

z/OS Central Storage Management

Kathy Walsh IBM

March 3, 2015

Session: 16802

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System j, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

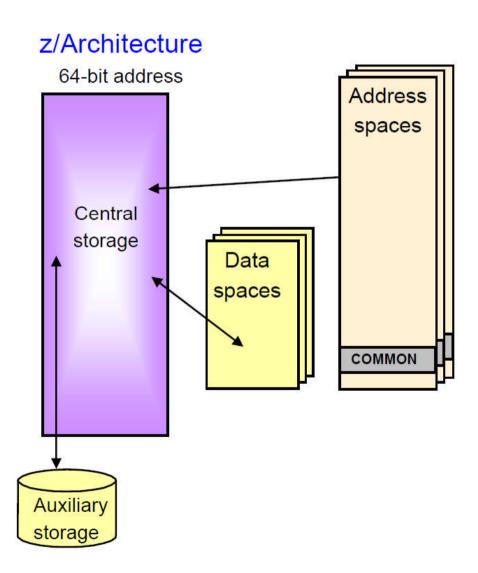
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

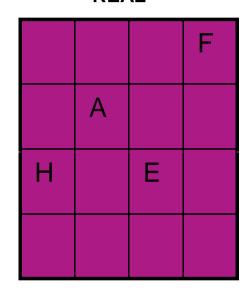
Agenda

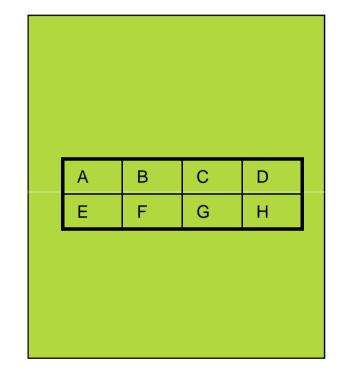
- Overview of Storage Management
 - Architecture Overview
 - Virtual Storage Areas
 - -Real Storage
 - -Value of Large Frames
- Storage Contention and Paging
 - -UIC
 - Available Frame Queue
- Storage Shortage Management
 - Pageable Storage Shortage Processing
 - Auxiliary Storage Shortage Processing

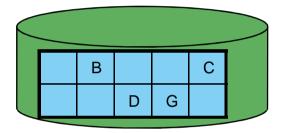

Enterprise Server Storage: Central and Aux

•z/Architecture

64 bit address **Current maximum** real storage supported by z/OS is CENTRAL STORAGE **4 TB** Addressable in 264 bytes **Auxiliary** 18,446,744,073,709,551,616 bytes Storage


