
Insert
Custom
Session
QR if
Desired.

Thinking and Acting Like an
Architect
Bill Seubert – IBM z Architect Leader

Acknowledgements & sources

•  “Becoming an Architect” – Lee H. Waldrep, Ph.D
•  “Architectural Thought – The Design Process and the

Expectant Eye” – Michael Brawne
•  Presentation: “Architectural Thinking” – David Jackson,

Peter Bouchard

2

Topics

•  Define “architect”
•  What does an architect do?
•  Architectural and “top-down” thinking
•  The builder analogy
•  Architecture and design
•  Design methods and Frameworks
•  IBM’s Team Solution Design

3

The definition of an architect – from a building
architect POV

•  There are a few things to be taken from that Rand quote
–  Note the repeated use of “thought”
–  Was the character thinking about what the walls, rafters, girders, etc. would look like and how

they’d fit together, or was he thinking about how he would do the construction himself? Is he a
“specialist” or an “architect”? What kind of thinking was he doing?

•  What IS an architect?
1.  a person who engages in the profession of architecture.
2.  a person professionally engaged in the design of certain large constructions other than buildings

and the like: landscape architect; naval architect.
3.  the deviser, maker, or creator of anything: the architects of the Constitution of the United States.

–  Word origin - 1550s, from Middle French architecte, from Latin architectus, from Greek arkhitekton

"master builder, director of works," from arkhi- "chief" (see archon) + tekton "builder,
carpenter" (see texture). An Old English word for it was heahcræftiga "high-crafter."

4

From Ayn Rand’s “The Fountainhead:

“He looked at the granite. To be cut, he thought, and made into walls. He looked at a tree. To be split and made into rafters. He
looked at a streak of rust on the stone and thought of iron ore under the ground. To be melted and to emerge as girders against
the sky.

These rocks, he thought, are waiting for me; waiting for the drill, the dynamite and my voice; waiting to be split, ripped,
pounded, reborn; waiting for the shape my hands will give them.”

Idea borrowed from “Becoming an Architect”, Lee W. Waldrep, Ph.D

A “system architect”

•  (a.k.a. “IT Architect”)

–  One who is engaged in the practice of creating systems
architectures, primarily in a client centric role, through use of
a methodical process employing a combination of artistic and
engineering approaches.

–  “...an individual engaged in the process of architecting,
regardless of domain, job title, or employer; by definition and
practice both. From time to time an architect may perform
engineering and an engineer may perform architecting –
whatever it takes to get the job done.”

•  Maier and Rechtin

5

What does an architect do?
•  Architects don’t just draw pictures

–  “In designing buildings, architects communicate with and assist those who have needs – clients,
users and the public as a whole – and those who will make the spaces that satisfy those needs –
builders and contractors, plumbers and painters, carpenters, and air conditioning
mechanics” (Waldrep)

•  A large part of the role is about communication
•  Requirements gathering is huge – again, communication!

–  “Architecture is the creation and communication of ideas. It is the creative and technical process
for the design, management and construction of the built environment. It represents a collaboration
and coordination with a broad range of experts to get a building built” – Robert D. Fox, AIA, IIDA,
Principal, Fox Architects

•  At IBM, our I/T architects (“client architects”) have several defined roles:

–  Solution Designer
–  Methodologist
–  Technology Advisor
–  Project Leader
–  Facilitator
–  Business Advisor

–  Note the variety of responsibilities– they are NOT all technical in nature!

•  IMPORTANT: These roles all reflect the need for
architectural thinking

6

“I’m an architect”

7

•  (video)

What would happen if you put a carpenter, a plumber, an
electrician and an HVAC installer in a room and told them to
build a house?

•  This is often how we conduct I/T projects – a lot of very smart people who are very, very
good at doing their jobs of installing operating systems, program products, networking, etc.

