Using REXX during Assembly

Invoking REXX during High Level Assembly
via SETCF

by ColeSoft, a leader in all things assembler

#SHAREorg

0000 »2°®
2
SHARE is an independent volunteer-run information technology association [?S!?t(eZROIES
that provides education, professional networking and industry influence. ®e.,
Copyright (c) 2014 by SHARE Inc. @ (@ @ © sl ceswwecommonsorsricamsessvy sesaas!

Thank you for your interest in this topic. | hope to provide you with a 40 minute
informative and interesting presentation and at the end of the presentation we will

have a Q&A period. If you have questions during the presentation please raise your
hand to be recognized.

If you have more in-depth questions after the presentation please feel free to contact
me at the E-Mail address below.

Lets begin...

P 1

Introduction

Today we will talk about forming a bridge between the assembler's
macro processing and the REXX language. By doing this we are
able to add the power of REXX language to the assembler in order
to perform complex operations that are difficult or impossible using
the usual assembler constructs.

This is accomplished by using the assembler's SETCF ability to
invoke a module, RXBRIDGE in our case, that in turn executes
REXX Execs and returns their result to the assembler.

The first part of this presentation will discuss writing and calling
REXX Execs and the second part will get into how we do it.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
— ® » s ~nlecanft ron R h 20 N15 .'~- K

@colesoft.com http://www.colesoft.com Booth 203

[click to advance to each topic]

Y

Introduction

Here are a few examples of why we might want to do this.

» Using REXX PARSE to decode macro arguments.

* Recording information from macros to an external file.

* Accessing external data sources to generate tables.

* Manipulating numbers beyond 2231, the scope of SETA

.o.
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval '. in Seattle 2015
~ .v._ 4

rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 4

What we will cover SHARE

Review of SETC and SETCF

The Big Picture of Assembler SETCF
Setting up for RXBRIDGE

Sample RXBRIDGE Exec

Sharing data among RXBRIDGE Execs
Down to the Nitty-Gritty

Other Possibilities

N Ok WN =

...
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval .. in Seattle 2015
) f acnft com BRooth 203 .'-. [

[click to advance to each topic]

1. Review of SETC and SETCF

SETC is used to place a value into a macro variable:

&MYVAR SETC 'myvalue'

SETCF also places a values into a macro variable but you
are able to identify a program that will generate it:

&MYVAR SETCF 'module', 'CFargl', 'CFarg2',,,,

..

o SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval .. in Seattle 2015
= nmlaenft rarm hHA s colaenf com Ranth 2073 el =

The first example is the SETC that we all know and love.
| suspect that not many people have used SETCF because it is a bit intimidating.

Not to worry.

r1,

- .

Review of SETC and SETCF suame

&MYVAR SETCF 'module', 'CFargl', 'CFarg2',,,,

Module is the name of a load module that is brought into
memory by the assembler. In this presentation this is
RXBRIDGE.

To avoid reloading the module on every SETCF call the
load module should be Link-Edited with the REUS or RENT
attribute. When this is done the assembler will LOAD the
module once and then just call it after that.

RXBRIDGE is reusable.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
Meolesnft com hitr asww caleenft rom Ranth 202 5 .'~. 7

Using REUS / RENT will have a dramatic effect on performance.

- i
H = SHARE,
2. The Big Picture of Assembler SETCF P
High Level Assembler
T l Use of
SETCF
RXBRIDGE //SYSTSPRT DD
REXX Envrionment SAY text
Load Module REXX Error Messages
Severity //SETCFLIB DD
Code ?
RC=0 e IC >0 REXX Programs
SETCF Result String SETCF Error Message
.0.
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015

This diagram shows the overall relationship among the Assembler, the SETCF module,
and the REXX Environment. We will be breaking down these pieces in the minutes
ahead.

e

3. Setting up for RXBRIDGE SRARD
RXBRIDGE is a SETCF module that invokes REXX.

The module is invoked like this:
&MYVAR SETCF 'RXBRIDGE', 'EXECNAME', 'RXargl', 'RXarg2',,,
From the SETCF point of view we have
The program load module is RXBRIDGE
CFarg1 = EXECNAME
CFarg2 = RXarg1
CFarg3 = RXarg2

There may 0 to 200 RXargs.