Enterprise Server Storage: Real and Virtual

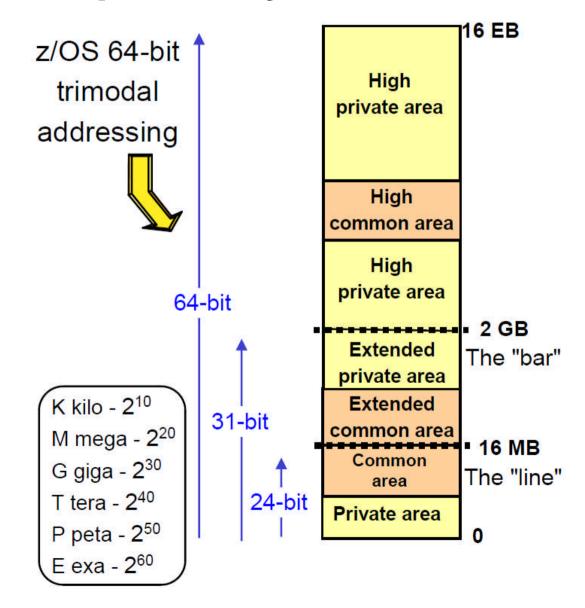

Frames, Pages, and Slots


FRAMES

VIRTUAL

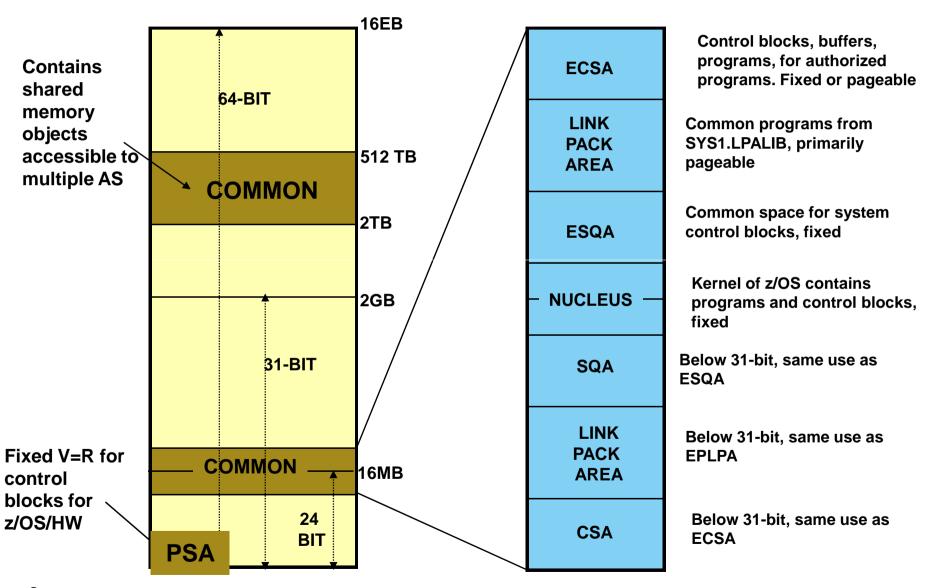
PAGES

AUXILIARY



SLOTS / BLOCKS

DASD and/or FlashExpress

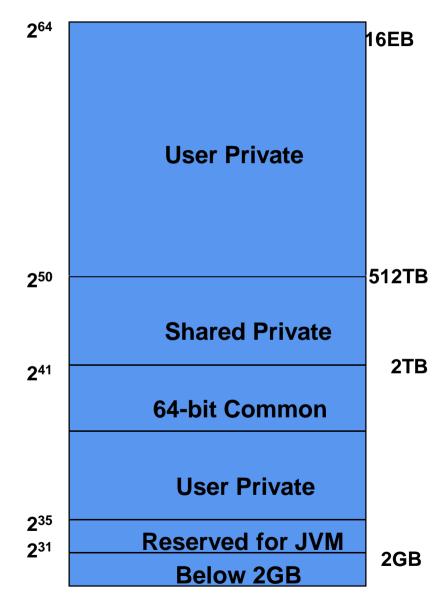


Address Space Layout

Common Area Layout

Virtual Storage

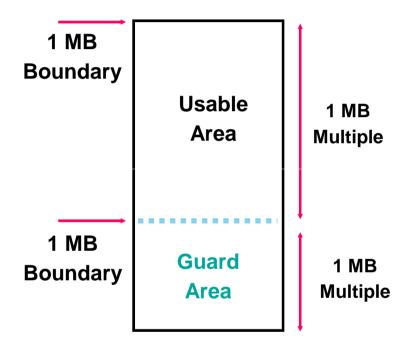
- RMF Report
 - -SMF 78 record
 - -REPORT(VSTOR)
- Size of (E)CSA and (E)SQA are defined at IPL via SYS1.Parmlib
- Private region is still important to monitor for 24-bit programs


	STATIC STORAGE	E MAP
AREA	ADDRESS	SIZE
EPVT	1CD00000	1587M
ECSA	8C20000	321M
EMLPA	0	0K
EFLPA	8C1D000	12K
EPLPA	46DB000	69.3M
ESQA	1BB7000	43.1M
ENUC	1000000	11.7M
1	6 MEG BOUNDARY	
NUCLEUS	FD6000	168K
SQA	E95000	1284K
PLPA	CE5000	1728K
FLPA	CDA000	44K
MLPA	0	0K
CSA	900000	3944K
	2000	9208K
PRIVATE	2000	7 - 0 0 - 0

9 © 2015 IBM Corporation

Storage Map Above the Bar

- Virtual Storage above 2GB is obtained:
 - Memory objects using IARV64
 - Obtain private, shared, common, or DREF memory objects
 - Specify PAGEFRAMESIZE on request (4K, 1M, MAX, DREF, PAGEABLE1MEG, 2G)
 - Via IARST64 service
 - Allows callers to request private or common storage in sizes from 1 byte to 64k
 - Via IARCP64
 - Allows callers to request a private or common storage cell pool with cells in sizes from 1 byte to almost half a meg
- MEMLIMIT controls private virtual storage above the bar
 - Via SMFPRMxx, JCL, IEFUSI exit


Memory Objects

Memory Objects are

- **►** Contiguous range of virtual addresses
- Allocated as a number of 1 MB increments of storage, on a 1 MB boundary
- ► Some of the memory is useable virtual storage, and the rest is not valid and is called the "guard" area
- Extent of useable virtual can be changed with a compensatory change in the extent of the guard area

•Memory Object attributes:

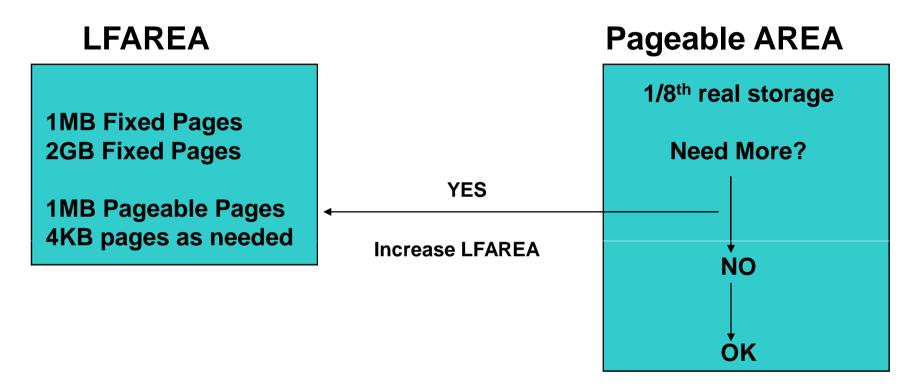
- Allocated by a single request and freed in it's entirety
- Defined with a single storage protection key and fetch protection attribute
- Private memory objects are owned by a task
- Memory management operations must be performed within an object, i.e. cannot cross a memory object boundary