–  No one to cast the vision
–  No one to ensure the project fulfills the business strategy
–  No one to ensure the project is in line with overall I/T strategy
–  No one who is steering the organization in a consistent direction by establishing

standards by which to build stuff
–  Sometimes there’s a project manager
–  Usually someone is paying attention to what it costs
–  Sometimes the project gets done
–  Often it’s over budget

Sometimes it does what it’s supposed to.

•  How do we avoid such issues?
–  At least one thing you can do is to appoint an architect

Well, at least it would help. IMO, a lot.

8

Architectural thinking and “top-down” vs
“bottom-up”

•  A “purpose orientation” drives architectural thinking
–  Systems architecting is driven by a client's purpose

•  President Kennedy didn't say build me an Apollo 3 stage rocket and a Lunar excursion
module.

–  Useful purpose, affordable cost, acceptable period of time
•  Useful purpose is predominant

–  The architect works with the client and the builder on problems and solutions.

•  Part of architectural thinking comes from “Insights and Heuristics”
–  A chess master does not think many moves ahead, they see a pattern on the board and

have the insight and experience to know the outcome.
–  Heuristics are codified succinct expressions from lessons learned through your own or

other's experience. Heuristics are a key tool of the systems architect.
•  Success comes from wisdom.
•  Wisdom comes from experience.
•  Experience comes from mistakes.

–  Good architects have a lot of experience and have probably made a lot of mistakes…
–  As a result of the wisdom and mistakes, they have identified patterns that WORK

9

Can specialists architect and design good
systems?

•  Maybe.

•  “Builder-architected” systems
–  Systems architecting occurs in the context of an acquisition process
–  Tends to be a “form-first” architectural approach, with technology-driven systems

rather than purpose driven systems.
–  Begins with a builder-conceived architecture in mind rather than with a set of client-

accepted purposes.
–  Uncertainty of end purpose is a major risk.
–  Form-first can often produce a solution looking for a problem

•  Builders/specialists tend to think “bottom-up” and base designs on existing assets rather
than a top-down consideration of requirements that lead to a solution

•  Remember the carpenter/plumber/electrician analogy….

10

Architectural thinking involves observation of
patterns

•  Architects are observers of behavior.
•  “...a place is given its character by certain patterns of events that keep on

happening there...
•  Architects create space where these patterns of behavior can happen, flourish,

and be generative – or as Alexander puts it, be alive.
•  From this activity a language of patterns emerges permitting endless possibilities

of creation.
•  Our role is to observe the behavior and pattern language in our customers, and

to expand their vocabulary.

11
Taken from “Architectural Thinking” presentation – Jackson/Bouchard

“The Open Concept”

Observing produces knowledge, but observing
over time produces wisdom

•  Information, knowledge and wisdom*:
–  Information is a sequence of symbols that can be interpreted as a message.
–  Knowledge is a unique set of facts and skills acquired by a person through

experience or education.
–  Wisdom reflects understanding of “universal truths” or basic laws or patterns; it is

knowledge that is based on values, meaning systems, and understanding that clarity
is not always possible and that unpredictability and uncertainty are part of life.

•  How does this apply to architectural thinking*?
–  Wisdom is the ability to make right use of knowledge. Some researchers have

identified wisdom as the combination of two categories of attributes:
•  Exceptional understanding - using common sense, learning from past experiences,

and seeing things within the large context.
•  Judgment and communication - being aware of sources of good advice,

understanding life, thinking carefully before deciding, seeing
and considering all points of view.

•  Again, note the importance of experience, thought, and
communication.