.o.
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval '. in Seattle 2015
.v._ qQ

rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015

The code sample has a limit to 20 RXargs.

r1,

-

Setting up for RXBRIDGE suARE

The code in RXBRIDGE invokes a REXX Exec stored as a member
in SETCFLIB. The following DD cards need to be added to your
assembler JCL:

STEPLIB contains member RXBRIDGE
//STEPLIB DD DSN=my.loadlib,DISP=SHR

SETCFLIB contains member EXECNAME
//SETCFLIB DD DSN=myfavs.rexx,DISP=SHR

SYSTSPRT contains SAY and REXX error messages.
//SYSTSPRT DD SYSOUT=*

SETCFLIB is hard-coded into RXBRIDGE, but you can change it to be
pretty much whatever you want.
2@

[&]
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
P . X anlaanl amn Bantk 902 Oous 10

olesoft.com http://www es m Booth 203 3/4

STEPLIB is optional. The RXBRIDGE module could be in the LINK PACK AREA or other
locations.

- .

4. Sample RXBRIDGE Exec Lt
Here is a sample REXX Exec, named REPLACE:

/* REXX SETCF PROGRAM TO REPLACE ONE STRING WITH ANOTHER */
/* THE OPERATION PROCEEDS FROM LEFT TO RIGHT.THE COMPARISON IS CASE
INSENSITIVE */

STRING = ARG (1)
OLD = TRANSLATE(ARG(2))
NEW = ARG (3)
DO 1200

P=POS (OLD, TRANSLATE (STRING)) /* WORK FROM LEFT TO RIGHT CASELESS */
IF P<1l THEN LEAVE
/* WE HAVE LOCATED OLD INSIDE STRING */
STRING DELSTR (STRING, P, LENGTH (OLD))
STRING INSERT (NEW, STRING, P-1)
END
RETURN 0 STRING

..
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
B ey sth 203 Se.. 11

This simple Exec does not check for the pathological case where the old and new
intersect.

The point here is to show how arguments come in and a return string is formed.

A more robust implementation would make such a check and issue RETURN 4 or take
some other action.

Returning from an RXBRIDGE Exec Tnant

RETURN rc string

< This is the SETCF string

This is the returned value

All RXEEIDGE Exiecs must return a value. REXXEXEC
treats the first REXX "word" on the return string as the
assembler's return code.

Whenrc=0

The text after the first space is returned as the SETCF value.
Whenrc>0

The text after the first space is returned as part of an
assembler ASMA711W error message.

SETCEF receives a zero-length string.

..
o SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval .. in Seattle 2015

A REXX word is a blank delimited string of characters.

A return code may have leading zeros.

If you have something like RETURN 0 ' SOME TEXT' then the SETCF will return ' SOME
TEXT'.

Note that leading and trailing blanks ARE significant in the returned string.

Return '0 Some Text' is just fine too.

Sample invocation of REPLACE e
MACRO

&NAME REPLACE TEXT &STRING, &OLD, &NEW

&S SETC DEQUOTE ('&STRING')

&0 SETC DEQUOTE('&OLD')

&N SETC DEQUOTE ('&NEW')

¥ EXECNAME ARGl ARG2 ARG3

&DATA SETCF 'RXBRIDGE', 'REPLACE', '&S','&0', '&N'

&NAME DC C'&DATA'
MEND

REPLACE TEXT 'THIS is Some sHoRt Text', 'short', 'Longer'
+ DC C'THIS is Some Longer Text'

...
e SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
g 5 R ... y

Here is some sample assembler code that invokes the REXX REPLACE Exec.