Allocating Virtual Storage

■ The size of the High Common, High Shared and Large Frames areas are defined in the IEASYSxx parmlib member

```
\begin{array}{ll} \text{HVCOMMON} &= (xxxG \mid xxxT) & \text{Default} = 64G \\ \text{HVSHARE} &= (xxxG \mid xxxT \mid xxxE) & \text{Default} = 510T \\ \text{LFAREA} &= (1M = (target[\%], min), 2G = (target[\%], min)) & \underline{\text{Default}} = none \\ \end{array}
```

- The LFAREA controls the amount of real storage allocated to support 1MB fixed and 2GB fixed pages
 - -Can only be changed by an IPL so plan and monitor closely
 - -LPAR must have more than 4GB of real storage to get an LFAREA, and must have 6.5GB of real storage to get a single 2GB page
 - Backed by contiguous 4K pages at allocation time
 - Free 1MB pages can be used if available 4K pages become constrained
 - Available storage in the LFAREA can be used to support pageable 1MB pages
 - -Over-allocation of LFAREA can have a negative effect on the system if it reduces the quantity of 4K pages needed for normal system operations



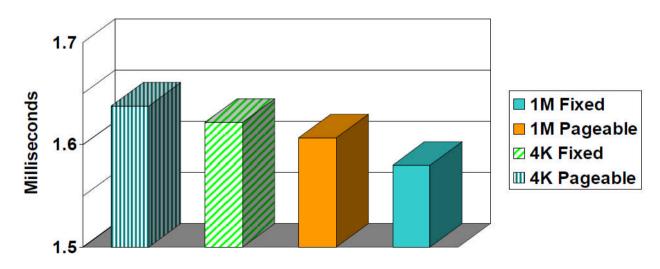
1 MB Pageable Large Pages

- The pageable 1MB page area is set to approximately 1/8th of the real storage
 - -Can be used to support 4KB page requests
- Obtained via the IARV64 GETSTOR|GETCOMMON macro
 - Requires z/OS 2.1 or 1.13 with RSM Enablement Offering
 - Requires zEC12, zBC12, or z13 processor
- Pageable large pages are backed when referenced
 - Fixed large pages are backed at allocation time
- Pageable large pages can be moved to Aux
 - With Flash, large pages are paged to Flash and retain their 'large page' attribute
 - Without Flash, large pages will be demoted to 256 4KB pages, a page table will be built and pages sent to Aux
 - Pages lose their 'large page' attribute
 - Potential performance problem because no enhancements to AUX DASD I/O performance
- Every SCM capable LPAR will receive an allocation of 1 MB Pageable pages
 - Allows for the dynamic addition (hot plugging) of Flash Express Cards

Sizing Storage

Large Frames require contiguous memory!

The Value of Large Memory


- Substantial Latency Reduction for OLTP workloads
 - Significant response time reductions
 - -Increased transaction rates
- In-Memory Databases see dramatic gains in response time by avoiding I/O wait
- Batch Window Reduction
 - More concurrent workloads
 - Shorter elapsed times for jobs
- CPU performance improvements
 - Increased application memory sizes due to 64-bit addressing has put pressure on the Hardware Translation Lookaside Buffer (TLB)
 - TLB sizes have remained relatively small due to low access time requirements and hardware space limitations
 - TLB coverage today represents a much smaller fraction of an applications working set leading to a larger number of TLB misses which can mean applications can incur a performance penalty due to the number of TLB misses and the increased CPU cost of each TLB miss
 - Large pages increase TLB coverage without proportionally enlarging the TLB
 - Large pages allow for a single TLB entry to fulfill many more address translations

Benefits of 1MB Frames - Example

- Using DB2 10, brokerage workload, all buffer pools were backed by real storage
- zEC12 16 CPs, 5000-6000 tps simple to complex transactions
 - -120GB real storage with LFAREA=70GB for 1MB measurements
- Results:
 - -1MB Pageable frames are 2% better than 4K pageable frames for the workload*
 - –1 MB Fixed Frames give the best overall performance

Total DB2 CPU Time per Transaction

^{*} Laboratory synthetic extensions used to create 1M Pageable Frames for buffer pools