12 * - Taken from: http://staroversky.com/blog/information-knowledge-and-wisdom-what-is-the-difference

Architects produce architectures and solution
designs

•  An architectural framework is often used:
–  a tool for:

•  Designing a broad range of a architectures
•  Assisting the evaluation of different architectures
•  Selecting and building the right architecture for an organization

–  It embodies best practice and acknowledged wisdom
–  It presents a set of services, standards, design concepts, components and

configurations
–  It guides the development of specific architectures

•  Examples: The Open Group Architecture Framework (TOGAF), Zachman,
C4ISR (DoD)

•  Architectures drive solution designs
–  The architect will create a higher-level abstraction, standards and guidelines that

dictate how various solutions can be designed in their enterprise – the
architecture

–  The solution design process follows the architecture

13

Architecture and Design

•  It is said that “Architects produce architectures”. That is true, but architects also deliver
designs.

–  “All architecture is design but not all design is architecture. Architecture represents the
significant design decisions that shape a system, where significant is measured by cost of
change” – Grady Booch, IBM Fellow (and father of UML)

•  Tom Graves, on the topic:
–  Architecture and design are closely related; the main difference between them is really

about which way we face.
–  Architecture faces towards strategy, structure and purpose, towards the abstract.
–  Design faces towards implementation and practice, towards the concrete.
–  Most designers and architects will do both types of work; but most will describe themselves

as either a ‘designer’ or an ‘architect’ according to which way they most often face.
–  Architecture without design does nothing: it can too easily remain stuck in an ‘ivory-tower’

world, seeking ever finer and more idealized abstractions.
–  Design without architecture tends toward point-solutions that are optimized solely for

a single task and context, often developed only for the current techniques and
technologies, and often with high levels of hidden
‘technical debt’.

14

Creating an architecture involves “looking to the
future”

•  As an architect, one must not only look at solving the current problem but also to
creating a solution architecture that will “age gracefully” and will be somewhat “future-
proof”

–  “Charles Eames – architect, furniture designer, film maker, exhibition designer – on being asked
‘What is your definition of design?’ answered: ‘A plan for arranging elements in such a way as to
best accomplish a particular purpose’ (Neuhart, neuhart & Eames, 1989, p.14) The definition
places a good deal of emphasis on the eventual outcome and rather less on the process of
arriving at a result. It does imply, however, that design is always concerned with some future
event; that it is an attempt to forecast that event by whatever means are appropriate and
available at a particular time: a drawing, a model, an electronic simulation. In a real sense it is a
prophecy. In architecture, preceding that must invariably come visual thought” – Architectural
Thought, Brawne.

–  So, architecture, to some extent, requires a bit of extrapolation into the future.
•  Will an architecture be useful into the future?
•  Are there interfaces that allow for expansion?
•  What will the “eventual outcome” be for the system being designed?
•  Is the architecture built to be “future-proof”

•  Can you think of an architecture that matches that description?
(Did you catch the hint?)

15

The heritage of a successful architecture

16

Architectural Models and Modeling

•  What are models?
–  The product of the architect is “a vision”; it is intangible.
–  The progression of models during the design life cycle can be visualized as a

steady reduction of abstraction.
–  As architectural decisions are made (and recorded) the range of options narrows

and the models become more specific.
–  Eventually the models become construction drawings and itemized budgets, and

pass into the hands of the builders.
–  Part of the architect's role is to determine which views are most critical to system

success, build models for those views, and then integrate as necessary to
maintain system integrity.

•  The objectives for modeling?
–  Match the desirability of purposes with the practical feasibility of a system to fulfill

those purposes.
–  Help the customer clarify abstract objectives through provisional and explanatory

models.

Using models to reflect the reduction of abstraction reflects
“top-down” architectural thinking that is necessary to be an architect!

17

Kinds of models?
•  Models of form

–  Physically identifiable elements of, and interfaces
to what will be constructed.