The use of DEQUOTE is required since the syntax of SETCF MUST have single quotes on
the arguments.

&DATA SETCF 'RXBRIDGE','REPLACE',&STRING,&OLD,&NEW will cause an error since
this does not act like
DC C&STRING

- .

/* REXX Exec to echo text to /SYSTSPRT Dataset — SAYIT */
SAY ARG(1)
RETURN 0

You can use the REXX SAY instruction to place text into the
[ISYSTSPRT dataset. This can be very handy if you want to
capture information during the assembly process and write it
out to a flat file.

You might have some tables that are defined with macros
and want to capture that information without having to
parse the assembler source yourself.

You want to debug some macro logic but don't want to use
MNOTE for some reason.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
Meolesnft com hitr arww caleenft rom Ranth 202 5 Oous 14

REXX SAY suame

Can | use SAY in a Exec?
SURE! The result of SAY is sent to //SYSTSPRT

14

REXX SAY example
MACRO
SYSTSPRT &TEXT

&X SETC DEQUOTE ('&TEXT')

&DATA SETCF 'RXBRIDGE', 'SAYIT', '&X'
MEND

SYSTSPRT 'This is a message'

Causes //SYSTSPRT to contain:

This is a message

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

schreiber@colesoft.com http://www.colesoft.com Booth 203

colesoft.com Booth 203

- .

.00
o SHARE

...In Seattle 2015

15

- .
SHARE,

Sample error invocation

/* REXX EXEC TO CAUSE A MINOR ERROR - MINORERR */
RETURN 4 'Minor ERROR'

The SETCF exit accepts the first REXX "word" on the return
string as the assembler's return code. The text after the first
space is returned as an error message instead of result string
of the SETCF.

&DATA SETCF 'RXBRIDGE', 'MINORERR'
% ASMA711W RXBRIDGE: MINORERR:Minor ERROR

External Function Statistics

----Calls---- Message Highest Function
SETAF SETCF Count Severity Name
0 1 1 - RXBRIDGE
.00
e SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
— ® » e ~nleenft rom B ~th 2072 .'~. 1R

The ASMA711W message occurs in SYSPRINT, sort of like an MNOTE.

The ultimate return code of the assembly is the highest severity that was seen.

“E
SHARE

REXX Execution and Coding Errors

* REXX Exec that has an error */
This is not good
return O

If you have a REXX coding or execution error then you will
see something like this in the //SYSTSPRT dataset:

2 *-* This is not good
+++ RC(-3) +++

...
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
- A4 E ®e.. 17

rschreiber@colesoft.com http://www.colesoft.com Booth 203

17

5. Sharing data among RXBRIDGE Execs
Since each REXX Exec is invoked independently it would
be helpful if there were a way to pass variables from one
RXBRIDGE Exec to another.

This is done by using variables named GLOBAL _xxxx
64 character maximum name length
512 byte maximum value length

64K limit total
Not related to GBLC in any way

.O.
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
Danlsentt s o //www colesoft com Booth 203 .. 18

These are arbitrary limits. Small changes to the source code can accommodate
different limits.

18

- .
= — = SHARE
Sample Execs showing Globals in action
/* REXX Exec to save data into a global - GBL1*/
GLOBAL ONE = ARG(1)
RETURN 0
/* REXX Exec to save data into a global - GBL2*/
GLOBAL TWO = ARG (1)
RETURN O
/* REXX Exec to return some global info - GETGBL12*/
RETURN 0 GLOBAL ONE GLOBAL_ TWO
.00
o SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015

rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 9

19

- .
Sample invocation of Execs with Globals ans
&X SETCF 'RXBRIDGE',6 'GBL1', 'This is text 1'
&X SETCF 'RXBRIDGE',6 'GBL2', 'This is text 2!
&X SETCF 'RXBRIDGE', 'GETGBL12'
DC C'&x!
+ DC C'This is text 1 This is text 2!
...
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval ...i" Seattle 20;5

Note that there is a space between "...text 1" and "This is...".