Managing Memory Objects

■ RMF Monitor 3 STORM report

			RMF	V2F	R1 S	torage :	Memory	Objec	ets	Li	ine 1 c	of 62	
Samples:	10	00	Syst	em:	SYSB	Date:	09/20/	14 T:	ime: 1	5.00.00	Range	e: 100	Sec
						- Svste	m Summa	arv -					
MemOb	j – -		Fra	mes-		_		_		ixed		Pagea	ble-
Shared		5	Shared	23!	562	Total	0	To	otal	0	Initi	ial 7	056
Common	•	70	Common	164	196	Common	0	Co	ommon	0	Dynar	nic	0
			%Used	13	3.1			%ा	Jsed	0.0	%Used	1	1.6
						_	_			Frames-		_	
Jobname	C	Clas	s A	SID	Total	Comm	Shr	1 MB	Fixed	Pgable	Total	Comm	Shr
IXGLOGR	s	SYST	EM 0	027	256	0	0	0	0	4	258M	0	0
IXGLOGR Z21SVR1				027 088				0 0	_				0 64.0M
	s	OPSD	EF 0	880		0		-	0	101		0	64.0M

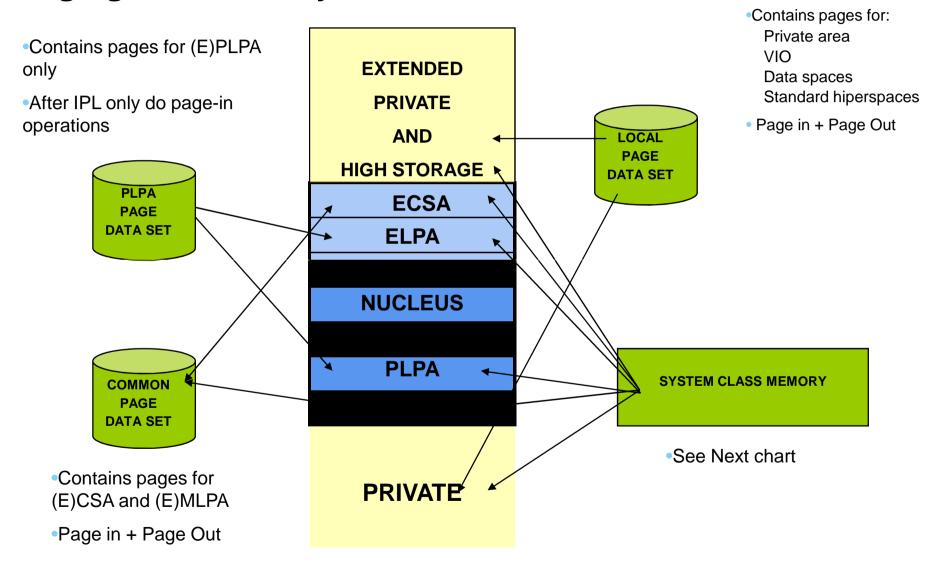
Private = (Total – (COMMon + SHaRed))

Managing Memory Objects

- RMF Postprocessor Report
 - -REPORT(PAGING)

z/OS V2R1	SYSTEM	I ID SYSB		DATE 09/19/	2014	
PT VERSION V2R1 RMF	TIME	15.15.00		CYCLE 1.00	0 SECONDS	
-OPT = IEAOPT00 <u>LF</u>	AREA SIZE =	0 1	MEMORY OB	JECTS AND H	IGH VIRTUAL	STORAGE FRAME
MEMORY OBJECTS	COMMON	SHARED	1 MB			
MIN	70	5	0			
MAX	70	5	0			
AVG	70	5	0			
1 MB FRAMES		FIXED			- PAGEABLE	
	TOTAL	AVAILABLE	IN-USE	TOTAL	AVAILABLE	IN-USE
MIN	0	0	0	7,056	2,496	4,560
MAX	0	0	0	7,056	2,496	4,560
AVG	0	0	0	7,056	2,496	4,560
HIGH SHARED FRAMES	TOTAL	CENTRAL	STORAGE		AUX DASD	AUX SCM
MIN	136902.1M		23,562		0	0
MAX	136902.1M		23,562		0	0
AVG			23,562		0	0
HIGH COMMON FRAMES	TOTAL	CENTRAL	STORAGE	FIXED 4K	AUX DASD	AUX SCM
MIN	17301504		-	1,718	0	0
MAX	17301504		16,493	1,718	0	0
AVG	17301504		16,493	1,718	0	0

Operator Command Support


```
d virtstor, hycommon
   IAR019I
    SOURCE = DV
    TOTAL 64-BIT COMMON = 66G
    64-BIT COMMON RANGE = 1982G-2048G
    64-BIT COMMON ALLOCATED = 37M
d virtstor, lfarea
IAR019I
 SOURCE = DEFAULT
 TOTAL LFAREA = 900M , OG
 LFAREA AVAILABLE = 1M , 0G
 LFAREA ALLOCATED (1M) = 608M
 LFAREA ALLOCATED (4K) = 0M
 MAX LFAREA ALLOCATED (1M) = 685M
 MAX LFAREA ALLOCATED (4K) = 0M
 LFAREA ALLOCATED (PAGEABLE1M) = 191M
 MAX LFAREA ALLOCATED (PAGEABLE1M) = 341M
 LFAREA ALLOCATED NUMBER OF 2G PAGES = 0
 MAX LFAREA ALLOCATED NUMBER OF 2G PAGES = 0
```

d virtstor,hvshare
 IAR019I
 SOURCE = DV
 TOTAL SHARED = 66G
 SHARED RANGE = 2048G-2112G
 SHARED ALLOCATED = 0M