–  Closely tied to particular construction technologies
–  Scale models – prototypes and proofs of concept
–  Block diagrams – system interconnect diagrams,

system flow diagrams, structure charts, class and
object diagrams

•  Behavioral (functional) models
–  Describe specific patterns of behavior by the system
–  Threads and scenarios – a sequence of system operations, a.k.a. use-cases.
–  Data and event flow – allow threads to be collapsed into more compact models

•  Performance models
–  Describes or predicts how effectively an aspect of the architecture satisfies some function
–  Usually quantitative and at a system level
–  These are “ilities” or nonfunctional requirements

•  Data Models
–  What data does the system retain and what relationships among the data does it develop and

maintain ?
–  Entity-Relationship diagrams for relational databases
–  In data-intensive systems, generating intelligent behavior is a matter of finding relationships and

imposing a persistent structure on the records.

18

Modeling, to the extreme

19

•  Gillian: “I never imagined that!”
•  Roy: “Next time try sculpture.”

Turn thought into action by using a methodology
•  Part of the definition of an architect is someone who uses a methodical

approach.
•  The use, transformation, and creation of method tools is seen as a sign of

maturity in an architect.
•  As a craft person becomes more mature in their practice, they grow in their

facility to use the tools of their craft in different ways.
•  This leads to generativity* in one's profession and extends the current

boundaries of practice.
•  But, one's use of methods should not be “mechanical”

•  Methods provide structure
–  Methods provide structure to our thought processes to give us an idea of “the next

thing to do”
–  Once you let go of the fear of not having “the next thing to do” the structures created

by your use of method, in your mental “muscle memory” will take over.
–  You will come to understand that the structure of the method which once empowered

you feels restrictive. This is the breakthrough point at which your creativity is freed.
–  But, you really have not left method behind, it still informs what you do.

20
* - From Wikipedia: Generativity in essence describes a self-contained system from which its user draws an
independent ability to create, generate, or produce new content unique to that system without additional help or input
from the system's original creators.

The Architecture Development Method of TOGAF

21

An iterative process for developing architectures

Client Value Method

IMPLEMENT
Client solution

UNDERSTAND
the Client’s

business and
needs

EXPLORE
options and
approach

DEVELOP
and agree to

Client solution

IMPLEMENT
Client solution

CONFIRM
Client Value and

experience

Key Team Decisions

What value does
the Client want?

What options do
we explore?

Select?

What solution
solves the
problem?

How do we
implement it

successfully?

How will we
enhance value?

ß New Projects

Client Value Method: an end-to-end Client Value
experience

Key Team Decisions

IBM’s Team Solution Design methodology

23

A key success factor of the Client Value Method was the adoption of a single pre-sales solution
design method by all brands and service organizations.

Team Solution Design includes standard document types, tasks, assets and guidance that provide
IBM’s disciplined, standard approach to pre-sales design best practices through delivery, across all
brands and service organizations to deliver a positive total Client Experience.

•  Increase our ability to design, propose, and build solutions
•  Reduced risk with predictable results and higher quality

•  Better proposals, traceable to Client need
•  Enable effective communications between sales and delivery
•  Increase Client success by combining industry leading best practices

Team Solution Design is accepted by The Open Group as a standard design methodology and IBM’s
architect certification is interlocked with Open Group.

Phases and steps in Team Solution Design

•  Each task has certain roles and input/output work products
associated with it

24

Example: Document Architectural Decisions

25

Key Team Solution Design Work Products by Phase

Slide 26

Non-Functional
Requirements

Project
Definition

Viability
Assessment

Use Case
Model

Requirements
Matrix

System
Context

Architectural
Decisions

Service
Model

Candidate
Asset List

Architecture
Overview

Operational
Model

Component
Model

Business
Direction

Current
Organization

Technical
Environment

Standards

Not all of the work-products will be needed on every project. Work-products will be
dependant on the solution/service type.