That is because the Return statement in GETGBL12 put it there.

If you wanted the two string to be "abutted" then you would code
RETURN 0 GLOBAL_ONE || GLOBAL_TWO

In the GETGBL12 Exec.

20

ﬂ,

- .

Using PARSE with RXBRIDGE inans

By using a pair of RXBRIDGE Execs we can access the REXX PARSE instruction
with assembly-provided values and templates:

/* REXX - Sample RXBRIDGE PARSE Exec - DOPARSE */
INTERPRET "PARSE VALUE" ARG (1) "WITH" ARG (2)
RETURN 0

Which is invoked using

&X SETCF 'RXBRIDGE', 'DOPARSE', 'value', 'template'’

Where the template consists of GLOBAL _ variables and controls.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015

rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 2

21

- .

Sample invocation of DOPARSE LIl
&X SETCF 'RXBRIDGE', 'DOPARSE', X
1 IlMarCh 4, 2015" 1 ’ x

'GLOBAL M GLOBAL D ", " GLOBAL_Y'

Causes REXX to execute

PARSE VALUE "March 4, 2015" WITH GLOBAL M GLOBAL D ", " GLOBAL Y

---= ARG(1)---- mmmmmmmm———o- ARG (2) ----=------

Which assigns values to the variables GLOBAL_M, GLOBAL_D, and GLOBAL_Y
into the RXBRIDGE global pool. These are now available to all future RXBRIDGE

Execs.
K
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015

Note that the quotes are required on the value due to REXX syntactical requirements.
Watch out when the value and template need to contain single quotes.

Retrieving Global Variables

To get back the values of the global variables we can do this:

/* REXX Exec to retrieve a Global Variable - GETGBL */
INTERPRET "X = GLOBAL "ARG (1)
RETURN 0 X

Which is invoked as

&X SETCF 'RXBRIDGE', 'GETGBL', 'varsuffix'

That would return the value of GLOBAL_varsuffix.

.00
o SHARE

E.org/Seattle-Eval ...In Seattle 2015

Complete your session evaluations online at www.

rsc t.com http:// www.co

23

r1,

Sample invocation of GETGBL srAnS.

Here we show "reading" the global variables that were produced by

DOPARSE earlier:

&MONTH SETCF

&DAY SETCF
&YEAR SETCF
DC
+ DC
DC
+ DC
DC
- DC

'RXBRIDGE',
'RXBRIDGE',
'RXBRIDGE',

C'&MONTH'
C'March'
C'&DAY'
chal
C'&YEAR'
C'2015"

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

rschreiber@colesoft.com

v colesoft com Rooth 203
v.colesoft.com Booth 203

'GETGBL', 'M'
'GETGBL', 'D'
'\GETGBL' ;'Y
FROM GLOBAL M

FROM GLOBAL D

FROM GLOBAL Y

.00
o SHARE

...ln Seattle 2015

24

P 1

Dumping the global variables

You can obtain a listing of the global variables by using this
RXBRIDGE statement:

ADDRESS RXBRIDGE 'GLOBALS LIST'

In //ISYSTSPRT:

GLOBAL D='4"
GLOBAL Y='2015"
GLOBAL_M='March'

3 GLOBALS LISTED

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
— ® » N ~nlecanft ron R th 202 5 .'~- 25

rschreioe &;Ciéif t.com http://www.colesoft.com Booth 203 3/4/2019 &9

25

- .