If the high water mark for the number of fixed large pages used on behalf of 4K page requests is high decrease the LFAREA size or add additional real storage

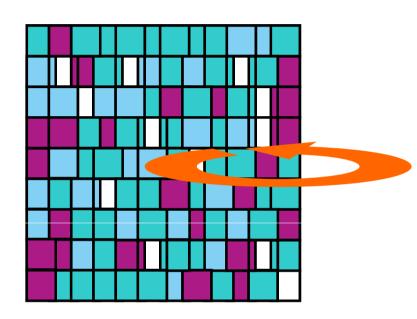
Paging and Auxiliary Datasets

20

Storage Class Memory

Flash vs Disk Placement Criteria

Data Type	Data Page Placement
Pageable Link Pack Area (PLPA)	At IPL/NIP time PLPA pages will be placed both on flash and disk. PLPA data sets used for quick, and warm starts, SCM to resolve page faults.
VIO	VIO data will always be placed on disk (First to VIO accepting datasets with any spillover flowing to nonvio datasets)
HyperSwap Critical Address Space data	If flash space is available, all virtual pages belonging to a HyperSwap Critical Address Space will be placed on flash memory. If flash space is not available, these pages will be kept in memory and only paged to disk when the system is real storage constrained and no other alternatives exist
Pageable Large Pages	If contiguous flash space is available, pageable large pages will be preferentially written to flash.
All other data	If available space exists on both flash and disk then make a selection based on response time.



Operator Command – SCM and Aux

```
d asm
  SYS1
        IEE200I
  TYPE
           FULL STAT
                       DEV
                             DATASET NAME
  PLPA
            100% FULL 02E6
                             SYS1.PLPA.PAGCOM
                  OK 02E6 SYS1.COMMON.PAGCOM
  COMMON
            60%
                  OK 0481 SYS1.LOCAL1
  LOCAL
             0%
  LOCAL
             0%
                  OK 0348 SYS1.LOCAL7
  LOCAL
             0%
                  OK 048A SYS1.LOCAL8
  SCM
             12%
                  OK
                       N/A
                             N/A
  PAGEDEL COMMAND IS NOT ACTIVE
d asm, scm
  SYS1
        IEE207I
STATUS
           FULL
                          SIZE
                                       USED
                                                IN-ERROR
                          131,072
                                        16,122
  IN-USE
               12%
                                                     0
d m=scm
  SYS1
        IEE174I
  STORAGE-CLASS MEMORY STATUS
   512M DEFINED
  ONLINE
   0M - 512M
  OM OFFLINE-AVAILABLE
  SCM INCREMENT SIZE IS 1M
```


Measuring Central Storage Contention - UIC Calculation

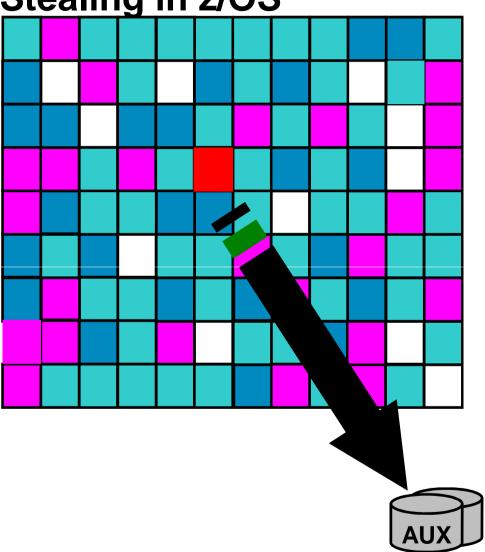
- There are three different UIC's which can be displayed by performance monitors:
 - Current UIC
 - Minimum UIC
 - Maximum UIC

- UIC Unreferenced Interval Count
 - The higher the UIC value, the less contention for storage in the system
 - The lower the UIC value, the more contention for storage in the system
- The page replacement algorithm z/OS uses was enhanced to more efficiently process large amounts of real storage
- Since z/OS 1.8, the UIC is defined as a single walk though all of central storage in seconds
- The UIC values seen in an RMF report will vary from 0 – 65535 (18 hours)
 - Values greater than 9999 are displayed as nnK

UIC Management

RMF Mon 3 – STORR or STORS panel

RMF Postprocessor – REPORT(PAGING)


```
z/OS V2R1 SYSTEM ID SYSB DATE 09/19/2014 INTERVAL 05.00.001
OPT = IEAOPT00 LFAREA SIZE = 0 CENTRAL STORAGE MOVEMENT AND REQUEST RATES - IN PAGES PER

-
SYSTEM UIC: MIN = 65535 MAX = 65535 AVG = 65535
```