Team Solution Design Work Product Dependencies

 | Printed on 2/23/15 Slide 27

Service
Model

Candidate
Asset List

Component
Model

Operational
Model

Architecture
Overview

Viability
Assessment

Project
Definition

Non-Functional
Requirements

Use Case
Model

Architectural
Decisions

System
Context

Requirements
Matrix

Understand Phase (Ongoing)
Business Direction
Current Organization
Technical Environment
Standards

Assets
Reference Architectures
Component Infrastructure Roadmap
ITT Solution Brief, Workshop Report

Business Assets
CVM: (Account/Opportunity Plan..)
ITT: Client Challenges
IBV: Points of View

NOTES: A work product is a tool that can be used to define and describe the items needed as input or created as output of one or more
tasks. Colors indicate where the work products first get created. They continue to be updated throughout the Client project.

Work Product: Project Definition

Purpose
§  Formalize the understanding of the project
§  Serve as a basis for planning and controlling project activities
§  Document who, what, where, why, when and how?
§  Updated throughout the duration of the project

Description
§  The project definition is a text document that addresses the key questions and

issues necessary to define and manage a project.
§  Examples of content include:

•  Project purpose and business problems to be to addressed
•  Project timeline and approach
•  Primary, high level functional aspects of the system
•  Information on sponsors, participants and responsibilities

 | Printed on 2/23/15 Slide 28

Example: Project Definition

 | Printed on 2/23/15 Slide 29

Work Product: System Context

Purpose
§  To clarify and confirm the environment in which the system

has to operate.
§  To document information flows between the solution to be

installed and external entities.
§  Provide a basis for establishing scope of the target solution

and external dependencies.

Description
§  The System Context is usually represented in a diagram

showing the entire proposed system as a single “black box”
with relationships to users and external devices and systems.

§  Documents important characteristics of the system context
such as users, external interfaces and systems, inputs and
outputs, and external devices.

§  Identifies boundary definitions and the information and control
flows with external systems.

 | Printed on 2/23/15 Slide 30

Example: System Context

 | Printed on 2/23/15 Slide 31

Pervasive
Computing

Devices

Proposed
System

Customized requests
 for information
 made over
 wireless
 protocols

XML documents
returned from partner
site / application over
HTTP or HTTPS

XML documents
delivered to
external systems
over HTTP
or HTTPS

Asynchronous or
Synchronous request
for data transactions
over TCP/IP

Asynchronous
or Synchronous
responses over
TCP/IP

Requests for
information
made over
HTTP &
HTTPS

Customized
presentation delivered
to Client using wireless
protocols

Request for information
and business data issued
over HTTP & HTTPS

HTML and XML documents,
audio, video and image
files delivered over
HTTP & HTTPS

Browser-based
Internet Client

Browser-based
Intranet Client

Legacy Systems
and

Databases

External Entities
(Business Partners,

Vendors, ASPs)

Work Product: Requirements Matrix

Purpose
§  To capture Client requirements and to evaluate the initial functional "fit" of

alternatives.
•  This artifact documents important Client functional requirements of the

proposed system in a text form.
•  It provides an initial means to compare multiple alternatives against each

other and to ensure that the products and technology selected are suited to
their purpose.

•  It is used to identify initial functional gaps or special software enhancements
needed to fulfill the Client's desired system capabilities.

Description
§  The Requirements Matrix is a document detailing the functionality and technical

requirements desired by the Client in the solution.
§  It is either a simple table or a spreadsheet with multiple tabs, each tab representing

a separate business area or other subset of the system requirements.

Slide 32

Example: Requirements Matrix (simple)

 | Printed on 2/23/15 Slide 33

Functional
Requirement
ID

Functional
Requirement
Name

Functional Requirement
Requirement
Supported by
Software /
Component

Comments

FR001 Backup/Recovery
Facilities and procedures created and defined to
support backup and recovery of data at the plant
location

FR002 Archive data Provide processes to periodically remove and
archive on-line data

FR003 Electronic notification Ability to receive electronic notification/report of
orders on a daily basis w/detail available

FR004 Track goods
Ability to classify and track goods, materials/supplies
by code, by property number, by cost center, by
employee number, by location, by date of purchase,
by warranty of equipment, by insurance code

Business
requirement driven
by initiative to
reduce inventory.

