
Thank you for your interest in this topic. I hope to provide you with a 40 minute
informative and interesting presentation and at the end of the presentation we will
have a Q&A period. If you have questions during the presentation please raise your
hand to be recognized.

If you have more in-depth questions after the presentation please feel free to contact
me at the E-Mail address below.

Lets begin…

2

[click to advance to each topic]

3

4

[click to advance to each topic]

5

The first example is the SETC that we all know and love.

I suspect that not many people have used SETCF because it is a bit intimidating.

Not to worry.

6

Using REUS / RENT will have a dramatic effect on performance.

7

This diagram shows the overall relationship among the Assembler, the SETCF module,
and the REXX Environment. We will be breaking down these pieces in the minutes
ahead.

8

The code sample has a limit to 20 RXargs.

9

STEPLIB is optional. The RXBRIDGE module could be in the LINK PACK AREA or other
locations.

10

This simple Exec does not check for the pathological case where the old and new
intersect.
The point here is to show how arguments come in and a return string is formed.
A more robust implementation would make such a check and issue RETURN 4 or take
some other action.

11

A REXX word is a blank delimited string of characters.
A return code may have leading zeros.
If you have something like RETURN 0 ' SOME TEXT' then the SETCF will return ' SOME
TEXT'.
Note that leading and trailing blanks ARE significant in the returned string.
Return '0 Some Text' is just fine too.

12

Here is some sample assembler code that invokes the REXX REPLACE Exec.

The use of DEQUOTE is required since the syntax of SETCF MUST have single quotes on
the arguments.

&DATA SETCF 'RXBRIDGE','REPLACE',&STRING,&OLD,&NEW will cause an error since
this does not act like

DC C&STRING

13

Can I use SAY in a Exec?
SURE! The result of SAY is sent to //SYSTSPRT

14

15

The ASMA711W message occurs in SYSPRINT, sort of like an MNOTE.

The ultimate return code of the assembly is the highest severity that was seen.

16

17

These are arbitrary limits. Small changes to the source code can accommodate
different limits.

18

19

Note that there is a space between "…text 1" and "This is…".
That is because the Return statement in GETGBL12 put it there.
If you wanted the two string to be "abutted" then you would code

RETURN 0 GLOBAL_ONE || GLOBAL_TWO
In the GETGBL12 Exec.

20

21

Note that the quotes are required on the value due to REXX syntactical requirements.
Watch out when the value and template need to contain single quotes.

22

23

24

25

26

27

28

29

30

31

OK. So how do we accomplish this?

32

33

Upon entry to the SETCF module, R1 points to the AEFNPARM control block.
The AEFNRIP pointer points to the AEFNRIL.
The dataset name may be different on your system.

34

35

This is a mapped display of live storage as it existed while the program was running.

Here we can see that REXX has provided an Environment Block. This is required for all
the other calls we make to REXX.

36

Parameter 2 is a list of arguments to the REXX Exec.
The list has ADDRESS and LENGTH and is terminated with a picket fence.

37

Here we can see that there is one parameter followed by the Picket Fence.
The first entry has the address and length of the RXarg1 being passed in to the Exec.

38

39

AEFNMSGS is the return code that is used by the assembler. Think of like an MNOTE
n,'asd' statement.
Message may be up to 240 bytes since we use some of them as a leader.

40

41

42

43

44

45