© 2015 IBM Corporation

Stealing in z/OS

- Pageable frame stealing is the process of taking an assigned central storage frame away from an address space to make it available for other purposes
- When there is a demand for pageable frames, RSM will steal frames which are <u>unreferenced</u> for a long time and return them to the system – (Available Frame Queue)
 - -No demand, then there is no stealing
- Since z/OS 1.8 stealing works against the entire storage range (Global LRU)
- Still protect frames in address spaces if Storage Critical or has a protective target

Available Frame Queue Processing

- MCCAFCTH=(lowvalue,okvalue)
 - -Specifies the low and the OK threshold values for storage
 - The lowvalue indicates the number of frames on the available frame queue when stealing begins
 - The okvalue indicates the number of frames on the available frame queue when stealing ends
- SRM manages the queue and starts the stealing process when the number of frames falls below the threshold
- The defaults are:
 - LOW will vary between MAX(MCCAFCTH lowvalue, 400, 0.2% of pageable storage)
 - OK will vary between MAX(MCCAFCTH okvalue, 600, 0.4% of the pageable storage)
 - SRM will automatically adjust the actual threshold values based on measurements of storage usage but doesn't let values get lower than MCCAFCTH low threshold
 - Typically no need to specify this parameter

Available Frames

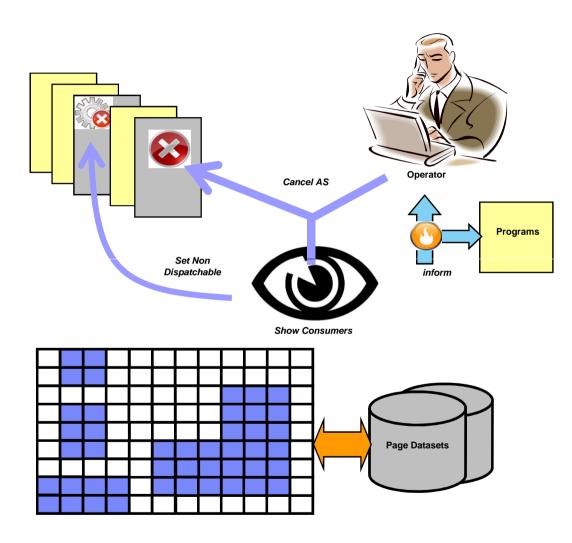
RMF Post Processor – REPORT(PAGING)

	FRAME	AND SLOT CO	UNTS			
(31 SAMPLES) OCENTRAL STORAGE FRAMES	TOTAL	AVAILABLE	SQA	LPA	CSA	LSQA
MIN MAX AVG	16748558 16748558 16748558	14620193 14620757 14620474	7,243 7,244 7,243	5,761 5,761 5,761	9,470 9,481 9,478	77,480 77,498 77,491

■ RMF Monitor 2 - SRCS panel

CPU= 1/ 1 UIC= 65K PR= 0 System= SYSD Total															
		HI	SQA	LPA	LPA	CSA	L+C	PRI	LSQA	LSQA	CPU	IN	OUT	OUT	OUT
TIME	<u>AFC</u>	UIC	F	F	FF	F	FF	FF	CSF	ESF	UTL	Q	LOG	RQ	WQ
22:25:57	16M	65K	7.6K	22K	80	11K	12K	38K	77K		1	68	26	0	26
22:26:28	16M	65K	7.6K	22K	80	11K	12K	38K	77K		1	68	26	0	26
22:26:28	16M	65K	7.6K	22K	80	11K	12K	38K	77K		1	68	26	0	26
22:26:28	16M	65K	7.6K	22K	80	11K	12K	38K	77K		1	68	26	0	26

Demand Paging


- Paging rates are counted in terms of 4KB pages even when moving
 1MB Pageable pages to Flash
 - -Verify it's 1MB pageable pages by looking at I/O rates to Local Page Data Sets

OPT = IEAOPT01	LFAREA	SIZE =	(O CENTRA	AL STOR	AGE PAGIN	NG RATES	- IN PA	GES PER	SECOND
			PAGE IN				PAGE	OUT		
		NON	SWAP	TOT	AL			TOT	AL	
			NON				NON			
CATEGORY	SWAP	BLOCK	BLOCK	RATE	8	SWAP	SWAP	RATE	용	
									:====	
TOTAL SYSTEM										
HIPERSPACE		0.00		0.00	0		0.00	0.00	0	
VIO		0.00		0.00	0		0.00	0.00	0	
NON-VIO	0.00	0.00	15,243	15,243	100	0.00	6,814	6,814	100	
SUM	0.00	0.00	15,243	15,243	100	0.00	6,814	6,814	100	
SHARED			0.00	0.00	*		0.00	0.00		
DAGE MOMENTE ME	muth on	ALIENT CIEC	DDAGE.	1 0	26.02	<u> </u>				
		NTRAL STO	JKAGE	1, 2.	26.83	Page	In		Pa	age Out
PAGE MOVEMENT TI			anus-o		0.0	, ago			, ,	igo out
AVERAGE NUMBER C		PER BLO	CK		0.0					
BLOCKS PER SECON	ID				0.00	-				
PAGE-IN EVENTS (PAGE FA	JLT RATE)	15,2	43.46					

