,0(0) Replicate first character across a
VLL V17,R4,0(R2) Load only up to null and zero out ot
VCEQB V16,V16,V17 Create mask of null chars by compar
VSEL V17,v17,v18,V16 Fill in null characters with fir
XGR R3,R3 Reset string pointer to start
MORESTR:
VLBB V16,0(R3,R1),6 Load strinto V16 to 4k boundary
LCBB R5,0(R3,R1),6 Get count of bytes loaded
VFAEBZ V16,V16,V17,4 Search for stopset char or zero
VLVGB R4,V16,7(0) Extract index

ALGR R3,R5 Increment Index

CLGR R5,R4 See if miscompare before last byte loaded
BRNH MORESTR

SLGR R3,R5 Subtract off bytes loaded

ALGRK RO,R3,R4 add back in index to character found
{2

topset.

[l characters
her elements
ing with 0
st character

ZS=1, RT=1, CC=0

© 2015 IBM Corporation

"|n this case you could now replace everything from the VFENEBZS
to the XGR with simply:

"VISTR V17,V17
"BRNZ LONGSS

"|t saves you from having to do an extra compare to see if you are at
the end of a string or not.

73 © 2015 IBM Corporation

* Session 16618: What's New in Enterprise PL/l and C/C++

74 © 2015 IBM Corporation

Questions?

75

© 2015 IBM Corporation

