
Thank you for your interest in this topic. I hope to provide you with a 50 minute
informative and interesting presentation and at the end of the presentation we will
have a Q&A period.

If you have more in-depth questions after the presentation please feel free to contact
me at the e-E-Mail address below.

Lets begin…

2

3

4

[click to advance to each topic]

5

6

Data sources may be from more than just SYSIN and SYSLIB.

Given appropriate calls, just about any data source can be accessed.

7

There are seven exits.

The Source and Library exits provide the ability to control SYSIN and SYSLIB input.

Listing and Term provide control over SYSPRINT and SYSTERM output.

Punch and Object provide control over SYSPUNCH and SYSLIN object deck creation.

ADATA provides control over SYSADATA creation.

In general, they can add, modify, delete, and extract information in all the assembler’s
data streams.

They can also provide alternate ways of processing the data, for example, by using
different DCBs or DDNAMEs.

8

Checking for programmer ID or control information out near column 60.
Absorb records from a VB dataset and convert them to RECFM=FB
Change a blank line to be blank in only columns 1-60, say
Implement bi-lingual C/ASM. Support multi-line /* */
Implement #ifdef, #ifndef, #else, #endif
Provide LABEL: SYSIN syntax

9

Note that the Library exit is pretty much the same as the Source exit, but it gives the
same controls over MACRO and COPY code inclusion.

10

11

12

13

To me, having one load module makes sharing of common code easier to write and
maintain.

You can also write it as a re-entrant module if you wish.

The example that I give here is reusable but not reentrant.

Having the REUS (or RENT) option is important. When it is present then the assembler
will LOAD the module only once and just branch to it on each call. If it is not REUS then
it will be LOADed on every call and the performance will be pretty bad.

14

Next we are going to talk about two simple exits.

The LABEL: exit illustrates how we can alter a SYSIN/SYSLIB record.

The SYSPRINT exit shows how we can alter and inject new records.

15

16

17

One fairly elegant way to do "labels" is with a LABEL macro. The opcode, LABEL, is
placed out in column 36 to make is seems to be a comment.
This has the advantage of not needing an exit to implement it.

18

One alternative is have the exit convert some thing like this into something that the
assembler likes.

I tend to ignore listings for the most part and want the SYSIN and SYSLIB records to be
pretty.

19

The READ operations is not called when the assembler wants to read data. It is called…

20

21

This is the beginning of the code for the Source and Library sample exits.

Both exits start executing at label CHECKTYP.

The EXIT00 routine will return with RC=0 and REASON=0 indicating that we are done
“not” modifying the SYSIN and SYSLIB dataset specifications.

The EXIT04 routine (discussed later) will return with RC=0 and REASON=4.

The EXIT16 routine will return with RC=16 and REASON=0.

The three calls to PROCESS are the meat of this and will cause further actions.

22

Here we avoid process continued statements and comment cards.

At test1 we begin analyzing the statement to see if it has a label.

23

Here we have dertermined that the statement does indeed have a label and forward
scan it to see if it has a colon.

If the label was short then we try to place the DS 0H in column 10 and then exit.

24

If that did not work then we jam the DS 0H over where the colon was, and exit.

25

This Listing exit provides the conversion of ASA carriage controls to blank lines.

In my shop I place the SYSPRINT data into an HFS file that is available to me via the z/OS
SAMBA server. Then I use my Windows system to map a drive to that directory and
then use my favorite ASCII editor to browse the listing.

You could also do this with Linux.

Here is how it works…

26

Here we basically want to ignore Open and Close since we don’t need to remap them
to a different DCB or DDNAME.

27

For 0 and – we will be inserting one or two blank lines in front of the current line.

This will require injecting new records into SYSPRINT.

28

Similar to the Source and Library exits we ignore Open and Close and honor Process.

29

The code operates by maintaining a stack of blank and output lines.

If the stack is empty then we reload it with the current record. (NOMORE)

LINE1 gets the output line and its also copied to LINES2-4.

If LINE1 has a x’00’ then we have emptied the stack and tell the assembler to move
onto its next output record.

If LINE1 is non-zero then we tell the

30

31

Here we handle adding one line and the data to the stack (of two)

32

33

34

This is a tiny program that illustrates the features we have implemented.

35

36

37

It does not produce a count of the number of records that were modified.

38

The example exits that we present here do not include all the source code to build it.
You can visit our web site to download the full source code.

39

40

41

42

43