© 2015 IBM Corporation

Storage Shortage Management

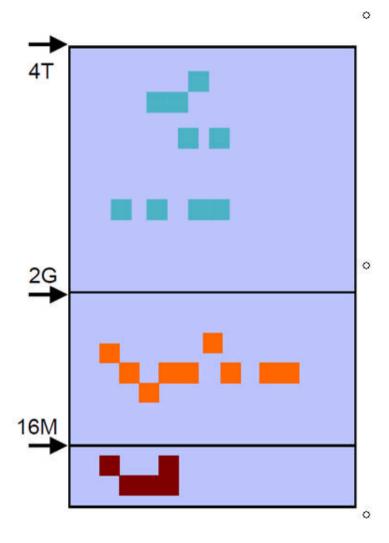
Monitors

- Fixed Storage consumption
- Auxiliary Storage consumption
- Every 2 seconds

Informs in case of problems

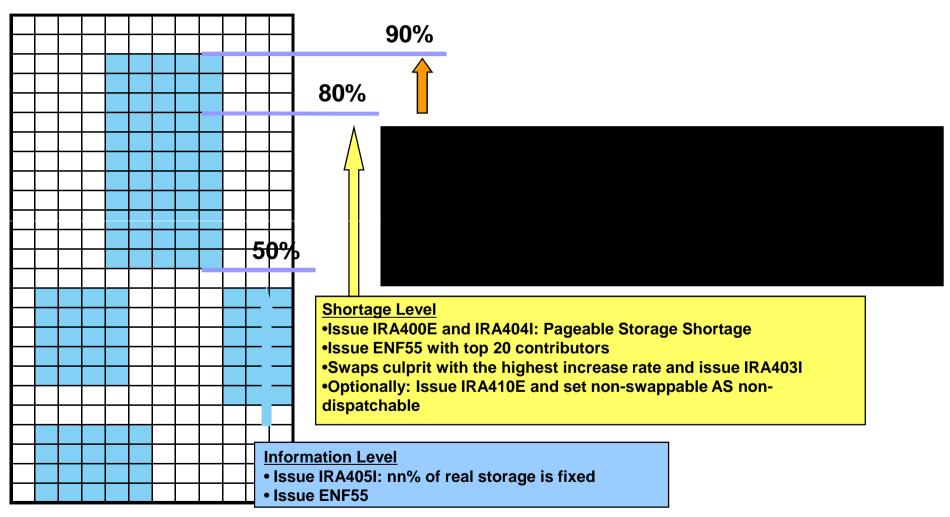
- Operator via messages
- Programs via ENF55

Takes Actions


- To set Address Spaces non dispatchable
- To cancel address spaces on operator request

© 2015 IBM Corporation

In-Real Swap


- Since z/OS 1.8 pageable storage shortages are handled by an In-Real Swap
 - Frames in the shortage area are exchanged with other frames
 - Pageable storage shortage
 between 16MB -> 2GB, frames will
 be exchanged with frames above
 2GB
 - Pageable storage shortages below 16MB, frames will be exchanged with frames above 2GB or above 16MB
 - Message IRA404I is issues and lists the five largest users of fixed frames in the shortage area

30

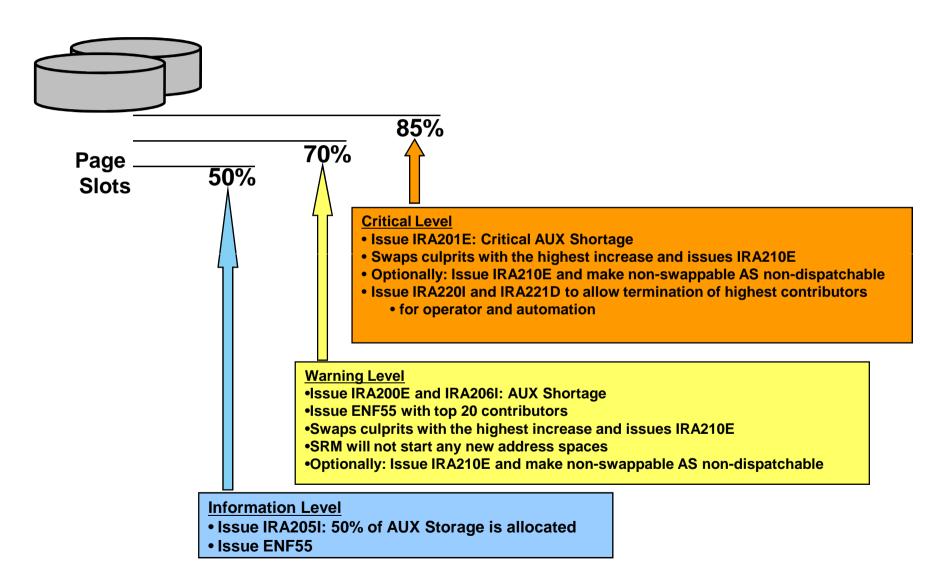
Pageable Storage Shortages – Details ...