FR004.1 Ad hoc reporting Provides robust ad-hoc reporting facility and tools cmpTool
This IT requirement
needed to support
FR004.

FR004.2 Automatic scheduling
Periodic reports, distribution of data, and system
backups can be automatically scheduled and
managed

cmpTool
This IT requirement
needed to support
FR004.

FR004.3 Inventory levels Includes ability to set min/max for inventory items cmpTool
This IT requirement
needed to support
FR004.

Work Product: Non-Functional
Requirements

Purpose
§  To describe the quality attributes of the system and the constraints which the

design options will be required to satisfy in order to deliver the business goals,
objectives or capabilities.

§  To provide a quantitative basis for assessing the sizing, cost and viability of the
proposed system.

§  Establish key considerations for understanding service level agreements for
operational management of the solution.

Description
§  Non-functional requirements are established in areas such as performance and

capacity, availability, usability, security and privacy, maintainability, manageability
and flexibility.

§  Specific examples might include number of concurrent users, update response
time, end-user availability, etc.

 | Printed on 2/23/15 Slide 34

Example: Non-Functional Requirements

 | Printed on 2/23/15 Slide 35

Work Product: Architectural Decisions

Purpose:
§  Provide a rigorous approach for key architectural decisions which require

considerable analysis and may have enduring influence on future designs.

§  Ensure there is a single, authoritative source for communicating key decisions
made about the architecture.

Description:
§  Each significant architectural decision is documented in a table. Examples of

information include:

•  What is being decided or the issue that is being addressed.
•  What options were considered
•  What decision was made, including justification and implications

Use established architectural principles to drive the decisions

 | Printed on 2/23/15 Slide 36

Example: Architectural Decisions

 | Printed on 2/23/15 Slide 37

Architecture of the IBM 360

•  The IBM 360 architecture is a marvelous case study
•  The IBM Systems Journal ran an article on IBM 360 design in 1964:

–  http://www.eecs.berkeley.edu/~culler/courses/cs252-s05/papers/
amdahl.pdf (Gene Amdahl was one of the authors)

–  http://www.cs.tufts.edu/~nr/cs257/archive/alfred-spector/
spector87ibm.pdf - great review of 360 as an architecture case stud

•  Some of the design principles :

38

Work Product: Architecture Overview

Purpose
§  Provide a high-level shared vision of the architecture of the solution and its scope.

§  Provide the sponsor and stakeholders a conceptual understanding of the intended
architecture.

§  Support evaluation of alternative architectural options.

§  Enable early recognition and validation of the architectural approach.

Description
§  This artifact illustrates the basic ideas of the proposed architecture, serving as

means of confirming architectural understanding between IBM and the Client.

§  Architecture Overview Diagrams may be created for different audiences and at
different levels of detail.

§  This description of the architecture is intended to be brief and understandable
rather than comprehensive or accurate in all details (like Component or Operational
Models).

 | Printed on 2/23/15 Slide 39

Example: Architecture Overview

 | Printed on 2/23/15 Slide 40

How does this apply to IBMz?

•  Obviously the aforementioned 360 architecture and its
development over the years

•  Enterprise architectures that include the mainframe
•  Solution designs that encompass portions of your z/OS or z

Linux implementations
–  Mobile
–  Analytics
–  Services/SOA

•  Be ready to provide IBM z “participation” in enterprise
system designs

•  Know how to talk to your enterprise architects

41

Let’s summarize…

•  Architects should think like architects – top-down
•  Architects should be methodological

–  But the architectural method-of-choice need not be a mechanical
thing

•  Base solution designs on an architecture
•  A good guideline:

–  Existing environment – business and I/T
–  Requirements – business and I/T, functional and non
–  Consider the alternatives
–  Assess the risk
–  Use models to represent various facets of the design

•  The architect must be involved through the lifecycle of the
solution

42

43

Thank you!