Dumping the global variables e
Or you can do it from a macro by having
/* REXX Exec to print the Globals - PRTGLOBL */
ADDRESS RXBRIDGE 'GLOBALS LIST'
RETURN 0
And coding
&X SETCF 'RXBRIDGE', 'PRTGLOBL'

KL

e SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
~ R " B Bl AR °... P

rschreioe g:Ci&ST"\ com http://www.colesort.com Booth 203 3/4/20713 <0

Setting Global Variables from a macro

To set the value of a global variable we can do this:

/* REXX Exec to set a Global Variable - SETGLOBL */
INTERPRET “GLOBAL_"ARG(l)"="""ARG(2)""""
RETURN 0

/* REXX Exec to print the Globals - PRTGLOBL */
ADDRESS RXBRIDGE 'GLOBALS LIST'
RETURN O

Which is invoked by

&X SETCF 'RXBRIDGE', 'SETGBL', 'varsuffix', 'value'

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
.
rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 27

27

Setting Global Variables from a macro TMARS

For example:

&NAME

&X
&X
&X
&X
&X
&X

SETCF
SETCF
SETCF
SETCF
SETCF
SETCF

MACRO

SET_GLOBALS &DUMMY

'RXBRIDGE',

'RXBRIDGE',

'RXBRIDGE',

'RXBRIDGE',

'RXBRIDGE',

'RXBRIDGE',
MEND

' SETGLOBL'
'SETGLOBL'
' SETGLOBL'
'SETGLOBL'
'SETGLOBL'
' PRTGLOBL'

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

oft o

rschreiber@colesoft.com http://www.colesoft

om Booth 203

’

’

’

-

'SYSDATE', '&SYSDATE'
'SYSECT', '&SYSECT'
'SYSMAC', '&SYSMAC'
'SYSNDX', ' &SYSNDX'
'SYSTIME', '&SYSTIME'

.00
o SHARE

...ln Seattle 2015

28

Setting Global Variables from a macro
Will produce in //SYSTSPRT:

GLOBAL SYSDATE='03/04/15"
GLOBAL SYSECT='TEST'
GLOBAL_SYSMAC='SET_ GLOBALS'
GLOBAL SYSNDX='0001"
GLOBAL SYSTIME='19.15"

5 GLOBALS LISTED

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
rschreiber@colesoft.com http://www.colesoft.com Booth 203

R
SHARE

.o.
o SHARE

'..in Seattle 2015

29

Resetting global variables

RXBRIDGE statement:

ADDRESS RXBRIDGE 'GLOBALS RESET'

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
rschreiber@colesoft.com http://www.colesoft.com Booth 203

You can obtain a listing of the global variables by using this

4/2015

Y

.o.
o SHARE

'..in Seattle 2015

30

- .

Using the REXX Stack suame

You can use the REXX Stack to communicate between
RXBRIDGE Exec calls.

PUSH (LIFO)

QUEUE (FIFO)

PULL
| believe using Global variables is more flexible, but this
works for simple interfaces and in some cases may be
more convenient when dealing with unknown quantities of
data.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
Aernlacaft Ao N v enleceanft fon Ronth 2072 2015 .'~- 21

31

.

6. Down to the Nitty-Gritty amane

Normal flow

RXBRIDGE module inputs

Initializing the REXX Environment - IRXINIT
Invoking a Exec with IRXEXEC

Outputs

o? L
o SHARE
'..In seattle 2015

Complete your session evaluations online at www.SHARE.org/Seattle-Eval
rschreiber@ 3

OK. So how do we accomplish this?

Overview of flow under normal conditions

'Y

This flow chart shows the activities that occur within SETCF:

Enter RXBRIDGE module

}

Extract REXX Function name from 2™ SETCF
argument

Locate Function in local cache or issue IRXLOAD
to bring it in.

Copy SETCF arguments 3 to n into IRXEXEC parameters 1 to n-2
Invoke REXX Function using IRXEXEC

Parse REXX Function's return to extract Severity Code

Copy the rest of the REXX Function's return string to the SETCF reply
area, AEFNMSG

Perform one-time initialization of SETCF
environment

| —

Perform time initialization of REXX

Allocate 64K work area for REXX
Allocate 64K area for Global Variables
LINK EP=IRXINIT

.00
o SHARE

...ln Seattle 2015

33

r1,

- .