Note: for Below 16M the shortage targets are 92% and 96%

Pageable Storage Shortages – Details ...

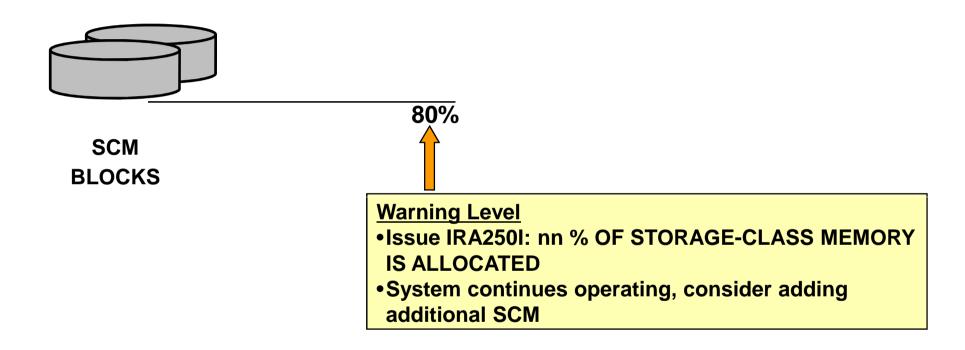
```
IRA420I ! ## ! USER ! ASID ! PAGES ! O/W FIXED !
IRA420I +----+
IRA420I ! 01 ! I9A2GH11 ! 0081 ! 0000065939 ! 0000065851 !
IRA420I ! 02 ! I9A2GH10 ! 0087N! 0000065936 ! 0000065517 !
IRA420I ! 03 ! I9A2GH13 ! 0088 ! 0000066002 ! 0000062839 !
IRA420I ! 04 ! XCFAS ! 0006S! 0000020870 ! 0000001436 !
IRA420I ! 05 ! TRACE ! 0004S! 0000008262 ! 000000706 !
*73 IRA421D REPLY M FOR MORE, E TO END, ## TO CANCEL A USER
```

These messages get issued after the system runs into a critical storage shortage. When the operator enters a M, the next 5 address spaces get presented at the console. A reply of the line number (##) terminates the address space.


IEAOPTxx keyword to disable the WTOR IRA421D or change the number of rows in message IRA420I:

STORAGEWTOR=xxxx

Specifies how the system handles address spaces during a critical storage shortage. Where xxxx is either YES (default), NO or AUTO


Auxiliary Storage Shortages - Details

33

Auxiliary Storage Shortages - Details

© 2015 IBM Corporation

Auxiliary Storage Shortages – Details ...

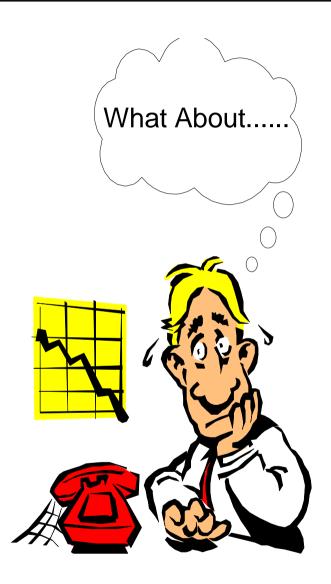
```
IRA220I ! ## ! USER ! ASID ! PAGES ! SLOTS !
IRA220I +----+
IRA220I ! 01 ! I9A2GH11 ! 0081 ! 0000065939 ! 0000065851 !
IRA220I ! 02 ! I9A2GH10 ! 0087N! 0000065936 ! 0000065517 !
IRA220I ! 03 ! I9A2GH13 ! 0088 ! 0000066002 ! 0000062839 !
IRA220I ! 04 ! XCFAS ! 0006S! 0000020870 ! 0000001436 !
IRA220I ! 05 ! TRACE ! 0004S! 0000008262 ! 000000706 !
*73 IRA221D REPLY M FOR MORE, E TO END, ## TO CANCEL A USER
```

These messages get issued after the system runs into a critical storage shortage. When the operator enters a M, the next 5 address spaces get presented at the console. A reply of the line number (##) terminates the address space.

OPT keywords to disable the WTOR IRA221D or change the number of rows in message IRA220I:

STORAGEWTOR=xxxx

Specifies how the system handles address spaces during a critical storage shortage. Where *option* is either *YES* (default), *NO* or *AUTO*.



Storage Shortage Management: Summary

	AUX	Pageable Below 16M	Pageable Above 16M
Warning	50%	70% IRA405I	50% IRA405I
Shortage	70%	92% MCCFXEPR	80% MCCFXTPR
Critical Shortage	85%	96% 100 - (100- MCCFXEPR)/2	90% 100 - (100- MCCFXTPR)/2

36 © 2015 IBM Corporation

37