R1__| AEFNPARM

AEFNRIL

A(message buffer)
A(Return String)
A(CFargs...)

Number of arguments
Return code

Return message length
Return string length

The AEF control blocks are built by the assembler and passed
to RXBRIDGE via R1. These DSECTs are mapped in

HLA.SASMMAC1(ASMAEFNP).

..
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
caom Boath 202 .. 34

What the world looks like inside RXBRIDGE *"***

Upon entry to the SETCF module, R1 points to the AEFNPARM control block.
The AEFNRIP pointer points to the AEFNRIL.
The dataset name may be different on your system.

34

- .

Inputs to the routine

AEFNPARM
AEFNRIP points to the AEFNRIL (below)
AEFNCF_PARMA[] array of pointers to the CFarg1, CFarg2,
CFarg3,,, strings.
Number of elements is in AEFNUMBR.
AEFNRIL
AEFNTYPE is 2 to indicate that this is a SETCF call
AEFN_PARMN_L[] array of lengths to the CFarg1, CFarg2,
CFarg3,,, strings.
Number of elements is in AEFNUMBR.
Max argument length is 1024 bytes.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
— ® » s ~nlecanft ron R h 20 N15 .'~- 5

@colesoft.com http://www.colesoft.com Booth 203

35

After the link to IRXINIT

ﬂ,

- .

TCB#5 RB#1 A.S. ROBRXTST
XDC ===> FORMAT INIT_PARMS
00000000_1F211788 8f (A.S.ROBRXTST) --- RXBRIDGE.RXBRIDGE+C68, GR12+4C68, GR13+C68, RXBRIDGE+C68
_ XPRIVATE+9117B8
_ .+C68 IRXINIT_PARMS DS oD
- .+C68 1F2117D4 DC A(IRXINIT_ PARM1)
_ .+C6C 1F2117DC DC A(IRXINIT_PARM2)
_ .+C70 1F2117E4 DC A(IRXINIT_PARM3
e .+C74 1P2117E8 DC A(IRXINIT_ PARM4)
_ .+C78 1F2117EC DC A(IRXINIT_PARMS)
B .+C7C 1F2117F0 Dc A(IRXINIT_PARMS6)
_ .+C80 9F2117P4 DC A(X'80000000'+IRXINIT_ PARM7)
_ .+C84 C9DSCI9E3 C5D5E5C2 IRXINIT_PARM1 DC CL8'INITENVB' CREATE A NEW ENVIRONMENT
. .+C8C 40404040 40404040 IRXINIT_PARM2 DC cL8' DEFAULT PARAMETER MODULE
. .+C94 1F213D78 IRXINIT_PARM3 DC V(IRXPARMS) IN-STORE PARM LIST
_ .+C98 00000000 IRXINIT_PARM4 DC a(0) NO USER FIELD
B .+C9C 00000000 IRXINIT_PARMS DC F'0' RESERVED
.+CAO 0001BC30 IRXINIT PARM6 DC A(*-%) ADDRESS OF ENVIRONMENT BLOCK
_ .+CAO ENVADDR EQU IRXINIT_PARM6,L'IRXINIT_PARM6
.+CA4 00000000 IRXINIT_PARM7 DC A(*-%) RETURN REASON CODE

We can see that we have been supplied with an Environment Block

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015

rschr com http://www.colesoft.com Booth 203 3/4/2015 36

This is a mapped display of live storage as it existed while the program was running.

Here we can see that REXX has provided an Environment Block. This is required for all
the other calls we make to REXX.

Prior to the call to IRXEXEC L

These are the parameters before the call to IRXEXEC

TCB#5 RB# ---XDC-CDF ISPF INTERFACE --
XDC ===> ?
00000000_1F211878 8f (A.S.ROBRXTST) --- RXBRIDGE.RXBRIDGE+D28, ®R1+0, ®R15+9E8, SRI+ADA,
©R12+4D28, SR13+D28, RXBRIDGE+D28, XPRIVATE+911878
.+D28 IRXEXEC_PARMS DS 0D
= .+D28 1F2 DC A(IRXEXEC_PARM1)
B .+D28 1F2 o2R1 .IRXEXEC_PARM1 *....*
B .+D2C 1F2 DC A(IRXEXEC_PARM2)
B .+D30 1F2118A8 DC A(IRXEXEC_PARM3)
B .+D34 1F2 DC A(IRXEXEC_PARM4)
B .+D38 1F2 DC A(IRXEXEC_PARMS)
B .+D3C 1F2 DC A(IRXEXEC_PARMSG)
_ .+D40 1F2118B8 DC A(IRXEXEC_ PARM7)
- .+D44 1F2118BC DC A(IRXEXEC PARMS)
= .+D48 1F2118C0 DC A(IRXEXEC_PARMS)
= .+D4C DC A(X'80000000"+IRXEXEC_PARM10)
= .+D50 IRXEXEC_PARM1 DC A(EXECBLK) EXECBLK GIVEN
B .+D54 1 IRXEXEC PARM2 DC A(ARGLIST) ADDRESS OF ARG LIST
- .+D58 IRXEXEC_PARM3 DC B'01010000',XL3'0’
B .+D58 . AALA
B .+D58 . D RETURN EXTENDED RETCODES
- .+D58 * --- SUBROUTINE CALL (NO)
- .+D58 * - EXTERNAL FUNCTION CALL (YES)
B .+D58 . --- NOT A COMMAND
= .+DSC 1F2145F0 IRXEXEC_PARM4 DC A(0) INSTBLK ADDRESS (0=NOT PRELOADED)
= .+D60 00000000 IRXEXEC_PARM5 DC A(0) NO CPPL SINCE BATCH MODE
5 .+D64 1F211A08 IRXEXEC_PARM6 DC A(EVALBLOK) ADDRESS OF EVAL BLOCK
o .+D68 1F21193C IRXEXEC_PARM7 DC A(WORKAREA) WORK AREA PROVIDED
- .+D6C 00000000 IRXEXEC_PARM8 DC A(0) NO USER FIELD
- .+D70 00000000 IRXEXEC_PARMS DC A(0) ENVBLOCK IN RO
- .+D74 00000000 IRXEXEC PARM10 DC F'0° RETURN CODE AREA ..
@
e SHARE
Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015
0. a7

www.colesoft.com Booth 203 37

rschreiber@colesoft.com

Parameter 2 is a list of arguments to the REXX Exec.
The list has ADDRESS and LENGTH and is terminated with a picket fence.

r1,

- .

Prior to the call to IRXEXEC L

The IRXEXEC 2" parameter points to the arguments (one in this case) being
passed to the Exec

TCB#5 RB#1

XDC ===> F(2 2? §

_ 00000000_1F211168 8f (A.S.ROBRXTST) --- RXBRIDGE.RXBRIDGE+618, @R9+3CA, GR12+618, @R13+618,
_ RXBRIDGE+618, XPRIVATE+911168

_ .+618 1F286D48 0000000E ARGLIST DS (200+1)D ROOM FOR UP TO &MAXARGS ARG
= .+618 ARG_CLEAR_LEN EQU *-ARGLIST

o .+620 FFFFFFFF FFFFFFFF o ®ociaaeiaea *

_ .+628 00000000 00000000 o ®ecedanas *

And here we see the argument that is being passed...

TCB#5 RB#1 --------===— === ==mommmmmm oo XDC-CDF ISPF INTERFACE ------

XDC ===> DISPLAY .IRXEXEC_ PARM2?? 5

_ 00000000_1F286D48 8f (A.S.ROBRXTST) --- , @R7+828, @R6+848, XPRIVATE+986D48

- 1F286D48 34 E38889A2 4089A240 *This is *
1F286D50 8f A385A7A3 40F10000 00000000 00000000 *text l.......... *

.00
o SHARE

...In Seattle 2015

Complete your session evaluations online at www.SHARE.org/Seattle-E

rschreiper@c soft.com http:// www.colesoft.com Boot

Here we can see that there is one parameter followed by the Picket Fence.
The first entry has the address and length of the RXargl being passed in to the Exec.

When IRXEXEC returns
We can see the RETURN string from the Exec:

XDC ===> DISPLAY .EVDATA 5
00000000_1F211A18 8f (A.S.ROBRXTST) --- RXBRIDGE.RXBRIDGE+ECS, GR1+1A0, GR9+C7A,
_ @R13+EC8, RXBRIDGE+ECS8, XPRIVATE+911A18
_ .+EC8 8f F040E388 89A24089 *0 This i*
.+EDO0 8f 0A385 A7A340F7 40E38889 A24089A2 *s text 7 This is*

.+EE0 8f 385A7 A340F840 40404040 40404040 * text 8 *

and we convert that to the SETCF Severity Code and message

Complete your session evaluations online at www.SHARE.org/Seattle-Eval

rs esoft.com v olesoft.com Booth 203 3

-

@R12+ECS,

.00
o SHARE

...ln Seattle 2015

39

B
SHARE,

Outputs from the routine
When we receive RC =0 from the Return we
Set AEFNMSGS (severity) = 0

Return string to assembler by copying into buffer supplied in
AEFNCF_SAword.

When we receive RC > 0 from the Return we
Set AEFNMSGS (severity) = rc
Sets assembly return code, typically 4,8,or 12

Return message to assembler by copying into buffer supplied
in AEFNMSGA word.

...
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
caom Boath 202 5 ®e., 1C

AEFNMSGS is the return code that is used by the assembler. Think of like an MNOTE
n,'asd' statement.
Message may be up to 240 bytes since we use some of them as a leader.

e

7. Some other possibilities LLEL

You can do most anything that REXX can do.

Write any data to //SYSTSPRT with SAY

Open an FTP Socket

Issue an MVS command (if authorized)

Access z/OS or HFS datasets during macro processing
Perform complex text editing

Look up records in a database

.o.
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
5
rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 4

r1,

- .

Summary sname

We have shown that REXX Execs can be invoked during
the assembly process by using the SETCF assembler
statement.

You can write nearly any Exec that you wish and all the
REXX built-in functions are available.

You can communicate among Execs using GLOBAL _
variables.

You can write any data you wish to the //[SYSTSPRT
dataset.

You can modify the program to add more features if you
desire. This is just a framework for the basics.

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
- ¢ ¢ o " AN ks ® A"

@colesoft.com http://www.colesoft.com Booth 20

42

=

B
SHARE,

Full Source Code
You can download the full source code for RXBRIDGE from

http://www.colesoft.com/SHARE-March2015

You will be asked to agree to the usual disclaimers, etc.

OF

=

...
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval @, inSeattle 2015
com Booth 203 2/4/2015 .. 13

43

- .
SHARE,

References

SA32-0972 TSO/E REXX Reference

SC26-4940 High Level Assembler Language Reference
Chapter 9 — How to write conditional assembly instructions

SC26-4941 High Level Assembler Programmer's Guide
Chapter 5 — Providing External Functions

Proceedings of the REXX Symposium for Developers and Users, 1992,
Page 231, Interfacing with REXX, Anthony Rudd

.00
o SHARE

Complete your session evaluations online at www.SHARE.org/Seattle-Eval ®, inSeattle 2015

rschreiber@colesoft.com http://www.colesoft.com Booth 203 3/4/2015 44

44

Complete your session evaluations online at www.SHARE.org/'

Questions?

eiber@ t

Seattle-Eval

pootn 203

- .
SHARE,

.00
o SHARE

...In Seattle 2015

45

